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Abstract: This paper generalizes the speci�cation of Basic Interval Arithmetic Sub-
routines (BIAS) to support interval arithmetic on directed (i.e. proper and improper)
intervals. This is due to our understanding that the arithmetic involving improper in-
tervals will be increasingly used in future applications and the corresponding interval
arithmetic implementations require no additional cost. We extend BIAS speci�cation
to be su�ciently precise and complete, to include everything a user needs, such as
subroutine's purpose, name, method of invocation and details of its behaviour and
communication with the environment. The speci�ed interval arithmetic subroutines
for directed intervals are consistent with conventional interval arithmetic and IEEE

oating-point arithmetic.
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1 Introduction

Interval arithmetic [Alefeld and Herzberger 1974], [Moore 1966] is widely recog-

nized as a valuable computing technique. Numerous applications bene�t from

methods with result veri�cation { a rapidly growing �eld of numerical math-

ematics (see for example [Adams and Kulisch 1993]). A constant e�ort is de-

voted to develop algorithms which produce sharp inner and outer bounds for

the solution of various numerical problems involving interval input data. A

straightforward approach on this way is the algebraic extension of the conven-

tional interval arithmetic called here directed interval arithmetic. Developed ba-

sically by E. Kaucher [Kaucher 1973]{[Kaucher 1980] and further investigated

by E. Gardenes [Gardenes and Trepat 1980] and others [Dimitrova et al. 1992],

[Markov 1995], directed interval arithmetic is obtained as an extension of the

set of normal intervals by improper intervals and a corresponding extension of

the de�nitions of the interval arithmetic operations. The algebraic completeness

of the corresponding extended interval arithmetic structure (especially the ex-

istence of inverse elements with respect to addition and multiplication) makes

it a suitable environment for embedding some conventional interval problems

[Gardenes and Trepat 1980], [Kupriyanova 1995], [Shary 1996a] and their e�ec-

tive solution. It can be exploited for algebraic simpli�cation of interval expres-

sions and automatic theorem proving if implemented in computer algebra sys-

tems. Directed interval arithmetic is useful for a straightforward computation

of inner and outer inclusion of functional ranges [Gardenes and Trepat 1980],

[Markov 1992]. It seems to be promising for the numerical solution of various
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practical problems related to interpolation and identi�cation under uncertainties,

control theory etc. [Gardenes and Trepat 1980], [Markov 1993], [Shary 1996b].

Certain implementations [Gardenes and Trepat 1980], [Nesterov 1995],

[Popova 1994] of the arithmetic on directed intervals appeared to facilitate the

numerical computations in extended interval spaces and to provide suitable tools

for education and future investigations.

Following the principles of abstract data type design [Goguen et al. 1978],

one arrives at a clear separation of speci�cation and implementation. This al-

lows the formulation of the intended behaviour of a data type without referring to

its implementation. Any implementation can be used later for the actual com-

putation. Moreover, if in applications the speci�ed operator symbols are used

exclusively, their implementation can be changed without changing any applica-

tion code. In order to facilitate future e�ective implementations of the directed

interval arithmetic in di�erent programming environments we have carefully de-

signed rigorous speci�cations of the interval arithmetic operations and functions

involving directed intervals.

The increasing number of numerical methods with result veri�cation and

packages supporting interval arithmetic led to the necessity of uni�cation of the

interval arithmetic operations and functions. By analogy with the Basic Linear

Algebra Subroutines (BLAS) library [Dongara et al. 1985], [Lawson et al. 1979]

some proposals for a Basic Interval Arithmetic Subroutines (BIAS) library ap-

peared recently [Corliss 1990], [Knueppel 1993], showing a movement toward

standardization of the user interfaces for interval arithmetic software. The BIAS

package [Knueppel 1993], [Knueppel 1994] is well along with the layer model of

BLAS and provides portability of the application code together with an increased

machine dependent e�ciency. On the other hand, directed interval arithmetic

includes conventional interval arithmetic as a special case. The de�ning formu-

lae of the arithmetic operations for directed intervals in end-point representation

are identical with the de�ning formulae of the conventional interval arithmetic

operations (see for example [Dimitrova et al. 1992], [Markov 1995]) extending

just the scope of their validity. This reveals an important property of the end-

point representation of directed interval arithmetic | it can be implemented at

no additional cost compared to the conventional interval arithmetic. Thus we

stated as a �rst goal of this paper to generalize the speci�cation of scalar Basic

Interval Arithmetic Subroutines [Knueppel 1993] to support interval arithmetic

on directed intervals. Having generalized speci�cations of level 0 interval scalar-

scalar operations, next levels 1, 2, 3 of BIAS, built on level 0 subroutines, will

automatically support directed intervals. In order to distinguish between speci�-

cations and subroutines for conventional interval arithmetic and their extension

for directed intervals we call latter Generalized Interval Arithmetic Subroutines

(GIAS).

Designing GIAS speci�cation we have kept to a speci�cation scheme

[Parnas 1972] ensuring completeness (in the sense of de�ning all possible uses)

and correctness of the speci�cation with no exceeding information. Although

speci�ed for 
oating-point arithmetic and implemented in IEEE 
oating-point

environment [ANSI/IEEE 1985], BIAS speci�cation [Knueppel 1993] is not suf-

�ciently complete to allow checking the hierarchical consistency of interval arith-

metic speci�cation with the underlying IEEE arithmetic. This paper de�nes ex-

tensions of BIAS speci�cation for interval arithmetic on directed intervals that

are consistent with conventional interval arithmetic and IEEE 
oating-point

24 Popova E.D., Ullrich Ch. P.: Generalizing BIAS Specifications



arithmetic [ANSI/IEEE 1985], [ANSI/IEEE 1987]. The key to IEEE consistency

is the speci�cation of the operations on intervals involving NaNs or signed zero

which o�er additional bene�ts of more predictable interval results and algorithm

e�ciency for some numerical computations. Our present speci�cations result in

an e�ort to extend the scope of the validity of BIAS and to make them more

robust.

2 Basic Concepts and Notations

We assume that the reader is familiar with the interval arithmetic on directed in-

tervals. It has been introduced in [Kaucher 1973]{[Kaucher 1980] and further dis-

cussed in [Gardenes and Trepat 1980], [Markov 1995], [Popova 1994], and oth-

ers. Some relations between conventional and directed interval arithmetic are

considered in [Dimitrova et al. 1992] and [Markov 1995].

The following data types are used by GIAS:

REAL { real type (may support any 
oating-point data format)

INT { integer type

INTERVAL { interval type.

We assume that the interval data type supports end-point representation of

directed intervals (unlike \center-radius" or \direction-proper interval" repre-

sentation). The representation \direction-proper interval" is used for projecting

directed intervals onto the space of normal intervals [Markov 1995] but all the

properties of directed interval arithmetic are studied for the end-point repre-

sentation. Furthermore, end-point representation of directed intervals provides

consistency with conventional interval arithmetic and an implementation based

on this representation will be much more e�cient than any implementation based

on the representation \direction-proper interval". Since the requirement \�rst
end-point � second end-point" is not imposed on directed intervals, they can

be equally well supported by an opaque data type (using data encapsulation

concept) or non-opaque data type [Popova 1994].

Present speci�cation provides all the information an implementor or user will

need to complete and/or use the subroutines correctly. For each subroutine we

have speci�ed:

1. the set of all possible values, parameters, subroutine name and method of

invocation;

2. purpose;

3. description containing the outcome of all possible uses;

4. exceptional situations and their default response.

In our proposal to generalize BIAS [Knueppel 1993] for scalar operations on

directed intervals we used the similar routine headers as in BIAS. All routine

names are starting with Gias instead of Bias. After that, the purpose of the

routine is following (e.g. Mul for multiplication). Finally, the main parameter

description is appending, where the letter R denotes a real and the letter I { an

interval parameter. For example, the addition of a real and an interval value is

named GiasAddRI.

A small number of routines with unique mnemonic names are additionally in-

cluded in GIAS speci�cation to facilitate directed interval arithmetic. Headers of
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the additional routines are also kept to the naming conventions for the routines of

BIAS. GiasDual(), GiasProper() and GiasDirection() are speci�c for the ma-

nipulation of directed intervals. GiasSign() plays an important role for checking

monotonicity of a function over an interval and is frequently used in numerical

algorithms. It also involves some programming e�ort that is likely to be ignored

in the applications programming environment. GiasFirst() and GiasSecond()

are speci�ed to provide access to the corresponding end-point of a directed inter-

val since GiasInf() and GiasSup() are not yet su�cient for full characteriza-

tion of the end-points of a directed interval. GiasEqualRI(), GiasEqualIR() and

GiasEqualII() are provided to bridge the existing gap in BIAS [Knueppel 1993]

and GiasLessEqRI(), GiasLessEqIR(), GiasLessEqII() and GiasLessRI(),

GiasLessIR(), GiasLessII() permit testing of another re
exive and antire
ex-

ive interval order relation.

Performing operations which are extended to be valid for a wider set of inter-

vals, Generalized Interval Arithmetic Subroutines produce the same results as

Basic Interval Arithmetic Subroutines on ordinary (proper) intervals. The only

exception is GiasIntersection() which produces an improper interval when-

ever BiasIntersection() results in an empty set. We have also used another

de�nition of distance between two intervals when specifying GiasDistRI() and

GiasDistII().

Throughout GIAS speci�cation the interval parameters are denoted by cap-

ital letters and real or integer parameters by small letters. A variable name

followed by number 1 or 2 refers to the corresponding end-point of an interval

variable (e.g. A1 denotes the �rst end-point and A2 the second end-point of the

interval variable A).

Note that \contains" is used in GIAS speci�cation in context of an extended

inclusion relation: A � B () B1 � A1 and A2 � B2. This means e. g. that a
point interval [r; r] contains an improper directed interval [A1; A2] if A2 � r �
A1.

The \description" section speci�es the outcome of all possible uses of the

corresponding subroutine. This section refers to the values of subroutine param-

eters, the two end-points of the interval parameters and values of other subrou-

tines included in the speci�cation. The description of Generalized Interval Arith-

metic Subroutines is given in terms of 
oating-point operations with directed

roundings according to the de�nitions of computer operations on directed inter-

vals considered in [Durst 1975] and [Kaucher 1973]. Symbols 5;4 denote the

corresponding monotone downwardly and monotone upwardly directed round-

ings 5;4 : R �! SR, where SR is the set of computer representable real

numbers [Kulisch and Miranker 1981], [ANSI/IEEE 1985]. Present speci�cation

provides complete information about interval operations on operands involving

NaNs (Not a Number) and/or signed zero as part of IEEE 
oating-point systems

[ANSI/IEEE 1985], [ANSI/IEEE 1987]. Some interval arithmetic operations in-

volve algorithmic and implementation subtleties with respect to NaNs and signed

zero handling. Thus the provision of a detailed speci�cation bene�ts both the

design and coding stages of a programming e�ort regarding interval operations

on directed intervals.

To make this speci�cation consistent with the environment of IEEE 
oating-

point systems we have provided an \exception" section which speci�es inter-

val arithmetic exceptions and their handling according to the principle pro-

posed in [Popova 1996]. Since interval operations are compound operations,
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all the exceptions arising on execution of an interval operation are 
oating-

point exceptions arising on IEEE 
oating-point operations [ANSI/IEEE 1985],

[ANSI/IEEE 1987] which compound the corresponding interval operation. In

this paper we do not describe IEEE 
oating-point standards 754 and 854 but

instead refer to these documents implicitly.

3 Implementation

The objective of the interval arithmetic speci�cation is portability of the appli-

cation code independently of a speci�c interval representation and an increased

machine dependent e�ciency. The set of routines de�ned by this speci�cation

can easily be implemented in any programming environment: as a part of a

problem-oriented software system, as a subroutine library for some program-

ming language, or using the operator and overloading concept of some high-level

object-oriented programming environment.

3.1 Consistency between conventional and directed interval
arithmetic

Major advantages of the directed interval arithmetic are its algebraic properties

and that it includes conventional interval arithmetic as a special case. Latter

implies some important implementation consequences. Directed interval arith-

metic can be implemented at no additional cost compared to conventional inter-

val arithmetic. One and the same data type can be used for both conventional

and directed intervals. There is no need of separate implementations. An imple-

mentation of directed interval arithmetic as speci�ed below can be used for the

execution of any application code concerning a conventional interval arithmetic

problem. Furthermore, no change in the application code is required if the im-

plementation is based on operator symbols or subroutines with equal mnemonic

names. The only confusion may come from the interval intersection because

GiasIntersection produces an improper interval whenever BiasIntersection

delivers an empty set. Two alternatives are possible for solving this problem:

{ Any improper interval has to be considered by the conventional interval

arithmetic as an empty set. The advantage of this approach is that interval

exception Empty Set Intersection will have a non-stop exception handling.

For example, a preliminary draft proposal [Kearfott et al. 1996] for interval

arithmetic in Fortran has speci�ed the empty set as the improper interval

[+1;�1].

{ The alternative is setting a global variable or calling a subroutine de�ning

the arithmetic mode. Then, on arguments which are disjoint proper intervals

GiasIntersection will deliver an interval result if the arithmetic mode is

\directed" or will signal interval exception Empty Set Intersection if the

arithmetic mode is \conventional".

Vendors, software developers and end-users should be made also aware about

other bene�ts brought by the implementation of directed interval arithmetic:

suitable environment for e�ective solution of interval algebraic problems, pos-

sibilities of tight range computation for rational interval functions, possibilities

for obtaining inner inclusions only by means of outwardly rounded arithmetic

operations, etc.
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3.2 Consistency between IEEE and non-IEEE implementations

Present speci�cation of directed interval arithmetic is especially designed to pro-

vide hierarchical consistency between interval and IEEE 
oating-point arith-

metic, since most recent implementations of 
oating-point arithmetic conform

to the IEEE standards [ANSI/IEEE 1985], [ANSI/IEEE 1987]. Although non-

IEEE systems do not support many features of the standard, GIAS speci�cation

can also be used for non-IEEE implementation of directed interval arithmetic.

Implementations using IEEE directed roundings toward �1 (downward, de-

noted by 5) and toward +1 (upward, denoted by 4) provide that the result

of the interval operations is the machine interval with smallest diameter con-

taining the exact mathematical result. By some extra programming non-IEEE

implementations can provide less accurate results but containing the exact math-

ematical result.

Special elements like NaNs, �0, �1, and +1 are speci�c for IEEE sys-

tems. Description and exception parts of GIAS speci�cations contain complete

information on how to handle NaNs and signed zero involved as end-point(s) of

an interval argument. NaNs and/or (�0) participate in some logical expressions

of the description section de�ning the outcome of a subroutine. For non-IEEE

implementations the value of a logical expression involving NaNs and/or (�0)
should be considered as false.

Usually non-IEEE systems do not support symbols for �1 and +1. Since

GIAS speci�cation does not refer to these elements explicitly, GiasSign speci�-

cation should be read as:

INTEGER GiasSign(INTERVAL A)
Purpose: Returns �1, if A is a negative directed interval; 1, if A is positive

and 0, if 0 is contained in the proper part of A.
Description: If A1 < 0 and A2 < 0 then �1

elseIf A1 > 0 and A2 > 0 then 1 else 0.

Exceptions: None.

With respect to the exceptional situations a non-IEEE implementation of

the directed interval arithmetic should correspond to the IEEE implementation

with all traps, but Under
ow and Inexact, enabled. That is, interval opera-

tion terminates immediately on Invalid Operation, Over
ow, and Division by
Zero 
oating-point exceptions, and takes special actions to provide inclusion

of the exact interval result on 
oating-point Under
ow and Inexact exceptions.
Some implementations may provide true inclusion of the exact interval result

if 
oating-point exception Over
ow occurs on equally signed arguments at �rst

end-point of the result, or on arguments with di�erent signs at second end-point

of the interval result. A non-IEEE implementation supporting symbols �1 and

+1 can deliver correct inclusion for the exact interval result on all occurrences

of 
oating-point exception Over
ow.
Although present speci�cations require an interval involving quiet NaN(s) to

be delivered by every subroutine which argument involves NaN signaling Invalid
Operation exception is neither required nor prohibited. In IEEE systems NaNs

cause signaling of Invalid Operation on 
oating-point comparison operations.

Interval subroutines using such comparisons deliver an interval result and, in

the spirit of IEEE standard (Invalid Operation is raised if NaN is created from

non-NaN operands), may avoid signaling of Invalid Operation exception.
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3.3 Implementation case study

Here we present a GIAS implementation in a high-level programming environ-

ment. PASCAL-XSC [Klatte et al. 1992] was chosen as a wide-spread and best

developed programming language for scienti�c computation ([Ullrich 1994]). A

PASCAL-XSC module EXI
�

ARI [Popova 1994] was developed, where GIAS

were implemented as intrinsic operators using the extended operator concept

and the overloading concept provided by the language. This new PASCAL-XSC

module for extended interval arithmetic was intended to replace the existing

module I
�

ARI for interval arithmetic in PASCAL-XSC language enhancing the

scope of application and the robustness of the interval arithmetic operations.

The new module uses the de�nition of the type INTERVAL

type interval = record inf, sup : real end;

which is part of the language kernel of PASCAL-XSC. The inf component of the

interval data type corresponds to the �rst end-point of a directed interval and

the sup component corresponds to the second end-point of the directed interval

comprising thus the de�nition for a real directed interval as an ordered couple

of real numbers.

PASCAL-XSC allows the following three ways for implementation of GIAS

corresponding to the interval arithmetic, lattice and relational operations:

{ hiding an existing operator. In this case, the operator symbol is given a new

meaning for the same operand types for which it was previously de�ned.

{ overloading of an existing operator. A new additional meaning is given to

the operator symbol by means of an operator de�nition. Its various meanings

are distinguished by the operand types.

{ a previously unde�ned operator symbol can be introduced by means of an

operator declaration.

All arithmetic and lattice operators, de�ned in EXI
�

ARI module (Table

1), deliver an interval result. The two monadic operators +, - and the four

basic dyadic operators +, -, *, /, performing the corresponding operation in

the module I
�

ARI with rounding to the smallest enclosing interval (outward

rounding), are rede�ned to perform the same operation for directed intervals.

The overloading rules of PASCAL-XSC do not allow to use the result type of a

function or an operator for identi�cation of the corresponding subroutine. Thus,

new operator symbols AHO, SHO, MHO, DHO were used for the operations producing

a directed interval enclosing the true result of the corresponding operation on real

arguments. GiasNeg() and GiasDual() were implemented in EXI
�

ARI module

by the corresponding unary operators \�" and \
�

" (see Table 1).

Convex hull operations were implemented in EXI
�

ARI by overloading of the

PASCAL-XSC operator \+�" for real, interval and mixed type operands. In

the set of directed intervals the lattice operation intersection makes sense even

for real number and interval, so the operator \��" in module EXI
�

ARI is also

de�ned for mixed type operands. GiasInteriorRI/IR,II() were implemented

by overloading the PASCAL
�

XSC operator in and GiasInRI/IR,II() | by

the relational operator \<=".
All utility functions implemented in PASCAL{XSC module EXI

�

ARI are

presented in Table 2.
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right

Operand

left

Operand

integer

real
interval

unary +; �;
�

integer

real

�
+�; ��

�
=; <>; v; �
in; ><; +�; ��

interval

�
=; <>; v; �

+�; ��

�
=; <>; v; �
in; ><; +�; ��

� 2 f+;�; �; =; + <;� <; � <; = <g; � 2 fAHO; SHO; MHO; DHO;AHI; SHI; MHI; DHIg
v2 f<;<=; >;>=g; �2 fLT; LE; GT; GEg

Table 1: The operators of PASCAL{XSC module EXI
�

ARI

Function Result Type Meaning

intval (r1, r2) interval Interval with inf = r1 and sup = r2
intval (r) interval Interval with inf = sup = r
pro (i) interval The proper projection of i
inf (i) real The smaller end-point of i
sup (i) real The greater end-point of i
�rst (i) real The �rst end-point of i
second (i) real The second end-point of i
drc(i) integer Direction

sgn(i) integer Sign

mid (i) real Midpoint of i
diam (i) real Diameter of i
abs (i) interval Absolute value j i j= fj r j: r 2 ig
dist(r,i) real Distance between a real value and an interval

dist(i1,i2) real Distance between two intervals

r, r1, r2 = real expression, i, i1, i2 = interval expression

Table 2: The utility functions of PASCAL{XSC module EXI
�

ARI

Some other operations and functions involving directed intervals were imple-

mented in EXI
�

ARI module for convenience of the user. For example, interval

operations computing an inner inclusion of the true interval solution (inwardly

directed rounding) can also be very useful. An inner inclusion interval is a di-

rected interval which is contained (according to the extended inclusion relation)

in the true solution interval. The operators +<, -<, *<, /< are rede�ned for

interval and mixed type arguments and new operators AHI, SHI, MHI, DHI are

de�ned for real arguments to perform the corresponding operation for directed
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intervals with inward rounding. Relational operators \<>" (not equal), \<",
\>=", \>", \LT", \GT", \GE" are overloaded to test additionally the corre-

sponding order relation between directed intervals.

4 Speci�cation of the GIAS Scalar Operations

GiasAddRR(INTERVAL R, REAL a, REAL b)
Purpose: Calculates the directed interval R including the true result of a+ b.
Description: R = [5(a+ b); 4(a+ b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point additions. Handling by the corresponding 
oating-point system
according to the IEEE Std.

GiasAddRI(INTERVAL R, REAL a, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of a+B.
Description: R = [5(a+B1); 4(a+B2)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point additions. Handling by the corresponding 
oating-point system
according to the IEEE Std.

GiasAddIR(INTERVAL R, INTERVAL A, REAL b)
Purpose: Calculates the directed interval R including the true result of A+ b.
Description: R = [5(A1 + b); 4(A2 + b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point additions. Handling by the corresponding 
oating-point system
according to the IEEE Std.

GiasAddII(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of A+B.
Description: R = [5(A1 +B1); 4(A2 +B2)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point additions. Handling by the corresponding 
oating-point system
according to the IEEE Std.

GiasNeg(INTERVAL R, INTERVAL A)
Purpose: Unary minus of a directed interval. Calculates R = �A.
Description: R = [�A2; �A1].
Exceptions: Depend on the implementation of 
oating-point copying operation. If

it is implemented as an arithmetic operation then all the exceptions are
caused by the corresponding 
oating-point exceptional operands. There
will be no exceptions if 
oating-point copying operation is treated as
non-arithmetic operation.

GiasSubRR(INTERVAL R, REAL a, REAL b)
Purpose: Calculates the directed interval R including the true result of a� b.
Description: R = [5(a� b); 4(a� b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std.

GiasSubRI(INTERVAL R, REAL a, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of a�B.
Description: R = [5(a�B2); 4(a�B1)].
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Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std.

GiasSubIR(INTERVAL R, INTERVAL A, REAL b)
Purpose: Calculates the directed interval R including the true result of A� b.
Description: R = [5(A1� b); 4(A2� b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std.

GiasSubII(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of A�B.
Description: R = [5(A1�B2); 4(A2�B1)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std.

GiasMulRR(INTERVAL R, REAL a, REAL b)
Purpose: Calculates the directed interval R including the true result of a� b.
Description: R = [5(a� b); 4(a� b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point multiplications. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std.

GiasMulRI(INTERVAL R, REAL a, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of a�B.

Description: R =
n
[5 (a�B2); 4(a�B1)]; if a < 0 or a = �0
[5 (a�B1); 4(a�B2)]; otherwise:

Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point multiplications. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std. In addition, Invalid Operation excep-
tion may be signaled if the real operand is a NaN. The delivered default
result is [qNaN, qNaN] if the exception occurs without a trap.

GiasMulIR(INTERVAL R, INTERVAL A, REAL b)
Purpose: Calculates the directed interval R including the true result of A� b.

Description: R =
n
[5 (A2� b); 4(A1� b)]; if b < 0 or b = �0
[5 (A1� b); 4(A2� b)]; otherwise:

Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point multiplications. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std. In addition, Invalid Operation excep-
tion may be signaled if the real operand is a NaN. The delivered default
result is [qNaN, qNaN] if the exception occurs without a trap.

GiasMulII(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of A�B.
Description:
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R =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

If GiasSign(A)6=0 and GiasSign(B)6=0 then
[5 (A1�B1); 4(A2�B2)]; if GiasSign(A)=GiasSign(B)=1
[5 (A2�B1); 4(A1�B2)]; if GiasSign(A)=1, GiasSign(B)={1
[5 (A1�B2); 4(A2�B1)]; if GiasSign(A)={1, GiasSign(B)=1
[5 (A2�B2); 4(A1�B1)]; if GiasSign(A)=GiasSign(B)={1
If GiasSign(A)6=0 and GiasSign(B)=0 then
[5 (A2�B1); 4(A2�B2)]; if GiasSign(A)=1, GiasDirection(B)=1
[5 (A1�B2); 4(A1�B1)]; if GiasSign(A)={1, GiasDirection(B)=1
[5 (A1�B1); 4(A1�B2)]; if GiasSign(A)=1, GiasDirection(B)={1
[5 (A2�B2); 4(A2�B1)]; if GiasSign(A)={1, GiasDirection(B)={1
[5 (A1�B1); 4(A2�B2)]; if GiasDirection(B)=0
If GiasSign(A)=0 and GiasSign(B)6=0 then
[5 (A1�B2); 4(A2�B2)]; if GiasDirection(A)=1, GiasSign(B)=1
[5 (A2�B1); 4(A1�B1)]; if GiasDirection(A)=1, GiasSign(B)={1
[5 (A1�B1); 4(A2�B1)]; if GiasDirection(A)={1, GiasSign(B)=1
[5 (A2�B2); 4(A1�B2)]; if GiasDirection(A)={1, GiasSign(B)={1
[5 (A1�B1); 4(A2�B2)]; if GiasDirection(A)=0
If GiasSign(A)=GiasSign(B)=0 then
[minf5(A1�B2);5(A2�B1)g; maxf4(A1�B1);4(A2�B2)g];

if GiasDirection(A)=GiasDirection(B)=1
[maxf5(A1�B1);5(A2�B2)g; minf4(A1�B2);4(A2�B1)g];

if GiasDirection(A)=GiasDirection(B)={1
[0; 0]; if GiasDirection(A)�GiasDirection(B)={1
[5 (A1�B1); 4(A2�B2)]; if GiasDirection(A)�GiasDirection(B)=0

Exceptions: Al caused by exceptional operands and exceptional results on 
oating-
point multiplications. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std. In addition, Invalid Operation excep-
tion may be signaled if some of the operands involve NaN. The default
result should involve at least one qNaN as end-point.

GiasDivRR(INTERVAL R, REAL a, REAL b)
Purpose: Calculates the directed interval R including the true result of a=b.
Description: R = [5(a=b); 4(a=b)].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point divisions. Handling by the corresponding 
oating-point system
according to the IEEE Std.

GiasDivRI(INTERVAL R, REAL a INTERVAL B)
Purpose: Calculates the directed interval R including the true result of a=B.
Description: R = GasDivII(A, B), where A = [a; a].
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point divisions. Handling by the corresponding 
oating-point system
according to the IEEE Std. In addition, Invalid Operation exception
may be signaled if some of the operands involve NaN. The default
result should involve at least one qNaN as end-point. Division by Zero
exception is signaled if �0 is in the interior of the proper part of B.
The delivered default result is [qNaN, qNaN] if the exception occurs
without a trap .

GiasDivIR(INTERVAL R, INTERVAL A, REAL b)
Purpose: Calculates the directed interval R including the true result of A=b.

Description: R =
n
[5 (A2=b); 4(A1=b)]; if b < 0 or b = �0
[5 (A1=b); 4(A2=b)]; otherwise:
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Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point divisions. Handling by the corresponding 
oating-point system
according to the IEEE Std. In addition, Invalid Operation exception
may be signaled if the real operand is a NaN. The delivered default
result is [qNaN, qNaN] if the exception occurs without a trap.

GiasDivII(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Calculates the directed interval R including the true result of A=B.
Description:

R =

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

If GiasSign(A)6=0 and GiasSign(B)6=0 then
[5 (A1=B2); 4(A2=B1)]; if GiasSign(A)=GiasSign(B)=1
[5 (A2=B2); 4(A1=B1)]; if GiasSign(A)=1, GiasSign(B)=�1
[5 (A1=B1); 4(A2=B2)]; if GiasSign(A)=�1, GiasSign(B)=1
[5 (A2=B1); 4(A1=B2)]; if GiasSign(A)=�1, GiasSign(B)=�1
If GiasSign(A)=0 and GiasSign(B)6=0 then
[5 (A1=B1); 4(A2=B1)]; if GiasDirection(A)=1, GiasSign(B)=1
[5 (A2=B2); 4(A1=B2)]; if GiasDirection(A)=1, GiasSign(B)=�1
[5 (A1=B2); 4(A2=B2)]; if GiasDirection(A)={1, GiasSign(B)=1
[5 (A2=B1); 4(A1=B1)]; if GiasDirection(A)={1, GiasSign(B)=�1
[5 (A1=B1); 4(A2=B2)]; if GiasDirection(A)=0
If GiasSign(B)=0 then
[5 (A1=B1); 4(A2=B2)]; if GiasDirection(B)=0
[qNaN; qNaN]; if GiasDirection(B) 6= 0

Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point divisions. Handling by the corresponding 
oating-point system
according to the IEEE Std. In addition, Invalid Operation exception
may be signaled when some of the operands involves NaN. The default
result should involve at least one qNaN as end-point. Division by Zero
exception is signaled if �0 is in the interior of the proper part of B.
The delivered default result is [qNaN, qNaN] if the exception occurs
without a trap.

GiasDual(INTERVAL R, INTERVAL A)
Purpose: Conjugation of the directed interval A.
Description: R = [A2; A1].
Exceptions: Depend on how the implementation considers copying operation. When

copying operation is implemented as an arithmetic operation then all
the exceptions are caused by the corresponding 
oating-point excep-
tional operands. There will be no exceptions if copying is treated as
non-arithmetic operation.

INTEGER GiasDirection(INTERVAL A)
Purpose: Returns �1, if A is an improper directed interval; 1, if A is proper or

degenerate and 0, if A involves NaN.
Description: If A1 � A2 then If (A1 = 0 and A2 = �0) then �1 else 1

elseIf (A1 =NaN or A2 =NaN) then 0 else �1.
Exceptions: Invalid Operation exception may be signaled if NaN is involved in the

argument. 0 is delivered as a result if the exception occurs without a
trap.

INTEGER GiasSign(INTERVAL A)
Purpose: Returns �1, if A is a negative directed interval; 1, if A is positive and

0, if 0 is in the interior of the proper part of A or A involves NaN.
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Description: If A1 � 0 and A2 � 0 then

If

 
A1 = 0 and A2 = 0 or
A1 = 0 and (A2 = �0 or A2 < 0) or
(A1 < 0 or A1 = �0) and A2 = 0

!
then 0 else �1

elseIf A1 � 0 and A2 � 0 then

If
�
A1 = �0 and (A2 = 0 or A2 > 0) or
(A1 > 0 or A1 = 0) and A2 = �0

�
then 0 else 1

else 0.
Exceptions: Invalid Operation exception may be signaled if NaN is involved in the

argument. 0 is delivered as a result if the exception occurs without a
trap.

GiasProper(INTERVAL R, INTERVAL A)
Purpose: Returns the proper part (projection) of the directed interval A.

Description: R =
n
GiasDual(R, A); if GiasDirection(A) < 0;
A; otherwise.

Exceptions: Invalid Operation exception may be signaled if NaN is involved in the
argument. The argument is returned unchanged if the exception occurs
without a trap.

REAL GiasInf(INTERVAL A)
Purpose: Inf(A) := minfA1; A2g returns the lower bound of the directed interval

A.

Description:

(
A1; if A1 � A2
A2; if A1 > A2
qNaN; otherwise:

Exceptions: Invalid Operation exception may be signaled if NaN is involved in the
argument. qNaN is delivered as a result if the exception occurs without
a trap.

REAL GiasSup(INTERVAL A)
Purpose: Sup(A) := maxfA1; A2g returns the upper bound of the directed in-

terval A.

Description:

(
A2; if A1 � A2
A1; if A1 > A2
qNaN; otherwise:

Exceptions: Invalid Operation exception may be signaled if NaN is involved in the
argument. qNaN is delivered as a result if the exception occurs without
a trap.

REAL GiasFirst(INTERVAL A)
Purpose: Returns the �rst end-point of the directed interval A.
Description: A1.
Exceptions: Depend on whether copying is implemented as an arithmetic operation

or not.

REAL GiasSecond(INTERVAL A)
Purpose: Returns the second end-point of the directed interval A.
Description: A2.
Exceptions: Depend on whether copying is implemented as an arithmetic operation

or not.

REAL GiasMid(INTERVAL A)
Purpose: Returns the nearest value to the midpoint of a directed interval A.
Description: (A1 +A2)=2.
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point operations. Handling by the corresponding 
oating-point system
according to the IEEE Std.
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REAL GiasDiam(INTERVAL A)
Purpose: Returns the nearest value to the diameter of a directed interval A.

Diam(A) :=j A1�A2 j.
Description: Abs(A1�A2).
Exceptions: All caused by exceptional operands and exceptional results on 
oating-

point subtraction. Handling by the corresponding 
oating-point system
according to the IEEE Std.

REAL GiasAbs(INTERVAL A)
Purpose: Returns the absolute value of the directed interval A.

Abs(A) := maxfj A1 j; j A2 jg.

Description:

(
Abs(A1); if Abs(A1) � Abs(A2);
Abs(A2); if Abs(A1) < Abs(A2);
qNaN; otherwise:

Exceptions: Invalid Operation exception may be signaled if NaN is involved in the
argument. qNaN is delivered if the exception arises without a trap.

REAL GiasDistRI(REAL a, INTERVAL B)
Purpose: Returns the distance between a and B.

Dist(a;B) := maxfj a�B1 j; j a�B2 jg.

Description:

(
Abs(a�B1); if Abs(a�B1) � Abs(a�B2);
Abs(a�B2); if Abs(a�B1) < Abs(a�B2);
qNaN; otherwise:

Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std. In addition, Invalid Operation exception
may be signaled if NaN is involved in some of the arguments. qNaN is
delivered as a default result if the exception occurs without a trap.

REAL GiasDistII(INTERVAL A, INTERVAL B)
Purpose: Returns the distance between A and B.

Dist(A;B) := maxfj A1�B1 j; j A2�B2 jg.

Description:

(
Abs(A1�B1); if Abs(A1�B1) � Abs(A2�B2);
Abs(A2�B2); if Abs(A1�B1) < Abs(A2�B2);
qNaN; otherwise:

Exceptions: All caused by exceptional operands and exceptional results on 
oating-
point subtractions. Handling by the corresponding 
oating-point sys-
tem according to the IEEE Std. In addition, Invalid Operation exception
may be signaled if NaN is involved in some of the arguments. qNaN is
delivered as a default result if the exception occurs without a trap.

GiasIntersection(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Calculates the intersection R between directed interval A and directed

interval B.
R := [maxfA1; B1g;minfA2; B2g].

Description: If A1�B1 then If A1= �0 and B1= 0 then R1=B1 else R1=A1
elseIf A1=NaN or B1=NaN then R1=qNaN else R1=B1
If A2�B2 then If A2= 0 and B2= �0 then R2=B2 else R2=A2
elseIf A2=NaN or B2=NaN then R2=qNaN else R2=B2.

Exceptions: Invalid Operation exception may be signaled if NaN is involved in some
of the arguments. If the exception occurs without a trap, the delivered
default result involves qNaN at that end-point at which NaN is involved
in the arguments.

GiasHullR(INTERVAL R, REAL a)
Purpose: Composes interval R with a as end-points.
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Description: R = [a; a].
Exceptions: Depend on whether copying is implemented as an arithmetic operation

or not.

GiasHullRR(INTERVAL R, REAL a, REAL b)
Purpose: Initializes R with the convex hull of a and b. R := [minfa; bg;maxfa; bg]

is always a proper interval.
Description: If a � b then If (a = �0 and b = 0) then R = [b; a] else R = [a; b]

elseIf (a=NaN or b=NaN) then R =[qNaN, qNaN] else R = [b; a].
Exceptions: Invalid Operation exception may be signaled if some of the arguments

is NaN. [qNaN, qNaN] is delivered if the exception occurs without a
trap.

GiasHullRI(INTERVAL R, REAL a, INTERVAL B)
Purpose: Initializes R with the convex hull of a and B.

R := [minfa;B1g;maxfa;B2g] is always a proper interval.
Description: R=GiasHullII(A, B), where A = [a; a].
Exceptions: Invalid Operation exception may be signaled if NaN is involved in some

of the arguments. If the exception occurs without a trap, the delivered
default result involves qNaN at that end-point at which NaN is involved
in the arguments.

GiasHullIR(INTERVAL R, INTERVAL A, REAL b)
Purpose: Initializes R with the convex hull of A and b.

R := [minfA1; bg;maxfA2; bg] is always a proper interval.
Description: R=GiasHullII(A, B), where B = [b; b].
Exceptions: Invalid Operation exception may be signaled if NaN is involved in some

of the arguments. If the exception occurs without a trap, the delivered
default result involves qNaN at that end-point at which NaN is involved
in the arguments.

GiasHullII(INTERVAL R, INTERVAL A, INTERVAL B)
Purpose: Initializes R with the convex hull of A and B.

R := [minfA1; B1g;maxfA2; B2g] is always a proper interval.
Description: If A1�B1 then If (A1= 0 and B1= �0) then R1=B1 else R1=A1

elseIf (A1=NaN or B1=NaN) then R1=qNaN else R1=B1
If A2�B2 then If (A2= �0 and B2= 0) then R2=B2 else R2=A2
elseIf (A2=NaN or B2=NaN) then R2=qNaN else R2=B2.

Exceptions: Invalid Operation exception may be signaled if NaN is involved in some
of the arguments. If the exception occurs without a trap, the delivered
default result involves qNaN at that end-point at which NaN is involved
in the arguments.

INTEGER GiasEqualRI(REAL a, INTERVAL B)
Purpose: Tests equality of a real value and a directed interval.

Description:

n
1; if a = B1 and a = B2;
0; otherwise:

Exceptions: None.

INTEGER GiasEqualIR(INTERVAL A, REAL b)
Purpose: Tests equality of a directed interval and a real value.

Description:

n
1; if A1 = b and A2 = b;
0; otherwise:

Exceptions: None.
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INTEGER GiasEqualII(INTERVAL A, INTERVAL B)
Purpose: Tests equality of two directed intervals.

Description:

n
1; if A1 = B1 and A2 = B2;
0; otherwise:

Exceptions: None.

INTEGER GiasInRI(REAL a, INTERVAL B)
Purpose: Tests a real value to be included in a directed interval.

(a � B :() B1 � a and a � B2).

Description:

n
1; if B1 � a and a � B2;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasInIR(INTERVAL A, REAL b)
Purpose: Tests a directed interval to be included in a real value.

(A � b :() b � A1 and A2 � b).

Description:

n
1; if b � A1 and A2 � b;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasInII(INTERVAL A, INTERVAL B)
Purpose: Tests A � B. (A � B :() B1 � A1 and A2 � B2).

Description:

n
1; if B1 � A1 and A2 � B2;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasInteriorRI(REAL a, INTERVAL B)
Purpose: Tests the antire
exive order relation \contained in".

a � B :() a � B and a 6= B.

Description:

n
1; if GiasInRI(a, B) = 1 and GiasEqualRI(a, B) = 0;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasInteriorIR(INTERVAL A, REAL b)
Purpose: Tests the antire
exive order relation \contained in".

A � b :() A � b and A 6= b.

Description:

n
1; if GiasInIR(A, b) = 1 and GiasEqualIR(A, b) = 0;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasInteriorII(INTERVAL A, INTERVAL B)
Purpose: Tests the antire
exive order relation \contained in".

A � B :() A � B and A 6= B.

Description:

n
1; if GiasInII(A, B) = 1 and GiasEqualII(A, B) = 0;
0; otherwise:
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Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessEqRI(REAL a, INTERVAL B)
Purpose: Tests a � B (a � B :() a � B1 and a � B2).

Description:

n
1; if (a � B1) and (a � B2)
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessEqIR(INTERVAL A, REAL b)
Purpose: Tests A � b (A � b :() A1 � b and A2 � b).

Description:

n
1; if (A1 � b) and (A2 � b)
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessEqII(INTERVAL A, INTERVAL B)
Purpose: Tests A � B (A � B :() A1 � B1 and A2 � B2).

Description:

n
1; if (A1 � B1) and (A2 � B2)
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessRI(REAL a, INTERVAL B)
Purpose: Tests the antire
exive order relation a < B.

(a < B :() a � B and a 6= B).

Description:

n
1; if GiasLessEqRI(a, B) = 1 and GiasEqualRI(a, B) = 0;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessIR(INTERVAL A, REAL b)
Purpose: Tests the antire
exive order relation A < b.

(A < b :() A � b and A 6= b).

Description:

n
1; if GiasLessEqIR(A, b) = 1 and GiasEqualIR(A, b) = 0;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.

INTEGER GiasLessII(INTERVAL A, INTERVAL B)
Purpose: Tests the antire
exive order relation A < B.

(A < B :() A � B and A 6= B).

Description:

n
1; if GiasLessEqII(A, B) = 1 and GiasEqualII(A, B) = 0;
0; otherwise:

Exceptions: Those on 
oating-point comparison operations, i.e. Invalid Operation if
NaN is involved in some of the operands. Zero is delivered as a result
if the exception occurs without a trap.
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