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Abstract. We study here the degree-theoretic structure of set-theoretical splittings

of recursively enumerable (r.e.) sets into di�erences of r.e. sets. As a corollary we
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1 Introduction

We review here the main notation and notions which will be used in this paper.
All other notation and notions can be found in [27] and [28]. It is assumed
that the reader is familiar with standard tree arguments (see [28]). Recursively
enumerable (r.e.) sets are the sets for which there exist Turing machines that
e�ectively enumerate them. The set of all natural numbers is denoted by !. A
set A � ! is called d{r.e. (di�erence of r.e. sets) if there are two r.e. sets of
natural numbers A1; A2 � ! such that A = A1 �A2.

Let fWege2! and f'ege2! be the standard enumerations of recursively
enumerable sets and partial recursive functions, respectively. We will denote
partial recursive functionals (Turing reductions/Turing computations) by cap-
ital Greek letters �;	;�, and sets of natural numbers and their correspond-
ing characteristic functions by capital Latin letters. For sets A and B, put
A � B = f2x : x 2 Ag

S
f2x + 1 : x 2 Bg: Here As is the �nite part of the

set A enumerated at stage s. Denote by �e;s(As; x) # the fact that the partial
recursive (p.r.) functional with oracle As converges in s stages on the input x;
�e;s(As; x) " denotes divergence (i.e. there is no outcome of computation) at
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stage s. The function �x; yhx; yi denotes a pairing of ! � !, i.e. a recursive bi-
jection from !�! onto !. Using this mapping one inductively gets computable
coding of all n{tuples of numbers. The restriction of the set/function A to the
initial segment of length k + 1 is denoted by Adk + 1 = fx 2 A : x � kg. For
sets A;B � !, A is Turing reducible (T{reducible) to B, denoted by A �T B,
if there is an e 2 ! such that for all x, �e(B;x) = A(x). The use{function for
�e(A; x) is de�ned as follows:

use(�e(A; x)) =

�
�y[�e(Ady + 1;x) #= �e(A;x) #];
unde�ned; otherwise:

Here we use the standard � notation for the minimization operator. As usual
we assume that the use{function has the property that for all e; s; A; x if
�e;s(As;x) # then e; x; use(�e;s(As;x)) < s. The set A is weakly truth table

reducible to B, denoted by A �wtt B, if there exist e0; e1 2 ! such that for all
x , �e0(B;x) = A(x), �e1 (x) # and use(�e0(B;x)) � �e1 (x), that is, A is Tur-
ing reducible to B and the use{function of the Turing reduction is majorised by
some total recursive function. We use here wtt{functionals de�ned as follows.
Let f(�e; �e)ge2! be standard enumeration of all pairs of partial recursive (p.r.)
functionals and p.r. functions. Then de�ne

b�e(A;x) =

�
�e(A;x) # and use(�e(A;x)) � �e(x) #;
unde�ned; otherwise:

The b�e;s(A;x){computation of the wtt{functional, executed in s stages, is de-

�ned analogously. It is clear that A �wtt B is equivalent to b�e(B) = A for
some e. From now on we omit the superscript symbols and that of the stage
s when from the context it will be clear that we deal with wtt{functionals and
computations at stage s. We will say that the set A wtt � (T�) computes the
set B if B �wtt A (B �T A).

Equivalence classes induced by these reducibility relations are called T{ and
wtt{degrees of unsolvability. The T{degree (sometimes called Turing degree)
of A is denoted by the corresponding bold Latin letter a or deg(A), and the
wtt{degree of A by the corresponding bold capital Latin letter. A degree of
unsolvability is called recursively enumerable (d{r.e.) if it contains an r.e. (d{
r.e.) set.

Now we review some facts about sets T{reducible to the Halting Problem
set ;0 = fx : 'x(x) # g. First we note here the Limit Lemma (see [28]):

A � ;0 if and only if there is some recursive function g such that

A(x) = limsg(x; s):

Here limsg(x; s) = A(x) means that there exists t such that for all
s � t A(x) = g(x; s). When we have the function g(x; s) as in this de�ni-
tion, we put As(x) = g(x; s) and call it a recursive approximation to A.
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This characterization of the sets T{reducible to the Halting Problem (or
equivalently, T{computable by the Halting Problem) naturally suggests a pos-
sible hierarchy for them. This hierarchy is based on the approach to classify a
set by measuring how often an approximation to the characteristic function of
a set changes before it stabilizes.

For example, there exists another equivalent way to de�ne r.e. (d{r.e.) sets,
which is by recursive approximation of their characteristic functions with at
most one (two) change in the approximation: for a given set A we start by
guessing that x is not in A and we may change our guess about the membership
of x at most once in the r.e. case and twice in the d{r.e case, namely when
we enumerate x into A and when we extract it from A. If one allows the
approximation to change more often then this approach leads to the de�nition
of a concept of an n{recursively enumerable set which includes the de�nitions
for the r.e. and d{r.e. sets as particular cases.

A set A � ! is called n{recursively enumerable (n{r.e.) if there is a recursive
function f such that for all x:

1. A(x) = lims f(x; s),

2. f(x; 0) = 0,

3. jfs : f(x; s) 6= f(x; s+ 1)gj � n:

The class of all r.e. sets coincides with the class of 1{r.e. sets, and the
class of di�erences of r.e. sets coincides with the class of 2{r.e. sets. A recursive
enumeration of an in�nite r.e. set is denoted by fAsgs2!, where jAs+1�Asj = 1
and fasg = As+1�As; for a �nite set X , jX j denotes the cardinality of X . The
same notation is used for a recursive approximation of a d{r.e. set A with the
property that for all x jfs : As(x) 6= As+1(x)gj � 2 .

Let us notice the well known fact (see [18]) that for all natural numbers n
the class of n{r.e. sets coincides with the class of all sets obtained by closure of
the r.e. sets under complementation, union and intersection (i.e. the smallest
Boolean algebra generated by r.e. sets). It could be easily shown that a set
is n{r.e. if and only if it is a �nite union of d-r.e. sets. We should note that
the class of sets T{reducible to ;0 is not exhausted by the hierarchy of sets
whose approximation may change only n times. A trans�nite extension of the
hierarchy (see [18]) describes, however, all these sets.

The hierarchy of recursively approximated sets was �rst introduced and stud-
ied by Putnam (see [26]) and Ershov (see [18]). The Turing degrees of n{r.e.
sets were �rst studied by Cooper and Lachlan (see [19]). Cooper proved (see [5])
that the n{r.e. sets generate a proper degree hierarchy below 00, the degree of
Halting Problem, that is, for each n � 1, there is an (n+ 1){r.e. set such that
its degree does not contain any n{r.e. set.

The set of all n{r.e. wtt{ and Turing degrees is denoted by Dn;wtt and Dn,

respectively. Dn;wtt
def
= hDn;wtt; �;

S
;
T
i denotes the partial ordering of n{r.e.
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wtt{degrees. In Dn;wtt one can naturally de�ne the operation of least upper
bound and the partial operation of greatest lower bound.

Weak truth table reducibility (wtt{reducibility) has been studied in the the-
ory of recursive functions for a long time (it was introduced by Friedberg and
Rogers, see [20]) and turned out to be an important concept in the investiga-
tions of the lattice of r.e. sets and the algebraic structure of partial ordering of
r.e. Turing degrees (see [2, 3, 4, 9, 11, 13, 14, 15, 17, 23, 24, 29]). This notion is
useful in e�ective algebra, where, for example, Downey and Remmel used this
notion to solve the classi�cation problem of the algorithmic complexity of r.e.
bases of r.e. vector spaces (see [14, 15]). In fact they proved that r.e. wtt{
degrees below (in the ordering induced by wtt{reducibility) the wtt{degree of
the given vector space V are exactly wtt{degrees of r.e. bases of this space V .

In this paper we study the degree{theoretic structure (under wtt{reduci-
bility) of d{r.e. splittings of r.e. sets.

De�nition 1.1. A di�erence (r.e.) splitting of an r.e. set A is a pair of

d{r.e. (r.e.) sets D1 and D2 such that D1

S
D2 = A and D1

T
D2 = ;, whereS

and
T

are standard set{theoretic operations.

It turns out that the degree{theoretic structure of di�erence splittings of
r.e. sets is quite di�erent from the degree{theoretic structure of r.e. splittings
of r.e. sets. For example, for every r.e. splitting A1; A2 of any given r.e. set
A, Ai �T A; i = 1; 2 and A1 � A2 �T A, while there are di�erence splittings
wich do not possess these properties of r.e. splittings. For example, for any not
T-complete r.e. set A the pair of d-r.e. sets A0 and A1, where A0 is T -complete
r.e. subset of A (there always exists one) and A1 = A�A0, is such a di�erence
splitting.

A number of properties simultaneously true for all semilatticesDn;wtt;n < !

have been found. For example:
1: (Ladner{Sasso, [23]) Density and splitting hold simultaneously in the r.e.

wtt{degrees, i.e. the following statement

(8 A;B)(A < B =) ( 9 C0;C1)(A < C0;C1 < B ^ C0 [C1 = B))

holds true in the algebraic structure D1;wtt.
10: (see [1]) For a given n � 2; n 2 !, density and splitting hold true simul-

taneously in Dn;wtt.
2: (Ladner{Sasso, [23]) Anticupping property holds for every nonrecursive

r.e. wtt{degree, i.e. the statement

(8A)(A > 0 =) ( 9B < A)(8C)(B [C � A) B � A))

holds true in D1;wtt.
20: (Downey, [9]) Strong anticupping property holds for every nonrecur-

sive r.e. wtt{degree, i.e. (the notation in the statement shows that the
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�rst two quanti�ers range through D1;wtt and the third one ranges through
Dwtt(� 00

wtt
))

(8 A r:e:)(A > 0 =) ( 9 B r:e: < A)(8C �2
0)(B [C � A) B � A))

3: (Cohen, [6]) Every non wtt{complete r.e. wtt{degree is branching both
in r.e. wtt{degrees and in n{r.e. wtt{degrees, for any n � 2 .

Notice that the �rst two statements are among the most interesting struc-
tural properties (e.g. density/nondensity for partial orderings) that prove the
elementary non{equivalence of the partial orderings of r.e T{degrees and d{r.e.
T{degrees (see, for example, [7]). All these facts point out to the existence of
a great similarity in the structure of partial orderings of wtt{degrees. Nev-
ertheless, in the next paragraph it is proved that Dn;wtt is a nondistributive
semilattice, while it was shown by Lachlan (see [29]) that the partial ordering
of r.e. wtt{degrees forms a distributive semilattice.

2 Embedding of a Nondistributive Lattice Into

d{R.E. wtt{Degrees

For every non wtt{complete set A we construct an r.e. set E and a di�erence
splitting D0; D1 of E such that the wtt-degrees of the sets E�A;D0�A;D1�

A;D0 �D1 �A;A form an isomorphic copy of the nondistributive �ve-element
modular lattice M5 (see [21]). Since D1;wtt is known to be nondistributive, it
follows that for every n � 2 the partial orderings Dn;wtt and D1;wtt are not
elementarily equivalent.

Theorem 2.1. For every non wtt{complete set A there exist an r.e. set

E and a di�erence splitting D0; D1 of the set E such that the wtt{degrees of

the sets E �A;D0 �A;D1 �A;D0 �D1 �A;A constitute the lattice{theoretic

embedding of the modular lattice M5 into the upper semilattice of n{r.e. wtt{

degrees, for any �xed n � 2.

Proof. We will construct an r.e. set E and its di�erence splitting D0; D1 sa-
tisfying the requirements: one global set{theoretic requirement P

�
x 2 Es+1nEs �! x 2 D0;s+1 or D1;s+1;

x 2 Di;snDi;s+1 �! x 2 D1�i;s+1nD1�i;s;

and the in�nite linearly ordered list of requirements:

Pe : E 6= �e(A) ;
Ne : �e(D0 �A) = �e(D1 �A) = f total function =) f �wtt A ;

NPhe;ii : �e(E �A) = �e(Di �A) = f total function =) f �wtt A;

where i = 0; 1:
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Notice that we are using Posner's lemma (see [28], p.153) which says that it
su�ces for our purposes to satisfy the negative requirements Ne and NPhe;ii

with the same e on both sides of their antecedents.

Lemma 2.2. The wtt{degrees of the sets A;E�A;D0�A;D1�A;D0�D1�A

that satisfy the above list of requirements P;Pe;Ne;NPe; e 2 ! constitute a

lattice{theoretic embedding of the lattice M5 into the upper semilattice Dn;wtt,

for any �xed n � 2.

Proof. 1: E � A �wtt D0 �D1 � A, because E = D0

S
D1 and D0

T
D1 = ;.

It is clear that Di �E �wtt D0 �D1.

2: D0�D1 �wtt Di �E. It is su�cient to show that Di �wtt D1�i �E. Let us
compute Di(x) for an arbitrary x. First we query the oracle E : 2x + 1 2 E ?
If the answer is a positive one then we question the oracle D1�i : 2x 2 D1�i ?
If again we get a positive answer then x 62 Di; if the answer is negative then
x 2 Di: If 2x + 1 62 E then it is obvious that x 62 Di: Thus D0 �D1 � A �wtt

Di �E �A; i = 0; 1.

3: Certainly, no Di � A; i = 0; 1; wtt{computes the set E � A, since otherwise
the NP{requirements would imply E �wtt A.

4: E�A does not wtt{compute either of Di�A; i = 0; 1:We consider two cases.
First let us suppose that E � A wtt-computes only one Di � A: Di � A �wtt

E � A; but D1�i 6�wtt E � A for some i = 0; 1. Di � E � A �wtt E � A

and D1�i � A 6�wtt E � A imply that D1�i � E � A 6�wtt Di � E � A, a
contradiction to 2. Secondly, if we assume that E �A computes both sets Di,
D0�A �wtt E�A and D1�A �wtt E�A, then it follows from the satisfaction
of the N{requirements that

D0 �A �wtt D0 �A;E �A =) D0 �A �wtt A

and

D1 �A �wtt D1 �A;E �A =) D1 �A �wtt A =) E �wtt A;

since E �wtt D0 �D1; which is a contradiction with conditions Pe; e 2 !. 2

The requirements Pe will be satis�ed by the modi�ed Friedberg{Muchnik strat-
egy and the requirements Ne by the modi�ed minimal pair strategy. Let
us describe the main module of the strategy for NP{requirements. It will
consists of two strategies | the standard strategy of minimal pair and the
variant of Downey's strategy from the Diamond theorem ([12]). It could be
the result of the joint work of the Friedberg{Muchnik strategy and of the at-
tempt to satisfy the set{theoretic requirement about the splitting of the con-
structing set E that we should enumerate numbers simultaneously into E and
the one Di for some i. These actions would possibly destroy simultaneously
both computations of the p.r. functionals �e(E � A; [l(he; ii; s) � 1]) and
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�e(Di � A; [l(he; ii; s) � 1] for some requirement NPhe;ii. Let, for example,
x 2 Ep+1nEp and x 2 Di;p+1nDi;p and x < r(he; ii; p + 1): Then at the �rst
he; ii{expansionary stage, if it exists at all, s+ 1 > p+1; it is possible that the
computations of both p.r. functionals for NP{requirement will have di�erent
outcomes, and the length of agreement between them will be increased. That is,
for some y < l(he; ii; ls(he; ii; p+1)) : �e;s+1(E�A; y) 6= �e;ls(he;ii;p+1)(E�A; y)
and �e;s+1(Di � A; y) 6= �e;ls(he;ii;p+1)(Di �A; y): In this case the strategy for
the requirement NPhe;ii becomes active and achieves an inequality at the stage
s + 1 by the transfering the number x from the set Di into the D1�i. It will
restore its computation with oracle Di �A, that is,

�e;s+1(Di �A; y) = �e;ls(he;ii;p+1)(Di �A; y) =

= �e;ls(he;ii;p+1)(E �A) 6= �e;s+1(E �A; y):

To preserve the inequality we are not going to change the oracle E � A at the
initial segment of length 'e(y) + 1.

Using the techniques of the priority method, all the above mentioned strategies
easily cohere with each other with the one exception, which we will consider
separately. The exception recurs when some NPhe;ii{strategy � with �nite
outcome is situated on the tree of strategies below someNj{strategy orNPhk;li{

strategy with an in�nite outcome, that is, d�h0i � � (according to the notation
we introduce in the next paragraph). Let us suppose that at some stage s+1 the
following situation holds for some x < l(e; s+1) : x 2 Es+1nEs and x 2 Di;s+1,
and

�e;s+1(D0 �A;x) = �e;s+1(D1 �A;x) = q;

and at all e{expansionary stages the in�nite outcome of the requirement Ne de-
pends on x remaining inDi. If at some stage t+1NP{strategy � becomes active
with this number x: x 2 D1�i;t+1nD1�i;t and x 62 Di;t+1; then the correspond-
ing N{strategy � could be injured by the changes to both oracles. Therefore at
the next e{expansionary stage u+1 we should check whether the computations
of p.r. functionals in the requirement Ne are di�erent: �e;u+1(Di�A;x) = q ?
If they are di�erent then we construct wtt{reduction �(A) = f .

In this construction we use the tree of strategies denoted by T = f0; 1g<!. As
often in an in�nite injury construction (see [28]), we �x the set of outcomes f0; 1g
with the usual order, so that the in�nite outcome of strategy is denoted by 0,
and the �nite by 1. We assign to all nodes of � 2 T of length 3e the requirement
Pe (sometimes we will call such nodes �(Pe)), to all nodes of length 3e+ 1 the
requirement NPe, and to all nodes of length 3e + 2 the requirement Ne. For
� corresponding to Pe;Ne and NPe we are using the following auxiliary length
of agreement functions:
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lp(�; s) = maxfx : (8y < x)(�e;s(As; y) = Es(y))g;

l(�; s) = maxfx : (8y < x)(�e;s(D0;s �As; y) = �e;s(D1;s �As; y))g;

ml(�; s) = maxfl(�; t) : t < s and t is �� stageg;

L(�; s) = maxfx : (8y < x)(�e;s(Es �As; y) = �e;s(Di;s �As; y))g;

M(�; s) = maxfL(�; t) : t < s and t is �� stageg;

ls(�; s) = maxf0; t : t < s and l(�; t) > ml(�; t)g;

We recall that the stage s+1 is called �{expansionary if it is an �{stage (see [28])
and l(�; s + 1) > ml(�; s + 1). Here under l and ml we mean the length of
agreement functions for the corresponding �. For every strategy � we �x the
standard enumeration of the creative set K at the �{expansionary stages, so
that the k-th element of the set K is enumerated at the k-th �-expansionary
stage.

Construction. At stage 0 all the strategies are initialized, i.e. they are in the
state when all parameters (if they are assigned) and computations are declared
unde�ned.

Stage s + 1. De�ne the approximation to the so called true path f (see [28,
Chapter 14]) �s+1 : j�s+1j � s: Let �s+1d0 = ;: Let we already have de�ned
�s+1d(n) = �: Now we de�ne �s+1(n) by following the stated below conditions.

If j�j = 3e for some e, then execute the corresponding action.

1: The strategy � does not have an assigned number. If the stage s + 1 is the

k + 1-th �{expansionary stage then assign the number x�
def
= hc(�); xk+1i as a

witness of the strategy. Here xk+1 2 Kk+1 and c(�) is a code of the node � in
the �xed numbering of all �nite binary sequences. Initialize all � > � and �nish
the stage.

2: For some witness x� : �e;s+1(As+1;x�) #= 0 and Es+1(x�) = 1. Then put
�s+1d(n) = 0:

3: For some witness x�, �e;s+1(As+1;x�) #= 0 and Es+1(x�) = 0: Then put
x� 2 Es+1nEs: Initialize all � > � and �nish the stage.

4: For some assigned witness x� : �e;s+1(A;x�) " : Then let �s+1(n) = 1:

If j�j = 3e+ 1 and for some e : e = hi; sg(j)i; where
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sg(x) =

�
1; x � 1;
0; x = 0:

1: Stage s+ 1 is not �{expansionary. Then �s+1(n) = 1.

2: Some strategy �(P 0
e) :

d�h0i � � executed at some preceding �{expansionary
stage u+ 1 point 3 with the witness x� and for some y < l(�; u+ 1):

�i;s+1(E �A; y) 6= �i;u+1(E �A; y)

and

�i;s+1(Dsg(j) �A; y) 6= �i;u+1(Dsg(j) �A; y):

Then enumerate the number x� from the set Dsg(j) into D1�sg(j): Initialize all
� > � and �nish the stage.

3: In the case opposite to the previous two de�ne �s+1(n) = 0:

Let j�j = 3e+ 2 :

1: Stage s+ 1 is not �{expansionary. Then �s+1(n) = 1:

2: Some strategy �(Pe0 ) : d�h0i � �00 ful�lled at stage ls(�; ls(�; s + 1)) point

3 with the witness x� ; some strategy �0(NPe00 ) : d�h0i � d�0h0i � �00 ful�lled
point 2 at stage ls(�; s); and for some y < ls(�; s+ 1); where s+ 1 is the k{th
�{expansionary stage:

�e;s+1(D0 �A; y) 6= �e;ls(�;s+1)(D0 �A; y) and

�e;s+1(D1 �A; y) 6= �e;ls(�;s+1)(D1 �A; y):

Then enumerate the number he; y; k; 'e(y)i in Es+1: Initialize all � > � and
�nish the stage.

3: In the case opposite to the preceding two cases de�ne �s+1(n) = 0:

Initialize all � : � <L �:

The end of stage s+ 1.

The true path f is de�ned by induction as follows: fd0 = ;: If fdn is de�ned
then

f(n) = �fk : k 2 f0; 1g &8s 9t > s dfdnhki � �tg:

Now let us show that the function �nf(n) is de�ned everywhere and the strategy
fdn satis�es the corresponding requirement.

Lemma 2.3. For all positive integers n, fdn does exist and acts at most

�nitely many times in the construction. If fdn = � is de�ned and is N{ or NP{

strategy with �nite outcome, or P{strategy, then the corresponding requirement

is satis�ed.
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Proof. By the de�nition fd0 = ;: The induction step: we assume that the
statement of the Lemma holds for � = fdm; for m < n and �x the least �{stage
s after which � will never be initialized.

Let j�j = 3e + 1: Let us suppose that lims L(�; s + 1) = 1 since otherwise
the statement is obvious. Let us suppose that � acts after stage s; let t + 1
be the least such stage. Then some P{strategy � acted at the preceding �{
expansionary stage and at the �rst after s �{expansionary stage t+ 1 for some
y < L(�; t + 1 ) : �i;s+1(E�A; y) 6= �i;t+1(E�A; y): Then the strategy �(NP )
acts by enumerating the number x� from Dsg(j) into D1�sg(j) and restores the
oracle (Dsg(j);t+1 �At+1)d'e(y) = (Dsg(j);s+1 �As+1)d'e(y), and achieves the

inequality at stage t+1: In this case �d(n+1) = d�h1i;NPe is met and �(NP )
will not be injured and will not act anymore.

If j�j = 3e; that is, � is P{strategy. Let us suppose that the corresponding
requirement is not satis�ed, i.e. lims lp(�; s) = 1: This means that for some
number z the following statement holds true:

(8x)(x > z =) ((x 2 K () (9t)(hc(�); xi 2 Et+1nEt))()

() (x 2 K () (9s)(as < �e(hc(�); xi) and as 2 As+1nAs))) =) K �wtt A:

Hence there a stage u such that � executes the point 3 at this stage, i.e. E(x�) =
1 6= 0 = �e(A;x�) #; and afterwards, by the assumption, the strategies of higher
priority do not act anymore and � initializes all � > � at stage u. Therefore for

every �{stage v > u � is in the state 2 and �d(n + 1) = d�h0i: The case when
j�j = 3e+ 2 is also obvious. 2

Lemma 2.4. Let c�0 � f for j�j = 3e+ 1; 3e+ 2: Then the requirements

Ne and NPe are satis�ed.

Proof. By the preceding lemma we can �x the least �{stage s such that � will
neither be initialized nor be active after stage s, since otherwise it would be
that c�1 � f: Consequently, lims l(�; s) = 1: Let us �x arbitrary x 2 !: Let s
be the least stage s > s0 : s is �{expansionary and l(�; s) > x; and

Asdhe; x; 2�e(x); �e(x)i = Adhe; x; 2�e(x); �e(x)i:

Let �e;s1(D0;s1 � As1 ;x) = �e;s1(D1;s1 � As1 ;x) = p and let s1 < s2 < : : : <

sn < : : : are �{expansionary stages greater than s1: Then

(8n)[�e;sn(D0;sn � Asn ; y) = �e;sn(D1;sn �Asn ; y) = p]

and �e(Di�A; y) = p; i = 0; 1: Notice that the numbers enumerated into A and
Di; i = 0; 1, could injure only one side of the equation, because the changes of
both sides are coded into A and there exist at most 2'e(x) changes in A which
could make such injuries. 2
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Corollary 2.5. For every incomplete r.e. wtt{degree A there exists a zero

preserving lattice theoretic embedding of the modular non-distributive lattice M5

into D2;wtt(� A).

Corollary 2.6. For every incomplete r.e. wtt{degree A the partial ordering

D2;wtt(� A) does not form a distributive semilattice.

Corollary 2.7. For all positive integers n � 2 and for every incomplete r.e.

wtt{degree A, the partial orderings Dn;wtt(� A) and D1;wtt(� A) are not ele-
mentarily equivalent.

The question remains if the structures Dn;wtt are all pairwise elementarily
inequivalent for n � 1. The existence of many results which hold true simul-
taneously for all these structures with n � 2 suggests the following interesting
conjecture: all the partial orderings Dn;wtt for n � 2 are pairwise elementarily
equivalent.

Acknowledgement. I express my gratitude to Professor C.Calude and the
anonymous referees for their comments.
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