
 Bounds on the Sizes of Decision Diagrams

Vaclav Dvorak
(Technical University Brno, Czech Republic

dvorak@dcse.fee.vutbr.cz)

Abstract: Known upper bounds on the number of required nodes (size) in the ordered binary
and multiple-valued decision diagram (DD) for representation of logic functions are reviewed
and reduced by a small constant factor. New upper bounds are derived for partial logic
functions containing don't cares and also for complete Boolean functions specified by Boolean
expressions. The evaluation of upper bounds is based on a bottom-up algorithm for
constructing efficient ordered DDs developed by the author.

Category: Hardware - Logic Design - Design Aids

1 Introduction

Many "decision" procedures use a branching process which consists of testing some
property, with the branching depending on the test outcome (typical examples are
identification of objects or classification). Concrete applications include simulation or
modelling of combinational or sequential circuits [Akers 1978], [Bryant 1986], test
generation [Abadir and Reghbati 1983], and design of binary and multiple-valued
multiplexer/demultiplexer networks [Davio et al. 1983], [Cerny et al. 1979]. Such
decision procedures can be implemented as programmable controllers [Zsombor-
Murray et al. 1983], as memory-based finite-state machines [Coraor et al. 1987], or
can be directly mapped into silicon [Matos and Oldfield 1983].

We introduce concepts needed in the following sections very informally [see Moret
1982]. A decision diagram (DD) is a directed acyclic graph in which each decision
node is labelled by a variable tested in this node (control variable). The edges coming
out from the decision node leading to the nodes in subsequent levels correspond to the
values of the control variable. So the decision node has M (out-) edges if the variable
takes M values. Beside decision nodes there are terminal nodes (leaves) labelled by
the value of the function that is being evaluated by the diagram.

Important parameters of a given DD are the total number of decision nodes (size) and
the maximum (or average) number of tests between the root and leaves (usually called
its cost). Here we consider only the size of the DD. Methods of optimization of DDs
for digital systems are presented in [Davio et al. 1983] and [Cerny et al. 1979].

Journal of Universal Computer Science, vol. 3, no. 1 (1997), 2-22
submitted: 21/5/96, accepted: 7/10/96, appeared: 28/1/97 Springer Pub. Co.

There are several classes of decision diagrams (DDs). In a simple (also free or read-
once only) DD, a discrete variable can be tested only once along a path from the root
to a leaf. If there is at least one variable tested more than once along a path, then we
have a so called repeated DD. The decision tree is a DD in which all decision nodes
have just one in-edge. Finally, a DD is ordered if the order of control variables tested
along every path in the DD is the same (control variables not tested along a certain
path are considered to be in the correct order). All the nodes of the ordered DD
labelled by the same variable make up a level of this diagram. The top level consists
of a root node only, out-edges of decision nodes at the bottom level lead only to
terminal nodes.

Binary decision diagrams (BDDs) and particularly ordered binary decision diagrams
(OBDDs) are widely regarded as the most practical Boolean function representation.
They can be considered to be a specialized hardware description language. The
construction of minimum-size BDDs belongs among NP-hard problems and
algorithms of high complexity can design some classes of minimum-size BDDs only
for a small number of variables [Friedman and Supowit 1990]. Generation of a BDD
from the known Boolean circuits is a different matter and has been investigated
elsewhere [Bryant 1986], [Chakravarty 1991].

Upper bounds on the OBDD's size for general Boolean functions are not too
encouraging [Liaw and Lin 1992], but many practical functions do have a reasonable
OBDD size.

2 A Bottom Up Construction of Efficient Ordered Decision
Diagrams

A minimum-size ordered DD is specified by an optimum variable ordering. This
ordering may not be unique, but for any given ordering the minimum-size DD is
canonical [Bryant 1986], at least for complete functions. An exhaustive search for an
optimum variable ordering would require evaluating size of n! DDs. The time
complexity of this brute-force method is O(n! 2n), since node counting (based on the
technique of subfunctions counting [see Wegener 1987]) requires 2n steps for each
permutation. By investigating optimum combinations of k variables for k increasing
from 1 to n, [Friedman and Supowit 1990] came up with a procedure of complexity
O(3n n2), which is still computationally too expensive. Therefore a construction of
suboptimal DDs by heuristic methods is of interest. [Almaini 1990] used a top-down
algorithm based on counting k-variable subfunctions, k = n −1, n −2, ... ,1. It requires
pattern matching and its complexity is still prohibitively high.

Our approach to the synthesis of simple ordered DDs is to design a bottom-up
algorithm which works one level at a time. The control variable xi(k) allocated once to
the level k is not reallocated in the following steps, unlike the exact algorithm
[Friedman and Supowit 1990]. Also the complexity is lower than that of the top-down
algorithm [Almaini 1990] since for every level in the DD we count only single-
variable subfunctions. As we show below, the time complexity of our algorithm
applied (but not limited) to complete functions is O(2n n2).

3Dvorak V.: Bounds on Size of Decision Diagrams

Partial functions are defined only in some n-tuples of binary values ("vertices" of an
n-cube) and the rest of n-tuples (vertices) are so called "don't cares" - unspecified
values denoted in what follows by "-". For these functions which are mainly used in
practice, the complexity of our algorithm is much lower than for complete functions
and is not given so much by the number of variables n, as by the number of defined
vertices.

To explain our algorithm we need some definitions concerning decomposition of
functions [Almaini 1990] and their extensions to partial functions. We will present
these definitions in the context of multivalued functions of M-ary variables. The set of
P values 0, 1,..., P−1 we denote as ZP .

Definition 1.
Let F be the (partial) function

 F(x1,..., xn) : X → ZR , X = Zm
n \ D,

where D is a set of don't cares. To define some ordering of variables x1,..., xn , we will
use an integer variable k, so that i = i(k) is an abstract value of index i ∈{1,2,...,n }
in the k-th position.

Following [Friedman and Supowit 1990], a restriction of the function F(x1, ..., xn)
defined as

 F | xi(s+1) = v1 , ... , xi(n) = vn-s

is said to be a subfunction f (xi(1) ,..., xi(s)) of F. In what follows we will consider
mainly s = 1, i.e. single-variable subfunctions. The set φi of all the distinct
subfunctions of single variable xi (or i-subfunctions of F for short) has a cardinality
of |φi| = Ai.

If function F is partial, so may be its subfunctions. Instead of equivalence, we
introduce the relation of compatibility of subfunctions and modify the concept of
subfunction counting [Wegener 1987].

Definition 2.

Two partial subfunctions f1 and f2 of the same s variables are compatible if they are
identical in every vertex which belongs to the domain of f1 as well as to the domain of
 f2 .Two subfunctions are distinct if and only if they are not compatible.

In the construction of an ordered DD for function F of n variables we proceed from
the bottom level upwards. We relate decision nodes to subfunctions and try to
minimize their count. The technique used is known as "subfunction counting"
[Wegener 1987]. The i-subfunction f(xi)

4 Dvorak V.: Bounds on Size of Decision Diagrams

 f(xi) = a if xi = 0

 f(xi) = b if xi = 1

will be denoted shortly as a pair [a,b] and represented by a binary decision node in the
DD. The following types of subfunctions exist in partial functions:

[a,b] , [a,a] , [-,a] , [a,-] , [-,-] .

All but the first one are constant functions ([a,a]) or compatible with the constant
function ([-,a] , [a,-]) and do not need a decision node in the DD. Only subfunctions
of the type [a,b] , a ≠ b, are mapped 1:1 to decision nodes. They will be referred to as
eligible subfunctions. Out of Ai distinct (i.e. not mutually compatible) i-subfunctions
of F only Ai' ≤ Ai are the eligible ones. The difference Ai − Ai' is the number of
decision nodes which degenerate to a single edge and thus contribute only to a
communication cost within the DD.

In the bottom-up construction of the DD a natural and important question is a criterion
on the basis of which a decision variable xi is chosen. We propose the following. First
we count the number Ai of distinct i-subfunctions for each variable xi .Then we choose
a variable xi with the smallest number of eligible subfunctions Ai'. If there are several
such variables, choose one with the smallest value of Ai , i.e. the one with the lowest
communication cost Ai − Ai' . (If there are many, choose any one among them).

The process of the DD construction for function F = Fn starts with the selection of
variable xi(1) for the level 1 (the bottom level) of the DD according to our criterion.
Then we replace all Ai(1) distinct i(1) - subfunctions by numerals 0, 1, ..., Ai(1) − 1.
These are the values of a new function Fn-1 of n −1 variables, a residual function to Fn.
Then we continue subfunction counting for function Fn-1 and get residual function
Fn-2 , and so on, until finally F1 and F0 are obtained. From the original function F we
thus create a sequence of residual functions of decreasing number of variables Fn-1 ,
... , F0, where the indices denote the number of remaining variables.

The heuristics involved in our algorithm relies on the fact that for the given number of
V values of a residual function of binary variables, the number of eligible
subfunctions, i.e. pairs of different values, in the set of randomly created subfunctions
(pairs) will be most probably lower for a lower value V. The similar reasoning is also
adequate for M-ary variables. A detailed analysis of this heuristics in comparison with
the exact algorithm [Friedman and Supowit 1990] is presented separately [Dvorak
1993].

The time complexity of our algorithm for level k is determined by table look-ups and
creation of a subfunction table for each of n − k + 1 variables. These operations with
table size 2n-k may take time O(n − k + 1) [Friedman and Supowit 1990], so that the
total time complexity is of order

5Dvorak V.: Bounds on Size of Decision Diagrams

 S n kn
k

n
n k= − +

=

−∑ ()1 22

1

 . (1)

If we put n − k + 1 = h, then [Eqn. 1] can be written in a form

S

h h h h
d
dx

d
dx

x x

n

h

h

n
h

h

n
h h

h

n
h

h

n

x

=

= = − + = +−

=

−

=

−

= =
=∑ ∑ ∑ ∑2 1

1

2

1

1

0 0
2

2 1 2 2 2. [2 (). .] [] .

Because

x
x

x
h

h

n n

=

+

∑ = −
−0

1 1

1
,

by evaluating derivatives and by substituing x = 2 we get Sn = 2n (n2 - 2n + 3) - 3 for
every integer n ≥1, or in other words Sn = O(2n n2).

We will illustrate the algorithm by a small example in [Fig. 1]. The 5-valued function
F4 of 4 Boolean variables A,B,C,D is specified by the map in the upper left corner.
First we create a list of single-variable subfunctions for each variable:

A: [0,-], [1,4], [2,0], [2,1], [-,4], [2,-], [2,2], [2,3]

B: [0,-], [1,2], [2,2], [-,4], [4,-], [0,2], [1,3]

C: [0,2], [-,2], [-,0], [4,2], [1,2], [2,2], [4,1], [-,3]

D: [0,1], [-,2], [-,4], [4,-], [2,2], [0,1], [2,3] .

Some of the above subfunctions are mutually compatible and we therefore create sets
of distinct subfunctions only:

 eligible subfunctions: subfunctions represented by constants

A: [1,4], [2,0], [2,1], [2,3] [0,0], [4,4], [2,2]

B: [1,2], [0,2], [1,3] [0,0], [2,2], [4,4]

C: [0,2], [4,2], [1,2], [4,1] [2,2], [0,0], [3,3]

D: [0,1], [2,3] [2,2], [4,4]

6 Dvorak V.: Bounds on Size of Decision Diagrams

The number of eligible single-variable subfunctions of F is 4, 3, 4, 2 for A, B, C, D
respectively. The variable with the least number of eligible subfunctions is D and so it
is selected as a control variable for the bottom level of the DD. The number of
decision nodes in this level will be thus minimum (2). Distinct subfunctions of
variable D (including the constant subfunctions) are enumerated and their id. numbers
in turn become the values of a residual function F3 (A,B,C):

 [0,1] := 0, [2,3] := 3, [2,2] := 1, [4,4] := 2

Note that each assignment replaces two values of F4 by one new value, so that the map
of a residual function of 3 variables is obtained. Decision nodes realize the inverse
assignment, expanding a new value into two.

This process is repeated level by level from the bottom of the diagram up, until no
variable remains. In the second step we have 4, 2, and 3 eligible subfunctions of
variable A, B, and C respectively, so that we select B as the control variable for the
level 2:

A: [0,2], [1,0], [1,2], [1,3]

B: [0,1], [0,3] [2,2], [1,1]

C: [0,1], [2,0], [2,3] [1,1]

The order of last two variables A and C is arbitrary, since always 2 decision nodes will
be needed for the level 3

A: [0,1], [2,3] C: [0,2], [1,3]

and one decision node for the root (the top level).The sequence of maps of residual
functions in the synthesis process and the resulting binary DD are shown in [Fig. 1].
Let us note that maps were used for illustration only, the real computer program
accepts the lists of vertices with defined values or logic expressions.

7Dvorak V.: Bounds on Size of Decision Diagrams

F4(A, B, C, D) F3(A, B, C)
 CD Subf. C Subf.
AB 00 01 10 11 of D AB 0 1 of B

00 0 1 2 2 01:= 0 i 00 0 1 01:= 0 iii
01 - 2 2 2 22:= 1 01 1 1 22:= 1
10 - 4 0 1 44:= 2 10 2 0 11:= 2
11 4 - 2 3 23:= 3 ii 11 2 3 03:= 3 iv

 F2(A, C) F1(C) F0=const
 C Subf. C Subf.
A 0 1 of A 0 1 of C

0 0 2 01:= 0 v 0 1 01:= 0 0
1 1 3 23:= 1 vi vii

a)

 0
 top level C vii
 0 1

 v A A vi
 0 1 2 3

 level 2 iii B 1 B iv
 0 1 2 0 3

 level 1 i D D ii

 0 1 4 2 3

 b)

 Figure 1: Decomposition of the sample function a)
 and the associated BDD b)

8 Dvorak V.: Bounds on Size of Decision Diagrams

3 Upper Bounds on The Size of Ordered DD for Complete
Functions

The upper bounds for general logic functions derived below hold for every ordering of
variables. For some special classes of functions it may be possible to use a particular
ordering of variables which will produce improved upper bounds. However, this
approach has not been investigated in the context of this paper.

For the sake of completeness, we start with theorems for complete functions, which
involve some minor corrections to the known results as given e.g. in [Davio et al.
1983]. Their proofs are made compatible with another section dealing with partial
functions.

Theorem 1.
The logic function Fn : Z2

n → ZR can be represented by a binary decision diagram
with not more than

 P R R k n
k

n kMin
k

= + − − ≤ ≤−()2 1 02 (2)

decision nodes.

Proof. The co-domain of the original function F contains values 0,1,..., R−1 and
therefore there are not more than A1' = R2 − R eligible single-variable subfunctions,
since up to R subfunctions are constant. The residual function Fn-1 attains at most A1 =
R2 different values denoting distinct subfunctions of F .Thus there exist not more than

 A R R2
2 22

'= −

eligible single-variable subfunctions of Fn-1. If we continue like this, then function
Fn-k+1 in step k will have up to

A R Rk

k k

'= −
−2 2 1

eligible subfunctions. On the other hand, their number will be limited also by the
cardinality of the domain of Fn-k+1 and will be less or equal to 2n-k+1/2 = 2n-k .
Combining these two restrictions we have

P Min R R Min P Pn k

k

n

k

n
k k

= − =−

= =
∑ ∑−

(,) (,) .2
1

2 2
1

1
2

1

Since P1 decreases and P2 increases with a value of k, we can find a value k = k∗ such
that

9Dvorak V.: Bounds on Size of Decision Diagrams

for k = 1,2,..., k∗ : P2 < P1 holds (or k∗ = 0)
for k = k∗ + 1, ..., n : P1 < P2 holds.

Therefore we can write

P P P R R
n

n= + = − + −
≤ ≤ = +

−∑ ∑2
1

1
1

2 2 1
k k

k

k k

k

*

k
*

*

* *

() () .

The value of k = k∗ is the one that minimizes the above expression, Q.E.D.

The above upper bound [Eqn. 2] was derived less accurately (R has not been
subtracted) in [Davio 1983] and also some asymptotics have been given which involve
certain approximation and produce even larger errors. Therefore the use of
asymptotics is not recommended, especially when the exact values are easily found
from [Eqn. 2] or from [Tab. 1]. If expression [Eqn. 2] reaches a minimum for k = 0,
then P = 2n −1 and we have the case of the complete binary decision tree. In case the
minimum occurs for k > 0, the upper bound is lower than the one for the complete
binary tree. These areas (k = 1 and 2) are framed in [Tab. 1].

R n
1 2 3 4 5 6 7 8 9 10

2 1 3 5 9 17 29 45 77 141 269 k=2
4 3 7 15 27 43 75 139 267 507
8 7 15 31 63 119 183 311 567 k=1
16 15 31 63 127 255 495 751
32 31 63 127 255 511 1023 k=0
64 63 127 255 511 1023

Table 1: The upper bound on a number of binary decision nodes in the decision
diagram of function Z2

n→ ZR, R = 2r.

Now we are going to generalize the expression for the upper bound of decision nodes
for the case of M-valued logic functions. We have the following

Theorem 2.
The logic function F : ZM

n → ZR can be represented by an M-ary decision diagram
with not more than

10 Dvorak V.: Bounds on Size of Decision Diagrams

P
M

M
R R k n

k

n k
MMin

k

= −
−

+ − ≤ ≤
− 1

1
0, (3)

decision nodes.

Proof. By analogy, there are ∑ P1 decision nodes in n − k top levels and ∑ P2

decision nodes in k bottom levels of the decision diagram where

P M M M
M

M

P R R R R R R R R

n k
n k

M M M M M Mk k k

1
2 1

2

1
1

1
1 2

∑
∑

= + + + + = −
−

= − + + − + − = −

− −
−

−

...

() ... () ()

The required number of M-ary decision nodes (the upper bound) as a function of n and
R = 2r, calculated from [Eqn. 3] for M = 4 is presented in [Tab. 2]. Again the area
where the number of decision nodes is less than in the complete M-ary tree is marked.

R n
1 2 3 4 5 6

2 1 5 19 35 99 355 k=1
4 1 5 21 85 337 593
8 5 21 85 341 1365
16 5 21 85 341 1365 k=0

32 21 85 341 1365
64 21 85 341 1465

Table 2: The upper bound on a number of quaternary decision nodes in the decision
diagram of the function Z4

n→ ZR, R=2r.

4 Upper Bounds on The Size of Ordered DD for Partial Functions

To the author's best knowledge, there are no results available for partial logic
functions. The next theorem deals with this case.

Theorem 3.
Any partial logic function of n Boolean variables

 F : X → ZR , X ⊆ Z2
n , |X| ≤ 2n

can be represented by a binary decision diagram with not more than

11Dvorak V.: Bounds on Size of Decision Diagrams

P k k X R Rn k k

= − + − − + −− +2 1 11
21

1 2
2().| |/2 (4)

decision nodes, where

 k n X1 2= − log | |/2 ,

 k R
X

2 2
1 1 2

21= + + +log log () .| |

Proof. In the first step (k = 1), |X| function values (not necessarily distinct) can be
combined pairwise into subfunctions. In the worst case every function value is
combined pairwise with don't care in one position only:

 [a,-] , [b,-] , [c,-] ,

In this way, a maximum of |X| subfunctions could be obtained because no two
subfunctions are compatible. Therefore A1 ≤ |X| and this is also the size of the co-
domain of the residual function Fn-1 . However, since only subfunctions of the form
[a,b] qualify as eligible, a maximum number of eligible subfunctions will be obtained
if all the values are distinct. Then we get |X| /2 distinct pairs. On the other hand, there
has to be at least one such subfunction, otherwise the function would not depend on all
n variables. Therefore we have

 1 ≤ A1' ≤ |X| / 2

eligible subfunctions (decision nodes). The same is true for other steps as well, since
all residual functions Fk have in the worst case the maximum co-domain size |X|.
Therefore the upper bound of the size of a binary DD for a partial function can be
reduced by taking the number of decision nodes |X| /2 at those levels k where it is
below the limits specified for complete functions:

P Min X R Rn k

k

n
k k

= −−

=
∑ −

(| |/2, ,) .2 2

1

2 1

(For complete functions |X| /2 = 2n-1 ≥ 2n-k for k ≥ 1, so that this term has no influence
on P.) We have to find intervals of k-values where each term dominates (being the
lowest in value). Let the last term dominate for 1 ≤ k ≤ k2 (or k = 0) and the middle
term 2n-k dominate in the interval n ≥ k ≥ k1 . In the first case we have

R R X
k k2 2 1

− ≤
−

| |/2 .

12 Dvorak V.: Bounds on Size of Decision Diagrams

By using the substitution z R
k

=
−2 1

 we get the expansion

()()| | | |z zX X− − ≤+ + − +1 1 2

2

1 1 2

2 0 .

Since z > 0, the solution is only

z X≤ + +1 1 2

2

| |

and after substitution for z

k R
X≤ + + +1 2

1 1 2

2log log ()| |

or the boundary of the first interval

 k R
X

2 2
1 1 2

21= + + +log log () .| |

Now let the term 2n-k dominates. In that case we have

 2n-k ≤ |X| /2 or k ≥ n - log2 |X| /2 .

The boundary of the upper interval is then

 k1 = n - log2 |X| /2 .

Every level k with the number of subfunctions limited by the value of |X| /2 must
satisfy k2 < k < k1 , so that the number of such levels is k1 - k2 − 1.

The total number of decision nodes in three sections of the diagram is thus

P X X R R R R

k k X R R

n k

n k

k k

k

= + + + + + + + − + + − =

− + − − + −

−

− +

−

1 2 2

2 1 1

1
2 2 1

1
2

2 2 2

1
1 2

2

... | |/2 ... | |/2 () ... ()

().| |/2 ,

Q.E.D.

Let us note that for complete functions k2 = k1 − 1 = k* as before. If k1 − k2 − 1 < 0,
then the upper bound for complete functions remains in effect and cannot be
improved.

13Dvorak V.: Bounds on Size of Decision Diagrams

Corollary 3.1.
The same upper bound is also valid for a logic function that evaluates to the same
(dominant) value or don't care everywhere except original |X| vertices. Don't cares
may be replaced by this dominant value in our previous considerations.

Example 1.
Let us consider a partial function of n = 8 variables defined in |X| = 20 vertices and let
its co-domain contain R = 4 distinct values. Then

k n X

k

P

1 2 2

2 2 4
1 1 40

2 2 4

8 5 1 2

8 10 5

1 1 37 0

2 1 0 1 10 4 4 55
0

= − = − =

= + = + =

= − + − − + − =

+ +

− +

log | |/2 log

log log log log .

(5) . .

The OBDD may have up to 1 + 2 + 4 + 8 + 10 + 10 + 10 + 10 + 10 = 55 nodes. By
contrast, the OBDD of a complete function F: Z2

8 → Z4 may have up to 139 decision
nodes [see Tab. 1].

Theorem 3 can again be generalized for an R-valued logic function of M-valued
variables. In this case, however, the upper bound cannot be obtained in the explicit
form since a solution of a higher-order algebraic equation is involved.

Theorem 4.
Any R-valued incomplete logic function of n M-valued variables

 F : X → ZR X ⊆ ZM
n , |X| < Mn

can be represented by the M-ary decision diagram with not more than

P
M

M
R R k k X

n k
M k

= −
−

+ − + − −
− +1

2
1

1 2

1

1
1() .| |/2 (5)

decision nodes, where

 k1 = n - logM |X| /2

 k2 = 1 + logM logR z*

and z* > 0 is a real root of the equation

 zM - z - |X| /2 = 0 .

14 Dvorak V.: Bounds on Size of Decision Diagrams

Note here, that the partial i-subfunctions may be eligible if defined at least for two
values of the M-valued variable x. Each such subfunction requires a decision node
with M out-edges, even though some out-edges end up in don't cares.

The following theorem presents an improved upper bound for Boolean functions of 4
variables.

Theorem 5.
Every Boolean function of four variables F4 : Z2

4 → Z2 can be represented by an
OBDD with not more than 8 decision nodes.

Proof. A constructive proof is given: It is shown that for every Boolean function of 4
variables an OBDD with not more than 8 nodes can be constructed. The lowest level

of this OBDD does not need more than two nodes (subfunctions xi and xi), whereas

the top level needs one node (a root), and the level below it at most two nodes. We
will show that the level 2 of the OBDD requires not more than 3 nodes.

The number of nodes on the level 2 is given by the number of eligible i-subfunctions
of F3 or equivalently by the number of 2-variable eligible subfunctions of F4. Let us
consider two cases:

(i) At least one of 2-variable subfunctions of F depends only on a single variable. If
we choose this variable for the nodes (two or one) in the lowest level, then three
remaining subfunctions, if distinct, will map into 3 nodes on the level 2 labelled by
the remaining variable. If not distinct, they will map into 2 or 1 node only, Q.E.D.

(ii) No 2-variable subfunction of F4 depends on one variable only. We will show that
this will never hold true. There are only ten subfunctions which do depend on two
variables. Each one is indicated by an ordered list of 4 function values for respective
values 00, 01, 10, and 11 of input variables:

[0001] , [0010] , [0100] , [1000] ,
[1110] , [1101] , [1011] , [0111] ,

[0110] , [1001] .

Permutation of variables, negation at the inputs or at the output, or both these
transformations simultaneously do not influence the cost of the OBDD; they translate
only to different labelling of nodes, swapping values assigned to out-edges of certain
levels of nodes or values at terminal nodes. Under above transformations each of 10
subfunctions in the list can be converted to only one of the two, [0001] or [0110].
Therefore without loss of generality one can consider that an arbitrary function F4 has
the first subfunction

 F(0, 0, x2 , x1) = x2 . x1 or x2 ⊕ x1 .

15Dvorak V.: Bounds on Size of Decision Diagrams

The second subfunction F(1,1, x2, x1) can be chosen arbitrarily from the collection of
remaining nine. This means 2 x 9 = 18 cases which can be easily analyzed by
computer or by hand with the result that regardless of the choice of F(0,1, x2 , x1) and
F(1, 0, x2 , x1), two variables xh and xk, h,k ∈ (1,2,3,4), can always be selected in such
a way that there exist only three distinct subfunctions of these variables different from

x x xh h k, , , and xk . So the case (ii) cannot occur ever. Therefore only three

decision nodes are necessary on the second level and in total 1 + 2 + 3 + 2 = 8 nodes
or less will be needed for any function, Q.E.D.

Let us note that the number of two-input multiplexers needed for implementation of
any Boolean function of four variables is lower by one (i.e. at most seven), as the
multiplexer realizing a subfunction xi(1) in the lowest level may be replaced by the
signal line xi(1) .

The last theorem is dealing with the "most difficult" functions, i.e. those which require
a complete tree for their representation. These functions can be recognized by
counting the number of their single-variable subfunctions for all variables.

Theorem 6.
A function Fn: ZM

n → ZR with the number of single-variable eligible i-subfunctions
equal to M for every variable xi cannot be represented by an M-ary DD with a lower
size than the size of a complete decision tree

 P
M

M

n

= −
−

1

1
. (6)

Proof. The domain and the co-domain of the residual function Fn-1 has the same
cardinality Mn-1. All subfunctions of Fn-1 are thus eligible (no subfunction is a
constant) and there are Mn-1/M = Mn-2 of them. Similarly residual functions of n-2, n-
1,...,2, and 1 variable have also the maximum number of Mn-3 , Mn-4 ,..., M, and 1
eligible subfunction, respectively. By counting eligible subfunctions we obtain the
number of decision nodes

P M M M
M

M
n n

n

= + + + = −
−

− −1
1

1
2 1... , Q.E.D.

Corollary 6.1.
The BDD of an arbitrary pair of Boolean functions of 3 (4) variables may need
as many as 7 (15) decision nodes. Examples of such functions are given in [Fig. 2],
where single values 0, 1, 2, 3 represent pairs of Boolean values 00, 01, 10, 11.
The number of eligible single-variable subfunctions is 4 (8) regardless of the
chosen variable.

16 Dvorak V.: Bounds on Size of Decision Diagrams

 x3 →→ x3 x4 →→
 x1 x2 0 1 x1 x2 00 01 10 11

 0 0 0 1 0 0 0 1 2 3
 0 1 1 3 0 1 1 3 0 2
 1 0 2 0 1 0 2 0 3 1
 1 1 3 2 1 1 3 2 1 0

 F3(x1, x2, x3) F4(x1, x2, x3, x4)

 a) b)

 Figure 2: Functions with only a trivial decomposition.
 a) of three variables b) of four variables .

5 Upper Bounds on The Size of BDDs for Evaluation of Boolean
Expressions

In this section we will consider general repeated BDDs in which each variable may
be tested more than once along the path from the root to the terminal node. The upper
bound on the size of these BDDs for Boolean functions specified in algebraic form
(DNF) has been investigated and a tighter bound than the one currently known has
been found. The new result is formulated in Theorem 7.

Lemma.
A BDD for the given Boolean expression E with N literals can always be constructed
with a size less than or equal to N .
Proof by construction: Let us take a variable xi in the expression E and assign it to

the root of the BDD. We can write

 E x P x Q Ri i= + +
where subexpressions P,Q, and R have N − ai literals in total, ai being the number

of occurrences of xi in E.

The BDD can be constructed as shown in [Fig.3]. The nodes denoted by P,Q, and R
can be now similarly expanded and substituted by subdiagrams. This process will go
on until the nodes are denoted by simple literals only. One decision node is used for
all the occurrences of xi in E, and the same is also true for other variables at the

lower levels , so that the size of the BDD will be less than or at most equal to N.
Equality holds in the case where a variable is selected only once at every level in a
(sub-) expression, Q.E.D.

17Dvorak V.: Bounds on Size of Decision Diagrams

Theorem 7.
A Boolean function of n variables, specified by the DNF with N literals, can be
represented by a BDD with no more than

 Min N
kN

nk

k{ }−

+ −2 1 (7)

decision nodes, where k = 1,2, ..., n.

Proof. Let the variables x x xn1 2, ,..., occur in the DNF a a an1 2, ,..., - times

respectively, either directly or negated. If we select k variables x x xi i i k() () (), ,...,1 2

and create an upper part of the BDD in a form of the complete tree with 2 1k −
nodes, residual expressions will remain with

 N a a ai i i k
− + + +(...)() () ()1 2

literals. There are ()k
n ways of choosing k out of n variables and the sum of all

occurrences of all variables in all selections is exactly

 (...) ()()
{ (), () ,..., ()} { , ,..., }

() ()a a a ai
i i i k n

i i k k
n

j
j

n

1
1 2 1 2

2 1
1

1

+ + + =
∀ ⊂

−
−

=
∑ ∑ ,

Q

R

P

0 1

xi
0 1

 Figure 3: A BDD representing Boolean expression E x P x Q Ri i= + + .

18 Dvorak V.: Bounds on Size of Decision Diagrams

because each index j is exactly in ()k
n

−
−
1
1 subsets { (), (),..., ()}i i i k1 2 and thus each

a a a aj i i i k∈{ , ,..., }() () ()1 2 will be summed that many times . We can always pick up

such a selection that

 (...) () () ,() () ()a a a ai i i k k
n

j
j

n

k
n

1 2 1
1

1

+ + + ≥ −
−

=
∑

i.e. that the sum of occurrences of k selected variables is greater than or equal to the
average. After simplification we get

 (...)() () ()a a a a Ni i i k
k
n j

j

n
k
n1 2

1

+ + + ≥ =
=

∑
and since the sum on the left hand side must be an integer, it also holds

 (...) .() () ()a a ai i i k
kN
n1 2+ + + ≥

Therefore in our construction of the BDD, removing k variables means that 2 1k−

nodes are already assigned to the complete tree and

 N a a a Ni i i k
kN
n− + + + ≤ −(...)() () ()1 2

literals remain in residual expressions. E.g. for k = 2 variables there will be five
residual expressions S,T,U,V, and W in the expansion

 E x x S x x T x x U x x V Wi j i j i j i j= + + + +. . . .

and the BDD will have a form shown in [Fig. 4]. According to the Lemma, to
represent these residual expressions by BDDs, the same number of nodes as there are
literals will always do, so that the total number of nodes is at most

 N kN
n

k− + −2 1.

Hence the minimum for a certain value of k, k = 1, 2,..., N, is the best upper bound on
the BDD size, Q.E.D.

Let us note, that the upper bound known so far [see Pupyrev 1984] has been

 N N
n− +1 .

The size of BDDs for expressions with up to N = 100 literals and up to 10 variables
has been tabulated and is shown in [Tab. 3]. In cells filled with "-" Boolean
expressions do not exist since N < n. A similar situation is in cells filled with "x": the

most complex Boolean expression (the parity) can have at most n n.2 1− literals. Bold
numbers correspond to the upper bounds of OBDDs' size for general Boolean
functions in [Tab. 1] and given by Theorem 5, which must also bound general BDDs.
The remaining data are tighter upper bounds for functions given by Boolean
expressions. The improvement of the former upper bound [Pupyrev 1984] is (within
the table) from 0 to 26 % .

19Dvorak V.: Bounds on Size of Decision Diagrams

x i

x j
x j

S T U V

W

0 1

0 1

 Figure 4: Decomposition of a BDD with the complete tree of 2 variables xi, xj .

6 Conclusion

The upper bounds on the size of DDs obtained above can be used in several different
ways. One important area is estimation of ROM capacity for memory-based finite
state machines, microprogrammed control units or programmable controllers. Here a
transition from one state to another is determined by a subset of input variables
relevant for this transition. If only one relevant variable can be tested at a time, then
the number of decision nodes to determine one out of R target states can be found
from formulae [Eqn.2] and [Eqn.3]. If k Boolean variables are to be tested
simultaneously, the M-ary DD can be used with M = 2k. Different architectures can be
compared this way [Davio et al. 83], [Coraor et al. 87] as far as the memory
requirements is concerned.

Whereas the above application area concerns firmware development, DDs can be
mapped also directly into hardware. The upper bound on size of BDDs gives e.g. the
maximum number of 2 : 1 multiplexers required to implement a given function or it
can be related to the consumption of logic blocks in multiplexer-based FPGA.

If DDs are implemented in software for modelling, simulation and verification of
digital circuits in CAD, again the upper bounds on size may be useful to specify
memory requirements (RAM) of circuit description. In order to create universal
simulation methods, DDs can be described by application-specific tables that are
interpreted during simulation. An M-ary decision node is described by a table of M
items, where each item is interpreted as the base address of a table describing the next

20 Dvorak V.: Bounds on Size of Decision Diagrams

decision node in the lower level of the DD (e.g. if the MS bit = 0) or as the value of
the function (MS bit = 1, terminal node).

N / n 3 4 5 6 7 8 9 10
5 4 4 5 - - - - -
10 5 8 9 9 9 9 9 10
15 x 8 12 13 13 14 14 14
20 x 8 15 16 17 18 18 19
25 x 8 17 19 20 21 22 23
30 x 8 17 22 24 25 26 27
35 x x 17 24 27 28 30 31
40 x x 17 27 29 32 33 35
45 x x 17 29 32 35 37 38
50 x x 17 29 36 38 40 42
55 x x 17 29 38 41 43 45
60 x x 17 29 40 45 47 49
65 x x 17 29 42 47 50 52
70 x x 17 29 45 50 53 56
75 x x 17 29 45 52 56 59
80 x x 17 29 45 55 59 63
85 x x x 29 45 55 60 66
90 x x x 29 45 60 65 69
95 x x x 29 45 62 67 73
100 x x x 29 45 65 70 75

Table 3: Upper bounds on size of BDDs for Boolean expressions of n variables
 with N literals

As a by-product of a procedure used in the derivation of the upper bounds on size of
DDs, a technique suitable for optimization of a class of ordered DDs has been
obtained. This technique can be used for complete as well as partial functions, binary
as well as M-ary functions, can be easily programmed, and requires much less
computational effort than techniques suggested till now. A program for binary DDs
with one or more control variables in each level which runs on the PC is available
from the author.

A group of Boolean expressions can be represented by a shared BDD with several
root nodes or by a single BDD with more than two terminal values. The upper bounds
of either BDD's size would be of a great value, but are not known as yet. Also the
upper bounds on size of ordered (not repeated) OBDDs for Boolean expressions are
still to be found. This could be o subject of future research.

21Dvorak V.: Bounds on Size of Decision Diagrams

References
[Abadir and Reghbati] Abadir, A., Reghbati, H.K., "LSI Testing Techniques" ; IEEE Micro, 3,
1 (1983), 30-34.

[Akers 78] Akers, S.B.: "Binary Decision Diagrams"; IEEE Trans. Comput., C-27, 6 (1978),
509-516.

[Almaini 90] Almaini, A.E.A.: "Electronic Logic Systems"; Prentice Hall, Englewood Cliffs,
N.J. (1990).

[Bryant 86] Bryant, R.E.: "Graph-based algorithms for Boolean functions manipulation"; IEEE
Trans. Comput., C-35, 8 (1986), 677-691.

[Cerny et al. 79] Cerny, E., Mange, D., Sanchez, F.: "Synthesis of Minimal Binary Decision
Trees", IEEE Trans. on Computers; C-28, 7 (1979), 472-482.

[Chakravarty 91] Chakravarty, S. : "On the Complexity of Using BDDs for the Synthesis and
Analysis of Boolean Circuits". Proc. 27th Annual Allerton Conference on Communication and
Control, Univ. of Illinois (1991).

[Coraor 87] Coraor, P.T., Hulina, P., Morean, O.A.: "A General Model for Memory-Based
Finite-State Machines"; IEEE Trans. Comput., C-36 , 2 (1987), 175-184 .

[Davio et al. 83] Davio, M., Deschamps, J.P., Thayse, A.: Digital Systems With Algorithm
Implementation. J. Wiley & Sons, New York (1983)

[Dvorak 93] Dvorak, V.: "Comparison of Optimal and Suboptimal Synthesis of Ordered
Binary Decision Diagrams"; Appl.Math. and Comp.Sci., 3, 2 (1993), 373-381.

[Friedman and Supowit 90] Friedman,K.J., Supowit, K.J.: "Finding the Optimal Variable
Ordering for Binary Decision Diagrams"; IEEE Trans. Computers, C-39, 5 (1990), 710-713.

[Matos and Oldfield 83] Matos, J.V., Oldfield, K. : "Binary decision diagrams: From abstract
representations to physical implementations"; Proc. of the 20th Design Automation
Conference, (1983), 567-570.

[Moret 82] Moret, B.M.E.: "Decision Trees and Diagrams", Computing Surveys; 14, 4 (1982),
593-623.

[Liaw and Lin 92] Liaw, H.T., Lin, C.S. : "On the OBDD-Representation of General Boolean
Functions"; IEEE Transactions on Computers, C-41, 6 (1992), 661-664.

[Pupyrev 84] Pupyrev, E.I.: "Adjustable automata and microprocessor systems"; Nauka,
Moscow (1984) (in Russian).

[Wegener 87] Wegener, I. :"The Complexity of Boolean Functions"; John Wiley & Sons, New
York (1987).

[Zsombor et al. 83] Zsombor-Murray, P.J. et al.: "Binary-decision-based programmable
controllers"; Part I-III, IEEE Micro, 3, 4 (1983), 67-83; 3, 5 (1983), 16-26; 3, 6 (1983), 24-39.

Acknowledgement

This work has been supported under the grant 102/95/1334, the Grant Agency of the Czech
Republic. The support is greatly appreciated.

22 Dvorak V.: Bounds on Size of Decision Diagrams

