
Reasoning about Abstract State Machines:

The WAM Case Study

Gerhard Schellhorn
(Abt. Programmiermethodik,

Universit�at Ulm, 89069 Ulm, Germany
schellhorn@informatik.uni-ulm.de)

Wolfgang Ahrendt
(Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe, 76128 Karlsruhe, Germany
ahrendt@ira.uka.de)

Abstract: This paper describes the �rst half of the formal veri�cation of a Prolog
compiler with the KIV (\Karlsruhe Interactive Veri�er") system. Our work is based
on [BR95], where an operational Prolog semantics is de�ned using the formalism of
Gurevich Abstract State Machines, and then re�ned in several steps to the Warren
Abstract Machine (WAM). We de�ne a general translation of sequential Abstract State
Machines to Dynamic Logic, which formalizes correctness of such re�nement steps as a
deduction problem. A proof technique for veri�cation is presented, which corresponds
to the informal use of proof maps. 6 of the 12 given re�nement steps were veri�ed. We
found that the proof sketches given in [BR95] hide a lot of implicit assumptions. We
report on our experiences in uncovering these assumptions incrementally during formal
veri�cation, and the support KIV o�ers for such `evolutionary' correctness proofs.

1 Introduction

The Warren Abstract Machine (WAM, [War83]) today is the most popular tar-
get of Prolog compilers. Recently, a mathematical analysis of Prolog semantics
and compiler correctness has become available with the work of B�orger and
Rosenzweig ([BR94], [BR95]).

The analysis in [BR95] starts by de�ning an operational semantics for Prolog
in the formalism of (Gurevich) Abstract State Machines (ASMs, [Gur95]). We
assume the reader to be familiar with this formalism as well as with the basic
notions of Prolog (clauses with ! (cut), true and fail). The ASM is then re�ned
in altogether 12 systematic steps to an ASM which executes WAM machine
code. Each re�nement introduces orthogonal concepts of the WAM. Parallel to
the re�nements, the Prolog program and the query are compiled to machine
instructions. On intermediate levels the input of the ASM are machine instruc-
tions interspersed with uncompiled Prolog syntax. The compilation steps are not
given as a concrete program, but speci�ed by compiler assumptions. This still
leaves some freedom for the implementation of a compiler, in particular several
variants of the �nal WAM are still possible.

Based on the analysis of [BR95] and the proof sketched in [Sch94], this paper
reports on our �rst steps towards the formal, machine-checked veri�cation of
compiler correctness with the KIV system. We will give a detailed discussion of
the correctness proof for the �rst re�nement from Prolog search trees to stacks

Journal of Universal Computer Science, vol. 3, no. 4 (1997), 377-413
submitted: 20/12/96, accepted: 21/4/97, appeared: 28/4/97  Springer Pub. Co.

of choicepoints, and summarize the results of the veri�cation of the following 5
re�nement steps.

Our motivations for beginning such a large case study | based on our current
experience we estimate the necessary e�ort to develop a veri�ed compiler to be
around a person year | are the following:

{ Mathematical analysis is an indispensable prerequisite for formal veri�ca-
tion to be applicable. Nevertheless mathematical analysis will always omit
details and have minor errors. These errors are due to the large complexity
of correctness proofs, which is easily underestimated at �rst glance. The er-
rors usually do not invalidate the analysis, but would still result in erroneous
compilers. We want to demonstrate that the absence of such errors can be
guaranteed by formal correctness proofs, making them a suitable counterpart
to mathematical analysis.

{ We want to show that Dynamic Logic (DL) as it is used in the KIV sys-
tem can serve as a suitable starting point for the veri�cation of Abstract
State Machine re�nements. In particular, the proof technique of commuting
diagrams of Proof Maps, used informally in [BR95], can be formalized in
DL.

{ Finally, the requirements a system for the development of correct software
must cope with are only discovered in ambitious case studies. Solving these
requirements always leads to signi�cant system improvements.

This paper is organized as follows: Section 2 introduces the �rst Abstract
State Machine (ASM) which is used to de�ne an operational semantics of Prolog
(an \interpreter"). The �rst re�nement towards the WAM is described. Both
interpreters are explained with an example computation.

Section 3 introduces the KIV system, which was used to do the veri�cation.
Dynamic Logic (DL), the logic used in KIV to express properties of imperative
programs, is given.

Section 4 translates sequential ASMs to algebraic speci�cations and impera-
tive programs. The proof task of verifying the re�nement between two ASMs is
identi�ed as a problem of program equivalence in DL. The deduction problem
is reduced to the development of correct coupling invariants, which are formulas
corresponding to proof maps in ASMs.

In Section 5 we try to give an impression of the veri�cation process. Exem-
plarily we concentrate on the development of a coupling invariant for the �rst
re�nement step. As will be shown, this formula is extremely complex and can
only be developed in several iterations.

Section 6 summarizes the veri�cation of the other 5 re�nement steps we have
done so far.

Section 7 gives some related work and Section 8 concludes with an outlook
on the continuing work on this case study.

2 The WAM Analysis of B�orger and Rosenzweig

To make this exposition as self-contained as possible, the following two subsec-
tions introduce the �rst and second Abstract State Machine. An example will be
given to explain the rules of the interpreters. We will closely follow [BR95] and

378 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

deviate only in some notations. This will set up the veri�cation task and enable
us to discuss the problems we encountered in solving it (Sect. 5). The reader
who knows [Sections 1.1, 1.2] from [BR95] may skip this section, and refer to it
only for notational issues.

2.1 The First Interpreter: Search Trees

The two most important data structures needed to represent a Prolog computa-
tion state are the sequence of Prolog literals still to be executed and the current
substitution. This state is modi�ed by

1. unifying the �rst literal of the sequence, called act (activator), with the head
of a clause

2. replacing act by the body of that clause
3. applying the unifying substitution to the resulting sequence and
4. composing the unifying substitution with the `old' substitution.

If this leads to failure, alternative clauses have to be chosen, so backtracking is
needed. Due to this the interpreter has to keep a record of the former compu-
tation states and the corresponding clause choice alternatives. This history is
represented by a tree of nodes, connected from leaves to the root by a function
father. Information on alternative clauses, which may be tried at a node n, is
stored as a list cands(n) of candidate nodes. Each node in this list refers via
a function cll to a clause line in the Prolog program. The initial cands-list is
constructed with the help of a function procdef, which is assumed to return the
program lines containing the candidate clauses for a given literal. The current
computation state is carried by a distinguished node, the currnode.

The ability to handle the cut still requires an extension of the state represen-
tation. A cut causes nothing but modi�cation of the backtracking information,
updating the father of the current node to the father of that computation state
whose act caused the introduction of the considered cut. For this we have to
`remember' where a cut has been introduced. An uniform solution is to attach
the father of the (old) currnode to each clause body being introduced to the lit-
eral sequence. This attachment divides the sequence of literals into subsequents,
called goals, each decorated by one node, called cutpt (cutpoint). The resulting
sequence is called decglseq (decorated goal sequence).

To introduce the rules of the ASM we will now consider the evaluation of the
query ?- p. on the following Prolog program:

1 p :- fail. 3 q.

2 p :- q,!,true. 4 p.

which is stored as the value of a constant db (database) in the initial algebra
of the ASM. Line numbers are shown explicitly in the program for explanatory
purposes ([BR95] uses an abstract sort code for clause lines. The use of natural
numbers here is only to facilitate understanding).

The query ?- p. is stored as the decglseq of node A in the initial search tree
depicted in Fig. 1. The two nodes (labeled ? and A) form the initial domain
of a dynamic universe node, which is extended by the rules of the ASM. Tree
structure is stored in a function father : node ! node, indicated by the arrow

379Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

in Fig. 1, so we have father(A) = ? (the father of ? is unde�ned). Node ? is
the root node of the tree. It serves only as a marker when to �nish search and
does not carry information. The initial currnode is A, as indicated by the double
circle. The (initially empty) substitution sub(currnode) attached to this node is
not shown in the �gures, since it does not matter in the example we consider.

The ASM run is controlled by two program variables (i.e. 0-ary dynamic
functions) mode and stop. The value of mode switches between call and select,
while the value of stop remains run until it �nally changes to halt. This stops
the evaluation by falsifying all rule guards.

?

[h[p],?i] a

��
��
��
��
��
��

OO ?

[h[p],?i] a

b c d

��
��
��
��
��
��

OO

{{w
w
w

(
��
��;

w
w
w
w
w
;;

1

��
��;

OO

2

��
��

__?
?
?

4

)

?

[h[p],?i] a

[h[fail],?i , h[],?i] b c d

��
��
��
��

OO

��
�

���
��
��
��

s
s
s
s
s
s
99

(
��
��;

OO

2

��
��

__?
?
?

4

)

Fig. 1. Fig. 2. Fig. 3.

Since the functions used in the following rules are often applied to the cur-
rnode, we use the following abbreviations:

father � father(currnode)
cands � cands(currnode)
sub � sub(currnode)
decglseq � decglseq(currnode)

Also the components of decglseq are abbreviated as shown in the following dia-
gram:

decglseq = [h [

actz}|{
g1;1 ; g1;2; : : : ; g1;k1]| {z }

goal

;

cutptz}|{
n1 i ; : : : ; h [gm;1; : : : ; gm;km] ; nm i]

cont = [h [g1;2; : : : ; g1;k1] ; n1 i ; : : : ; h [gm;1; : : : ; gm;km] ; nm i]

The continuation cont, which is the decglseq without act, will later on help to
describe the construction of a new decglseq.

In call mode, which is the initial mode, the cands information is computed
(for a guard which involves act, we assume that decglseq 6= [], goal 6= []):

380 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

call rule
IF stop = run & is user de�ned(act) & mode = call
THEN LET [cll1,: : :,clln] = procdef(act,db)

EXTEND node BY temp1,: : :,tempn
WITH

father(tempi) := currnode
cll(tempi) := clli
cands := [temp1,: : :,tempn]

ENDEXTEND
mode := select

The EXTEND construct, by expanding the universe node, allocates one node for
every clause whose head `may unify' with the literal act. This list of clause lines
is computed by procdef(act,db) and is assumed to contain at least those clauses,
whose head unify with the activator, and at most those with the same leading
predicate symbol as act. The result of the rule application is depicted in Fig. 2.

The cands list (of node A) is indicated by a dashed arrow to its �rst element
and brackets around the elements. The clause lines corresponding to the candi-
dates are attached to the new nodes via the function cll, as shown by numbers
below the nodes. The change of the mode variable activates the select rule:

select rule
IF stop = run & is user de�ned(act) & mode = select
THEN IF cands = []

THEN backtrack
ELSE LET clause = rename(clause(cll(�rst(cands))),vi)

LET mgu = unify(act,head(clause))
IF mgu = failure
THEN cands := rest(cands)
ELSE currnode := �rst(cands)

decglseq(�rst(cands)) :=
apply(mgu,[hbody(clause), fatheri jcont])
sub(�rst(cands)) := sub � mgu
cands := rest(cands)
vi := vi + 1
mode := call

where

backtrack � IF father = ?
THEN stop := halt

subst := failure
ELSE currnode := father

mode := select

This rule causes backtracking if there are no (more) alternatives to select. Oth-
erwise, by repeated application, it removes all candidates whose heads do not
unify with act. When the �rst candidate is reached, for which a most general
uni�er mgu exists (variable index vi is used to rename the implicitly universal
quanti�ed clause variables to new instances), this node becomes currnode. A new
decglseq is computed by replacing the activator of the old decglseq with the body

381Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

of the `selected clause'. As a cutpoint the father of the old currnode is attached
to this new goal. The mgu is applied to the resulting decglseq and composed
(with �) with the old substitution sub.

The result of applying the select rule in our example is shown in Fig. 3. Now
mode is call again, but since the activator fail is not user de�ned, instead of the
call rule the fail rule �res:

fail rule
IF stop = run & act = fail
THEN backtrack

It sets currnode to A again. Note that node B is not formally deallocated (i.e.
it remains in the node universe). Again in select mode, the next candidate node
of A, node C, is selected and its decglseq is computed as [h[q,!,true],?i , h[],?i].
Then the call rule allocates one new candidate node E for the only appropriate
clause q. After selection of node E the ASM arrives at the state shown in Fig. 4.

?

[h[p],?i] a

b [h[q,!,true],?i , h[],?i] c d

[h[],ai , h[!,true],?i , h[],?i] e ()

��
��
��
��

OO

��
?

?��
��

fff
fff

fff
fff

fff
fff

fff
33

��
��

OO

��

?

?

(
��
��

__?
?
?

4

)

��
��
��
��

OO

?

[h[p],?i] a

b [h[q,!,true],?i , h[],?i] c d

[h[true],?i , h[],?i] e

��
��
��
��

OO

��
?

?��
��

ggg
ggg

ggg
ggg

ggg
ggg

g33

��
��

OO

A

A

A

(
��
��

__?
?
?

4

)

��
��
��
�� !

"oo

()

Fig. 4. Fig. 5.

With an empty goal the goal success rule �res, after which the activator is a cut.

goal success rule
IF stop = run & decglseq 6= [] & goal = []
THEN decglseq := rest(decglseq)

cut rule
IF stop = run & act = !
THEN father := cutpt

decglseq := cont

The cut succeeds (is removed) and the father function is updated to the cutpoint
decorating the goal where the cut appears (see Fig. 5). This action is the only
purpose for decorating goals with nodes.

Finally, the interpreter executes the following rule for the activator true,

true rule
IF stop = run & act = true
THEN decglseq := cont

382 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

and with another two applications of the goal success rule, decglseq(E) becomes
empty. Since this means that the initial query is completely solved, the ASM
sets the answer substitution subst to sub(currnode) (here, of course, the empty
substitution).

�nal success rule
IF stop = run & decglseq(currnode) = []
THEN stop := halt

subst := sub

Since stop is no longer run, no more rule is applicable and the ASM halts.
In a variant of our example program, where clause p :- q,!,true is changed

to p :- q,!,r, we would also arrive at the situation of Fig. 5. But now a node
F would be allocated for r with an empty list of candidates, since no clauses for
predicate r are given. select mode, �nding no more alternatives, would backtrack
from nodes F and E. Since the father of E is the root node ?, execution would
�nally stop with stop = halt and subst = failure.

2.2 The Second Interpreter: Stacks of Choicepoints

Here we summarize the �rst re�nement of the ASM described above towards the
Warren Abstract Machine (WAM), following [BR95], [Section 1.2]. There are
three main di�erences between the �rst and the second ASM:

First, function father is renamed to b. This change indicates that b now
points backwards in a chain of nodes, which form a stack.

Second, the new ASM (ASM2) provides the registers cllreg, decglseqreg, breg
and subreg corresponding to cll, decglseq, father and sub applied to the currnode.
Thereby it avoids allocation of currnode.

Third, ASM2 attaches the �rst candidate directly via the cll -function, instead
of providing a list of candidate nodes. This is possible if we assume that clauses
whose head starts with the same predicate are stored in successive clause lines
followed by a special marker nil. The (\compiled") representation of our example
Prolog program for ASM2 thus has to look like

1 p :- fail. 3 p. 5 q.

2 p :- q,!,true. 4 nil 6 nil

A new procdef ' function is needed, such that procdef '(act,db) now yields the
�rst clause line whose head may unify with the activator act. For act = p we
get procdef '(p,db) = 1, the �rst line of a clause with head p. The connection to
the old procdef function is stated in the following compiler assumption about
function compile, which is used as an axiom in correctness proofs. Let db' =
compile(db) in

mapcl(procdef(act,db),db)
= mapcl(clls(procdef'(act,db'),db'),db')

(1)

Here clls collects successive line numbers, until a nil is found, and mapcl selects
the clauses at these line numbers. Instead of allocating a candidate list, ASM2
simply assigns procdef '(act,db) to cllreg. Incrementing cllreg then corresponds
to removing a candidate from cands. If the clause at cllreg becomes nil, no more

383Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

candidates are available. Allocation of a new node is now done only in select
mode, when a new candidate clause is visited.

We now give the rules that have been changed.

call rule
IF stop = run & is user de�ned(act) & mode = call
THEN cllreg := procdef'(act,db')

mode := select

select rule
IF stop = run & is user de�ned(act) & mode = select
THEN IF clause(cllreg) = nil
THEN backtrack
ESLE LET clause = rename(clause(cllreg),vi)

LET mgu = unify(act, head(clause))
IF mgu = failure
THEN cllreg := cllreg + 1
ELSE EXTEND node BY temp

WITH
breg := temp
b(temp) := breg
decglseq(temp) := decglseqreg
sub(temp) := subreg
cll(temp) := cllreg + 1

ENDEXTEND
decglseqreg := apply(mgu,[hbody(clause),ctregi jcont])
subreg := subreg � mgu
vi := vi + 1
mode := call

backtrack � IF breg = bottom
THEN stop := halt

subst := failure
ELSE decglseqreg := decglseq(breg)

subreg := sub(breg)
breg := b(breg)
cllreg := cll(breg)
mode := select

In the other rules of the previous ASM, only function father is renamed to b,
and the abbreviations decglseq, father and sub are replaced by decglseqreg, breg
and subreg.

In our example, ASM2 goes through the states shown in Fig. 6 and 7, which
correspond to those from Fig. 3 and 4 for the �rst ASM.

384 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

?

[h[p],?i] a 2

��
��
��
��

OO

//_ _

?

[h[p],?i] a 3

[h[q,!,true],?i , h[],?i] c 6

��
��
��
��

OO

//_ _

��
��

OO

//_ _

decglseqreg = [h[fail],?i , h[],?i] decglseqreg = [h[],ai , h[!,true],?i , h[],?i]
breg = a breg = c

Fig. 6. Fig. 7.

Dashed arrows now point to the cll of a node. The allocation of a node corre-
sponding to B is avoided. The values which were attached to it in the �rst ASM
are now only stored temporarily in registers. Also candidate node D is not allo-
cated. Now, the nodes which may be visited in the future are always reachable
from breg via the b function. They form a stack, but note that there may still be
abandoned nodes in the node universe, which are no longer reachable. This causes
problems for veri�cation (see Sect. 5). The tuple of values decglseq(n), sub(n),
cll(n) and b(n) attached to a stack node n is usually called a choicepoint.

Finally, it should be remarked that our compiler assumption (1) is weaker
than the one given in [BR95], which (to avoid a compilation step) identi�es
databases, assuming that clauses were already grouped according to di�erent
predicates on the �rst level, and requires

procdef(act,db) = clls(procdef'(act,db),db) (2)

But assumption (2) can not be ful�lled for de�nitions of the procdef function,
which are more speci�c than looking only at the leading predicate symbol. In
this case even our liberalized compiler assumption requires duplication of Prolog
code (code will be shared again, when switching instructions are introduced).

3 KIV

The KIV system ([Rei95], [RSS95], [RS95],[RSS97]) is an advanced tool for en-
gineering high assurance systems. It supports the entire design process from for-
mal, algebraic speci�cations to executable veri�ed code. KIV relies on �rst-order
algebraic speci�cations to describe hierarchically structured systems in the style
of ASL, [SW83]: Speci�cations are built up from elementary �rst-order speci�-
cations with the operations enrichment, union, renaming, parameterization and
actualization. Their semantics is the class of all models (loose semantics). Gen-
eration principles (also called reachability constraints) like \nat generated by
0, succ" restrict the semantics to term-generated models. The constraints are
re
ected by induction principles in the calculus for theorem proving used in
KIV.

Speci�cation components can be implemented using modules which contain
imperative programs. The programs contain the usual constructs found in imper-
ative languages: Assignment x := t (also parallel assignments x := t), conditional,
compound, local variables, while-loops and recursive procedures with both value-

385Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

and reference parameters. Although the imperative programs are written in a
PASCAL-like notation, they are abstract programs. The operations used on the
right hand sides of assignments are those given in an algebraic speci�cation, not
the concrete operations available in PASCAL.

To reason about abstract programs, KIV uses Dynamic Logic(DL). Dynamic
Logic is an extension of �rst-order logic by formulas h�i' (read \diamond �
'"), where � is an imperative program, and ' is again a DL-formula. The infor-
mal meaning of this formula: \� terminates and ' holds afterwards" should be
su�cient for the purpose of this paper. A formal de�nition of DL can be found
in [Har84], [Gol82].

DL can be used to express total correctness of a program � with precon-
dition ' and postcondition as ' ! h�i . ' ! : h�i: expresses partial
correctness. Program inclusion (and equivalence) with respect to some program
variables x can be formalized as h�ix = x0 ! h�ix = x0. This will be important
for our case study.

To deduce properties of speci�cations and to verify program modules, KIV
o�ers an advanced interactive deduction component. It combines a high degree of
automation with an elaborate proof engineering environment. The proof strategy
is based on induction, symbolic evaluation of programs and on simpli�cation for
�rst-order theories. With these \tactics", goals of the underlying sequent calculus
are reduced to simpler ones until axioms are reached.

To automate proofs, KIV o�ers a number of heuristics, see [RSS95]. These
can be chosen freely, and changed any time during the proof. Heuristics may be
adapted to speci�c applications without changing the implementation. Usually,
the heuristics manage to �nd 80 { 100 % of the required proof steps automati-
cally.

In KIV the user can freely create, change or delete speci�cations, and theo-
rems. Theorems can be proved in any order (not only bottom-up). An elaborate
correctness management ensures that changes do not lead to inconsistencies (e.g.
it prevents cycles in the hierarchy of proofs).

Since frequently the problems found in the development of correct software
are not to verify proof obligations a�rmatively but rather to interpret failed
proof attempts, KIV o�ers a number of proof engineering facilities to support
the iterative process of (failed) proof attempts, error detection, error correction
and re-proof. Proof trees can be inspected using a graphical interface. Dead
ends can be cut o�, proof decisions may be withdrawn both chronologically and
non-chronologically. Both successful and failed proof attempts are reused auto-
matically to guide the veri�cation after correction ([RS95]). This goes beyond
proof replay (or proof scripts).

4 From Abstract State Machines to Dynamic Logic

In this section we will give a translation of sequential Abstract State Machines,
as they are used in this case study, to Algebraic Speci�cations and Dynamic
Logic. The translation is essentially one on one, because both ASM and DL
feature imperative programs. Therefore no encoding of programs (as functions
or relations over a state) is required. This makes DL a good starting point for
verifying properties of sequential ASMs. The translation is done in three steps:
First, we will give a translation of the abstract data used into an algebraic

386 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

speci�cation. The second step translates the set of rules of an ASM into an
imperative program. In the third step we will identify equivalence of two ASMs
as program equivalence in DL, and give a proof technique corresponding to
the use of \Proof Maps". The three steps are described in the following three
subsections.

4.1 Translation of Speci�cations

To translate the abstract data types of an Abstract State Machine into an alge-
braic speci�cation, we �rst have to separate the static and the dynamic part of
the signature. The dynamic part contains those functions and sorts, for which
the set of rules contains updates. The other, static part typically contains data
types like lists, numbers and suitable operations on them. These can be spec-
i�ed algebraically. Partial functions (present in ASMs but not in the algebraic
speci�cations used in KIV) are usually handled using underspeci�cation. E.g. for
natural numbers, we simply do not specify the predecessor of zero. With respect
to the loose semantics of algebraic speci�cations, we then have that pred(0) is
an arbitrary natural number. This is su�cient, except for two cases: The �rst is,
if we explicitly want to work with the \unde�ned" element, e.g. if the rules of
the ASM contain de�nedness tests. This case does not occur in our ASMs (there
are error elements, e.g. the result failure of uni�cation, but these are de�ned
elements). It would have to be handled by introducing explicit error elements.

The second exception is, when a partial function is de�ned to be the least
�xpoint of recursive equations. For this latter exception, there are indeed a
number of examples in our case study, namely the functions clls ([BR95],p. 17),
F, G (p. 23f) and chain (p. 25 and p. 28), which all collect a list of addresses
by traversing some pointer structure. But in general, recursive equations are
not su�cient to characterize the intended least �xpoint, which is unde�ned on
in�nite (or cyclic) pointer structures and de�ned otherwise (the chain function
de�ned on p. 28 indeed has other �xpoints).

To �x this problem in partial �rst-order logic ([Wir90], on which the recursive
de�nitions in [BR95] are based) an explicit characterization of the domain of the
least �xpoint would be required.

In Dynamic Logic there is an easier way to handle the problem, since we can
explicitly talk about least �xpoints. Rather than specifying a �rst-order function,
we write recursive programs for clls, chain etc., and assert (in the compiler
assumption) that they terminate on all inputs delivered by the compiler.

Data types, which are not completely speci�ed in the ASM, pose no prob-
lem for algebraic speci�cation. E.g. on the �rst level nothing is said about the
structure of terms. For the algebraic speci�cation this means that the sort term
is a parameter, which will be actualized with a concrete de�nition of terms at a
later stage of development.

Having translated the static part, the dynamic part is somewhat more com-
plex. The central idea here is to encode the domains of dynamic sorts and the
semantics of dynamic functions as the values of (ordinary �rst-order) variables.
Updates then are translated to assignments in DL.

Since the domains of dynamic sorts in an ASM usually are �nite sets of
elements (in our case: �nite sets of nodes) a (standard) speci�cation of �nite
sets is used. A variable s stores the current domain, and a sort update, which

387Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

extends the domain with a new element temp corresponds to the two assignments
temp := new(s); s := insert(temp,s) in DL, where function new : set ! node is
speci�ed by the axiom: : new(s) 2 s.

0-ary functions are simply translated to ordinary �rst-order variables. For
other dynamic functions, the case with n > 1 arguments can be reduced to the
case with one argument by adding an appropriate tuple sort. For unary functions
we essentially have to encode the (second-order) datatype of a function into a
�rst-order datatype, so that a function can become the value of a variable. This
can be achieved with the data type shown in Fig. 8, which de�nes functions from
domain dom to codomain codom:

generic speci�cation
parameter sorts dom, codom;
target sorts dynfun

functions
cf : codom ! dynfun;
. ^ . : dynfun � dom ! codom;
. + (. / .) : dynfun � dom � codom ! dynfun;

variables f : dynfun; x, y : dom; z : codom;
axioms

cf(z) ^ x = z,
(f + (x / z)) ^ x = z,
x 6= y ! (f + (x / z)) ^ y = f ^ y

end generic speci�cation

Fig. 8: Algebraic speci�cation of dynamic functions

The data type contains a constant function cf(z) for every codomain-element
z. Application of this function to any domain element x (with an apply-operation,
for convenience written as an in�x-circum
ex) just gives z, as stated by the �rst
axiom. With a suitable \dummy"-element z, constant functions are used as initial
values. E.g. the cands function (now a variable) is initialized with value cf([]),
the function delivering an empty list of candidates for every node.

A function update f(x) := t in the ASM-formalism becomes an assignment
f := f + (x / t) to variable f in DL. It sets the new value of f to the result of
mix�x-operation f + (x / z), which is de�ned by the last two axioms to be the
appropriately modi�ed function.

Finally note that we did not add an extensionality axiom

f = g $ 8 x. f ^ x = g ^ x (3)

to the speci�cation, in contrast to the usual methodology used in KIV to specify
non-free data types. Such axioms would have allowed us to deduce equalities
between functions like f = f + (x / f ^ x). Since such (higher-order) equalities
are not expressible in the ASM-formalism, we expected not to need them in the
translated version either. And indeed, there was no need for equations between
functions in veri�cation. Also no induction principle on dynamic functions like
`dynfun generated by cf, . + (. / .)' was needed.

388 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

The speci�cation can be viewed as an abstract version of a store structure. It
could be implemented e.g. by association lists. In our case, where the domain is
pointers, in fact the �nal implementation in the WAM will be a part of computer
memory.

Putting the translation of the static and dynamic part together we get a
structured speci�cation composed of about 40 subspeci�cations for the �rst re-
�nement. Many of the speci�cations (lists, pairs, etc.) could be retrieved from
the library, together with a lot of simpli�cation rules useful for veri�cation.

A �rst version of the speci�cation was written within some hours and needed
only minor corrections.

4.2 Translation of Programs

Given the translation of the static and dynamic part of the ASM from the �rst
two translation steps, it remains to translate the set of rules to an imperative
program. The result, shown for the �rst interpreter, is procedure ASM1#:

ASM1#(db, query; var subst) BODY1#(var x)
begin begin
var x := t in if ftest of rule1g then fupdates of rule1g else

while stop = run . . .
do BODY1#(x) if ftest of ruleng then fupdates of ruleng

end end

The inputs of ASM1# are the Prolog program db and the query. The ref-
erence parameter subst is used as the result value for the answer substitution.
ASM1# starts by initializing the variables x = [stop, subst, decglseq, father,
. . .] with a vector t of suitable initial values. Then it enters a while loop with
test stop = run and body BODY1#. BODY1# has the variables x as reference
parameters, and uses them as input and output. It consists of a case analysis,
which selects an applicable rule and executes its updates.

Translation of the ASM rules somewhat increases their size, because abbre-
viations have to be expanded using variable declarations. The translated code
of ASM1 and ASM2 is each about 120 lines of PASCAL-like statements.

4.3 From Proof Maps to Coupling Invariants

Correctness and completeness of interpreter re�nement is formalized in DL as
the assertion of the following program equivalence:

hASM1#(db,query;subst1)i subst1 = val
$ hASM2#(compile(db),query;subst2)i subst2 = val

(4)

This formula states that if and only if the �rst interpreterASM1# terminates,
then so does the second ASM2# with the same answer substitution.

Function compile relates the two Prolog programs. The compiler assumption,
which speci�es compile, is given in the axioms of the speci�cation (see formula
(1) in Sect. 2.2), over which the program equivalence must be proved. Variable

389Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

val is used to store the common result value of both interpreters (this variable
is not modi�ed by ASM1# and ASM2#).

The notions of Correctness and Completeness from [BR95] directly corre-
spond to the implication from right to left and from left to right.

Proof maps F are de�ned in [BR95] to map static algebras of a `concrete'
ASM to algebras of an `abstract' ASM. They are used to sketch correctness
proofs for the equivalence of two ASMs. The basic argument is as follows: The
three proof obligations

PO1: The initial states (algebras) of the two ASMs are related via F
PO2: Fig. 9 commutes for every corresponding pair of rules R and R' of
the �rst and second interpreter (with A0 and B0 being the results of rule
application to A and B)
PO3: Two �nal states which are related via F store the same answer substi-
tution

imply (by induction on the number of rule applications) that both ASMs are
equivalent.

A A0

B B0

R //

R' //

F

OO

F

OO x x
0

x0 x0

0

R //

R' //

INV
��

OO

INV
��

OO

Fig. 9. Fig. 10.

This informal argument can be formalized in DL to prove (4) as follows: The
(dynamic parts of the) algebras involved in a computation have been replaced by
the values of the vector of program variables. If we name the program variables,
ASM1# and ASM2# compute on, di�erently, say x = [stop, subst, decglseq,
vi, father,. . .] and x' = [stop', subst', decglseq', vi', b, cll, . . .], then the direct
translation of a proof map is a function, which maps a tuple of values for x' to a
tuple of values for x. Since we found no need for the connection between x and
x' to be a function, we allow it to be an arbitrary relation, which we describe
by a (DL-)formula INV(x,x'), which involves the free variables x and x'. We call
this formula a coupling invariant. To use this formula in the proof, we split (4)
into two goals, one for each direction of the biimplication. Since the following
steps are the same for both directions, we concentrate on the one from right to
left (correctness). This implication can be simpli�ed to the following statement
about the two while loops involved:

x = t ^ x' = t'
^ hwhile stop' = run do BODY2#(x')i subst' = val

! hwhile stop = run do BODY1#(x)i subst = val
(5)

Now the basic idea of our proof will be an induction on the number i of iterations,
the loop executes BODY2#(x'). Technically, induction over the number of while
loop iterations is possible using the Omega-Axiom of Dynamic Logic:

390 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

hwhile " do �i' $ 9 i. hloop (if " then �) times ii (' ^ : ") (6)

In this axiom, i is a natural number (we have an induction principle), and
the loop program loop � times i indicates execution of � i times. The two
axioms for the loop-construct in DL therefore are:

hloop � times 0i' $ '
hloop � times i +1i' $ h�i hloop � times ii'

(7)

The axiom (6) intuitively says that a formula ' holds after execution of a
while-loop, i� it holds after su�ciently many iterations of if " then � and the
test " is false afterwards. Application of (6) on both while-loops we can then
generalize our goal (5) using the coupling invariant, resulting in the following
three goals:

INV(t,t') (8)

INV(x,x') ! stop = stop' ^ subst = subst' (9)

INV(x,x')
^ hloop if stop = run then BODY2#(x') times iix' = x'0

! 9 j. hloop if stop' = run then BODY1#(x) times ji INV(x,x'0)
(10)

The �rst goal states that the coupling invariant holds before execution of the
two while loops, corresponding to PO1. The second goal says that the coupling
invariant implies that both while stop at the same time with the same answer
substitution (PO2). These two goals are usually rather trivial. The complexity
of veri�cation is buried in �nding an invariant INV such that the last goal (10)
is provable. This last goal states that for every number i of rules the second
interpreter executes there is a number j of rule applications of the �rst interpreter
such that Fig. 11 commutes.

x0

0 x0

1
: : : x0

i

x0 x1 : : : : : : xj

R0

1 // R0

2 // R0

i //

R1 //

INV
��

OO

R2 // // Rj //

INV

##

ccH
H
H
H
H
H
H
H
H

Fig. 11

391Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

Since in the veri�cation of the �rst re�nement the correspondence between
the two sets of rules is one to one (for some other re�nements a generalization
of the proof technique is required, see section 6) it su�ces to choose j = i and
to induce on i. The induction step (the base case with i = 0 is trivial) reduces
to

INV(x,x') ^ stop' = run ^ hBODY2#(x')ix' = x'0
! hif stop = run then BODY1#(x)i INV(x,x'0)

(11)

which is the formalization of �g. 9, as shown in �g. 10. Having a closer look at
goal (11), we �nd that having proved it, we not only have shown correctness, but
also solved the problem of completeness. This is true, since proving the direction
from right to left in (4) only exchanges the roles of the interpreters, and doing
the same proof steps as before we will end up with the following goal dual to
(11) in the induction step:

INV(x,x') ^ stop = run ^ hBODY1#(x)ix = x0
! hif stop' = run then BODY2#(x')i INV(x0,x')

(12)

Both goals di�er only in the way they treat termination of the two loop bod-
ies. (11) claims that termination of BODY2# implies termination of BODY1#,
(12) asserts the reverse implication. But since both loop bodies just apply one
rule, they are
at programs. To show their termination is trivial. Therefore, hav-
ing proved (11), using it as a lemma in (12) will �nish the proof immediately.
The proof of (11) splits into 7 cases, one for each corresponding pair of rules.

5 Veri�cation of the First Re�nement Step

In this section we will describe the veri�cation of the �rst re�nement step in
detail. Unfortunately we cannot avoid to confront the reader with a lot of details,
which were uncovered during the veri�cation. Only the consideration of these
details leads to the detection of hidden assumptions, which ultimately guarantee
the correctness of the re�nement. The reader who is not interested in the details
may just have a look at the 9 initial properties, as they were given in [BR95] at
the beginning of the following subsection, and compare them to �nal coupling
invariant shown at the end of subsection 5.2.4. This should give an impression
about the work needed to translate an informal mathematical argument to a
complete, formal proof.

5.1 The Initial Coupling Invariant

As was discussed in the previous section, the critical point for a successful formal
proof is to �nd a coupling invariant INV(x,x'), such that goal (11) is provable.
Some rough indication how such an invariant might look like is already given in
[BR95], p.17f. There an auxiliary function F is suggested, which maps the nodes
in the stack (built by the second ASM) to corresponding nodes in the tree (built
by the �rst ASM) (see Fig. 12.).

392 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

[Sch94] pointed out that F cannot be given statically, but has to be de�ned by
induction on the number of rule applications. That is, in terms of our ASM1#
procedure mentioned above, induction on the number of loop iterations. This
requires a formalism, where a dynamic function can be updated by proof steps.

breg

b father

father

currnode

cands

cands

cands

breg
subreg
cllreg
decglseqreg

global registers:

b

b

father

father

cands

F

F

F

F

⊥⊥

Fig. 12.

In DL, the answer comes for free since we made dynamic functions available
as a datatype (see speci�cation `Dynfun', Sec. 4.1). Let F be of sort dynfun,
which means it is a data structure and therefore can be (�rst order) quanti�ed.
Our coupling invariant then asserts the existence of a suitable function F for
every two corresponding interpreter states. F then gets updated by instantiation.
Based on this dynamic function the properties listed on p.17f of [BR95] translate
to the following conjuncts in our invariant (in ambiguous cases the variables of
the second interpreter are primed):

9 F:
1 decglseq ^ currnode = decglseqreg
2 sub ^ currnode = subreg
3a mapcl(map(cll, cands ^ currnode),db) = mapcl(clls(cllreg,db'),db')
3b every(father,cands ^ currnode, currnode)
4 father ^ currnode = F ^ breg
5 decglseq ^ (F ^ n) = decglseq' ^ n
6 sub ^ (F ^ n) = sub' ^ n
7a mapcl(map(cll, cands ^ (F ^ n)),db) = mapcl(clls(cll' ^ n,db'),db')
7b every(father, cands ^ (F ^ n), (F ^ n))
8 father ^ (F ^ n) = b ^ n
9 F ^ ? = ?

Here every(father,cands ^ n, n) means that n is the father of all its cands.
The equations 1 and 5 actually do not hold. Although the goals of the

decglseq(reg)s are identical, the incorporated cutpoints are not related by iden-
tity but by F. Due to this 1 and 5 were replaced by:

393Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

1 decglseq ^ currnode = Fd(F, decglseqreg)
5 decglseq ^ (F ^ n) = Fd(F, decglseq' ^ n)

where Fd applies F to all cutpoints of its second argument. In [Sch94] this was
added to the coupling invariant together with the equations:

10 stop = stop' ^ mode = mode' ^ vi = vi'

Formulas 1 { 10 formed the �rst version of the coupling invariant INV(x,x')
when we began veri�cation with the KIV system.

Up to here, INV concentrates on the dependencies between the two inter-
preters (the only exceptions are 3b and 7b). The reason is that at the beginning
one might believe that invariant properties of single abstract machines (if at all
needed for the proof) come for free. But they do not, as we will show below.

5.2 Development of the Correct Coupling Invariant

This �rst version of the coupling invariant was not su�cient. The completion of
the coupling invariant took much more time than proving the �nally valid ver-
sion. Without going too much in details, we give a rough overview of this search
rather then describing the logical deduction. We explain how hidden assump-
tions were detected (if the proof needed them explicitly) and how proving these
new formulas leaves new gaps and so on. We take this proof-historical point of
view to emphasize the evolutionary nature of solving the given problem.

5.2.1 Injectivity of F

After only 5 min. (and 6 interactions) of proving we reached the unprovable goal:

F ^ breg = F ^ ? ! breg = ? (13)

This formula holds (compare Fig. 12), but how to deduce it? A short look at the
visualized proof tree shows that this proof situation arose by trying to guarantee
that in the backtracking case ASM2 stops (with failure) if and only if ASM1
stops! The \if" direction is trivial but for the \only if" direction we must prove
(13).

What we need is the injectivity of F, and although that seems obvious (see
Fig. 12.), we have to add it explicitly to INV:

11 F ^ n = F ^ n1 ! n = n1

Thereby, on the one hand, we make it available for all proof situations. On the
other hand it is now necessary to prove injectivity itself inductively!

5.2.2 Characterization of the Stack

Unfortunately, this was too rough. The proof attempt fails with a goal where
injectivity of F + (new(s')/currnode) is asserted. We are not able to guarantee
that the select rule preserves injectivity of F. It can not be proved because it
is not true! Fig. 13. shows a situation where two di�erent nodes of the (ASM2)
stack are mapped to the same node of the (ASM1) tree.

394 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

breg

father

father

currnode

cands

cands

cands

b

b

father

father

cands

F

F

F

F

F

⊥ ⊥

Fig. 13.

The problem arises because there are abandoned nodes that are no longer in
the stack (i.e. reachable following the function b up from breg) but still present
in the universe of nodes. The function F is still de�ned on such nodes, violating
injectivity. But in the restricted context of stack nodes injectivity holds. (These
reachable nodes are really what is meant to be the stack.) What we need is a
logical characterization of the stack (i.e. of reachability). Then we can restrict
injectivity as well as the other properties of F to the stack.

This restriction is also necessary to close another open goal in the same proof:

(cands + (currnode / x)) ^ (F ^ n) = cands ^ (F ^ n) (14)

This means that updating the dynamic function cands at currnode does not
a�ect nodes in the range of F. Here we need:

12 F ^ n 6= currnode

But this is not true in general, as can be seen in Fig. 14, a snapshot of a situation
after backtracking. What is true is that currnode is not in the range of the stack
under F.

A correct approach to characterize the list of stack nodes is to de�ne a pro-
gram B-LIST# (its termination characterizes structures without cycles):

B-LIST#(n, b; var stack)
begin
if n = ? then stack := nil else
begin B-LIST#(b ^ n, b; stack); stack := cons(n, stack) end

end

395Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

breg

b father

father

currnode

cands

cands

cands

b

b

father

father

cands

F

F

F

F

F

⊥ ⊥

father

father

father

father

currnode
decglseq

(|) , (|) , (|)

⊥

Fig. 14. Fig. 15.

Now let (n) be the conjunction of all subformulas, which depend on the selected
node n (5 to 8 and 11) and ' the conjunction of the remaining subformulas (1
to 4, 9, 10 and 12). Then the coupling invariant INV gets the form:

9 F: ' ^ hB-LIST#(breg, b; stack)i (8 n. n 2 stack ! (n)) (15)

This means that (for a suitable F) ' holds and that B-LIST# terminates with
output stack, such that holds for all elements of the stack.

5.2.3 Cutpoints

Proving equivalence between the two cut rules with this version of INV shows
another di�culty: must be guaranteed for the new stack shortened by execu-
tion of the cut. This stack is given by B-LIST# applied to the new breg, which
is the �rst cutpoint of the current decorated goal sequence. Now, of course, the
new stack would inherit from the old one, if we knew that it is a part of the old
one! But this is not deducible with the current INV. Here we need to assert that
the cutpoints in the current decorated goal sequence are elements of the current
stack. They may not point elsewhere. Therefore we de�ne a new predicate called
cutptsin and assert:

decglseqreg cutptsin stack (16)

In the �rst version, the de�nition of cutptsin simply checked whether all
cutpoints of the �rst argument are element of the second. Because the decorated
goal sequence of every node in the stack can potentially become the decglseqreg
(by backtracking), we also have to add

396 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

(decglseq' ^ n) cutptsin substack (17)

where substack is the output of hB-LIST#(b ^ n, b; substack)i. With these
additions the coupling invariant (15) changes to:

9 F. '
^ hB-LIST#(breg, b; stack)i

(decglseqreg cutptsin stack
^ (8 n. n 2 stack

! (n)
^ hB-LIST#(b ^ n, b; substack)i

(decglseq' ^ n) cutptsin substack))

(18)

Again, this is not strong enough. The proof fails because cutptsin so far does
not care about any ordering. Executing the cut rule (which means that breg
is changed to point to the �rst cutpoint of decglseqreg) shortens the stack like
some pop operations would do (compare Fig. 5. in section 2.1). After that we
have to prove that the (unchanged) cutpoints of decglseqreg are elements of that
shortened stack. This holds only because the cutpoints point into the stack in
the right ordering (see Fig. 15), so that decglseqreg cutptsin stack remains true
with the new breg.

For this we have to strengthen the de�nition of cutptsin, leaving INV syntac-
tically unchanged. In this special case no proof gets invalid (and this is checked
by the correctness management of the KIV system!) because so far we used only
lemmas about cutptsin that remain true in spite of the changed speci�cation.

5.2.4 More Properties

The coupling invariant is still not complete. Several further proof attempts re-
vealed the necessity to make some other tree properties explicit, which are only
guaranteed by the rules, not by the data structure. Some of these properties are
(informally): no candidate is in the range of F, no candidate list has duplicates,
the intersection of di�erent candidate lists is empty, and so on. Just to give a
feeling for the complexity of the searched formula, the �nal coupling invariant is
shown at the end of this section. Please recognize that all properties listed were
actually needed to complete the proof (so it is not a arbitrary accumulation of
properties!).

Summarizing, our general experience was that every time one �nds INV to
be insu�cient and therefore adds new properties, this again causes unprovable
goals. To discharge these new goals INV has to be improved again, leading to an
evolutionary process of improving INV by veri�cation attempts. We claim that
for problems like the given one it is impossible to state all properties in a �rst
proof attempt or to �nd them all in a pencil-and-paper proof. Therefore we use
a proof system that o�ers good support for the evolutionary veri�cation process
sketched above.

397Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

9 F. stop = stop' ^ mode = mode' ^ vi = vi' ^ subreg = sub ^ currnode
^ F ^ ? = ? ^ F ^ breg = father ^ currnode ^ ? 6= currnode
^ Fd(F, decglseqreg) = decglseq ^ currnode
^ ? 2 s' ^ ? 2 s ^ currnode 2 s
^ (mode = select

! mapcl(clls(cllreg, db'), db')
= mapcl(map(cll, cands ^ currnode), db)

^ every(father, cands ^ currnode, currnode)
^ : currnode 2 cands ^ currnode ^ : ? 2 cands ^ currnode
^ (cands ^ currnode) � s ^ nodups(cands ^ currnode))

^ hB-LIST#(breg, b; stack)i
(decglseqreg cutptsin stack ^ candsdisjoint(F, cands, stack)
^ (8 n1, n2. n1 2 stack ^ n2 2 stack ^ F ^ n1 = F ^ n2 ! n1 = n2)
^ nocands(F, cands, stack) ^ stack � s'
^ 8 n. n 2 stack

! sub' ^ n = sub ^ (F ^ n) ^ F ^ (b ^ n) = father ^ (F ^ n)
^ Fd(F, decglseq' ^ n) = decglseq ^ (F ^ n)
^ mapcl(clls(cll' ^ n,db'),db')
= mapcl(map(cll, cands ^ (F ^ n)), db)

^ every(father, cands ^ (F ^ n), F ^ n)
^ F ^ n 6= currnode ^ (F ^ n) 2 s ^ nodups(cands ^ (F ^ n))
^ (cands ^ (F ^ n)) � s ^ : currnode 2 cands ^ (F ^ n)
^ (mode = select

! : (F ^ n) 2 cands ^ currnode
^ disjoint(cands ^ (F ^ n), cands ^ currnode))

^ hB-LIST#(b ^ n, b; substack)i(decglseq' ^ n) cutptsin substack)

5.3 Statistics

All in all it took 12 proof attempts to reach a correct coupling invariant for the
�rst re�nement step. The veri�cation work was done by the two authors in one
month. In contrast, veri�cation of the �nal correct version only took two days.
1416 proof steps were necessary, 378 of them were given interactively. The rest
were found automatically by the heuristics of the KIV system. In addition, we
needed about 300 �rst order lemmas. About half of these were already proved
in the library, the other half was shown easily (in most cases, 0{2 interactions).
One of the more complex is e.g.

decglseqreg cutptsin stack ^ ?62 stack
^ n 6= ? ^ n 62 stack ^ F ^ ? = ?

! Fd(F + n / n', decglseqreg) = Fd(F, decglseqreg)
(19)

After the work on this re�nement, the KIV system was improved from the
experiences we learned (see [RSS97]). Most notable improvements were to the
heuristics for unfolding procedures, for loops, and for quanti�er instantiation.
Also an additional heuristic for the elimination of selectors similar to the one
in NQTHM ([BM79]) was added. E�ciency of rewriting was improved by using
compiled discrimination nets (see [Kap87],[Gra96]).

With the improved system Harald Vogt, a student, who had previously
learned about KIV only in a one term practical course, and did not have any
prior knowledge of the WAM, redid the case study in 80 hours of work. This re-
sult gives an impression of the time it takes to learn to productively use the KIV
system. The improvements of KIV saved about 1/3 of the necessary interactions
(now 246).

398 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

6 Veri�cation of Other Re�nement Steps

This section summarizes our work on the veri�cation of the re�nement steps
from ASM2 to ASM7 as described in [BR95], which we have proven correct so
far. We will use the abbreviation i/j to mean the re�nement from ASMi to
ASMj.

Subsection 6.1 gives the optimizations made in the re�nements from ASM2
to ASM4. The set of rules for the ASM4 is given, and the main veri�cation
problems are discussed.

Subsection 6.2 is concerned with the veri�cation of the �rst proper compila-
tion step from ASM4 to ASM5. Chronologically, veri�cation of this re�nement
step was done before 2/3 and 3/4, since we wanted to �nd out if the di�erent
type of re�nement would pose new problems. Veri�cation of the �rst compilation
step uncovered an error, which is present in the rules of all ASMs from ASM3
on.

Subsection 6.3 sketches some of the problems in verifying the full compila-
tion of backtracking structure including switching instructions. [BR95] gives this
re�nement in two steps, introducing ASM6 and ASM7. Unfortunately, from the
veri�cation of 5/6 we learned that splitting veri�cation into two parts compli-
cates the work instead of simplifying it. Therefore the equivalence proof between
ASM5 and ASM7 had to be given directly. This proof is the most complex proof
we have done so far in this case study. The coupling invariant for it covers 3
pages and is 5 times the size of the coupling invariant for the �rst re�nement
as it was shown at the end of section 5.2.4. The complexity of the work makes
it impossible for us to keep this section self-contained. Therefore we only sketch
the main compilation idea and line out the main correctness arguments. For
the rule set of ASM7, and to understand some of the technical remarks on the
veri�cations problems we must refer the reader to [BR95].

The two main results of verifying 5/7 were the addition of backtracking to
the switching instructions, and a precise de�nition of the s-chain-function which
is used in the compiler assumption, given at the end of the section.

The �nal subsection 6.4 gives some statistics.

6.1 The Third and Fourth Interpreter: Optimizations

Although the second interpreter allocates fewer nodes than the �rst, there are
still two possibilities for improvements, which are exploited in ASM3 and ASM4.

To see the �rst one, let us assume, that for some activator act ASM2 has to
try several candidate clauses. When trying the �rst one, select rule will allocate
a new node temp, and set the values decglseq(temp), sub(temp) and cll(temp) of
the new choicepoint.

If the �rst alternative does not lead to a solution, the interpreter will �nally
execute a backtrack instruction, which removes the node temp from the stack.
Thereby the whole choicepoint will become inaccessible. The subsequent select
rule for the second alternative will then push a new choicepoint on the stack,
which is exactly the same as the one for the �rst alternative, except that cll(temp)
has been incremented.

The optimization done in ASM3 avoids deallocation and reallocation of choi-
cepoints. Instead it reuses the existing choicepoint. The optimization is achieved

399Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

by replacing the removal of a choicepoint in the else-branch of backtracking with
the assignment mode := retry, which activates a new rule, retry rule. This rule
combines the e�ects of the else-branch of backtrack and select. It is executed
instead of select rule for every alternative except the �rst. Its action is to remove
a choicepoint (i.e. to set breg to b(breg)) only on execution of the last alternative.
Otherwise it reuses the old choicepoint as required by incrementing cll(breg).

The old select rule, which allocates a new choicepoint is now only called for
the �rst alternative clause. It is therefore renamed to try rule. To avoid dupli-
cation of interpreter code, the common parts of try and retry rule (computing a
most general uni�er and applying it to subreg) are moved to a new enter rule.

The second place for improvement is addressed in interpreter 4. It is the
allocation of choicepoints with empty lists of alternatives. Such a useless choi-
cepoint is created e.g. for queries with just one alternative in the try rule of
the third interpreter (resp. in select rule of the second, an example node is C
in �g. 7). Such a choicepoint is useless, since it will immediately be discarded
by backtracking when visited. Its creation can be avoided altogether by suitable
look ahead guards in the try- and retry rule of ASM4.

With both optimizations, the set of rules for ASM4 looks as follows:

�nal success rule
IF stop = run & decglseqreg = []
THEN stop := halt

subst := subreg

goal success rule
IF stop = run & goal = []
THEN decglseqreg := rest(decglseqreg)

call rule
IF stop = run & is user de�ned(act) & mode = call
THEN IF clause(procdef'(act,db')) = nil
THEN backtrack
ELSE cllreg := procdef'(act,db')

ctreg := breg
IF clause(procdef'(act,db')+1, db') 6= nil
THEN mode := try
ELSE mode := enter

try rule
IF stop = run & mode = try
THEN mode := enter

EXTEND STATE BY temp
WITH

breg := temp
b(temp) := breg
decglseq(temp) := decglseqreg
sub(temp) := subreg
cll(temp) := cllreg + 1

ENDEXTEND

400 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

enter rule
IF stop = 0 & mode = Enter
THEN LET clause = rename(clause(cllreg),vi)

LET mgu = unify(act, hd(clause))
IF mgu = nil
THEN backtrack
ELSE decglseqreg := apply(mgu,[<bdy(clause),ctreg> jcont])

subreg := subreg � unify
vi := vi + 1
mode := Call

where

backtrack � IF breg = ?
THEN stop := halt

subst := failure
ELSE mode := retry

retry rule
IF stop = run & mode = retry
THEN decglseqreg := decglseq(breg)

subreg := sub(breg)
cllreg := cll(breg)
ctreg := b(breg)
mode := Enter
IF clause(cll(breg) + 1) 6= nil
THEN cll(breg) := cll(breg) + 1
ELSE breg := b(breg)

true rule
IF stop = run & act = true
THEN decglseqreg := cont

fail rule
IF stop = run & act = fail
THEN backtrack

cut rule
IF stop = run & act = !
THEN father := cutpt

decglseqreg := cont

An additional register ctreg is now set in call and retry rule, to have the right
cutpt available in the enter rule. Also some care has to be taken in call and try
rule to make ASM4 work correctly in case only one or no alternative has to be
tried for some query literal.

Veri�cation of the re�nements from ASM2 to ASM4 is easier (done in 3
weeks) than the veri�cation of 1/2 and 4/5 done before, since coupling invari-
ants su�cient for a correctness proof are much easier to �nd. Although some
additional properties to the ones given in [BR95] are still necessary, (e.g. the

401Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

nodes mentioned in them have to be restricted to stack nodes), they provide a
good starting point.

The main problem in the equivalence proof of 2/3 is how to generalize the
proof technique as described in sect. 4.3 to cases, where m rule applications of
ASM2 correspond to n rule applications of ASM3 (here there are cases with m:n
= 2:3, 1:2). A general solution, which guarantees that correctness and complete-
ness can be shown in one proof, will be described elsewhere.

In the veri�cation of the re�nement from 3/4 we (like [BR95] too) use a
coupling invariant, which relates computation states that have the same useful
choicepoints with nonempty clause list.

Unfortunately, with this coupling invariant proof obligation PO3 from sec-
tion 4.3 (goal 9), which states that both interpreters must terminate at the same
time, is not provable. ASM4 may already have stopped with result failure, while
ASM3 still has to backtrack from useless choicepoints. This situation of nonsi-
multaneous termination has to be considered carefully in the coupling invariant.
An additional argument is needed to guarantee that for two states of ASM3 and
ASM4 related by the coupling invariant, removing useless choicepoints by exe-
cuting rules of ASM3 will keep the invariant and eventually lead to a state where
stop = stop' holds again. A generalized version of PO3 then becomes provable
with this argument.

6.2 The �fth Interpreter: Compilation of Backtracking Structure

The �rst three re�nement steps can be viewed as an optimization of the �rst
ASM, which do not change the representation of the Prolog program. In contrast,
the re�nement from ASM4 to ASM5 compiles the predicate structure of Prolog.
For the �rst time instructions are introduced, which will also be present in the
�nal WAM.

The general idea of the re�nement step is to move control over the rule to
be executed from the mode-Variable to the actual code. To do this, cllreg no
longer points to the line of a clause, but to an address, where instructions are
stored. cllreg becomes the program counter of a CPU, and is therefore renamed
to pcreg. Similarly the clause line cll(n) stored in choicepoints becomes a code
pointer pc(n). Checks for the value of mode are replaced by checks on the type
of the instruction stored at pcreg. Possible instructions may at this stage still be
clauses (they are replaced by �ner-grained instructions later on), but additionally
control instructions are introduced.

As an example, the following clauses for a predicate p in a Prolog program

p(X) :- body1.

p(f(X)) :- body2.

p(g(X)) :- body3.

p(g(X)) :- body4.

(20)

are translated to the code fragment (labels L1 { L4 are symbolic addresses):

402 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: retry_me_else(L4)

p(g(X)) :- body3.

L4: trust_me

p(g(X)) :- body4.

(21)

On a query ?- p(X), call rule of ASM5 (now called when pcreg is at a special
start address) will set pcreg to address L1.

call rule
IF stop = 0 & is user de�ned(act) & pcreg = start
THEN ctreg := breg

IF clause(procdef5(act,db5)) = nil
THEN backtrack
ELSE pcreg := procdef5(act,db5)

with

backtrack � IF breg = ?
THEN stop := halt;

subst := failure
ELSE pcreg := pc(breg)

Execution of the try me else(L2) instruction at address L1 will have the
same e�ect, as try rule of ASM4 had.

try me rule
IF stop = run & code(pcreg) = try me else(N)
THEN EXTEND STATE BY temp

WITH
breg := temp
b(temp) := breg
decglseq(temp) := decglseqreg
sub(temp) := subreg
pc(temp) := N

ENDEXTEND
pcreg := pcreg + 1

The address for alternative clauses stored in the choicepoint is L2. Similarly,
execution of a clause at L2 + 1 or L4 + 1 will execute a rule with the same
e�ect as enter rule of ASM4.

403Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

enter rule
IF stop = run & is user de�ned(act) & is clause(code(pcreg))
THEN LET clause = rename(clause(pcreg),vi)

LET mgu = unify(act, hd(clause))
IF mgu = nil
THEN backtrack
ELSE decglseqreg := apply(mgu,[<bdy(clause),ctreg> jcont])

subreg := subreg � unify
vi := vi + 1
pcreg := start

When pcreg = L3 or pcreg = L5 rules will be executed that correspond to
the then- and the else-branch of retry rule of ASM4:

retry me rule
IF stop = run & code(pcreg) = retry me else(N)
THEN decglseqreg := decglseq(breg)

subreg := sub(breg)
ctreg := b(breg)
pc(breg) := N
pcreg := pcreg +1

trust me rule
IF stop = run & code(pcreg) = trust me
THEN decglseqreg := decglseq(breg)

subreg := sub(breg)
breg := b(breg)
pcreg := pcreg +1

In general, the list of clauses for one predicate given in the original program
is compiled to a code fragment stored in the memory of ASM5, which starts
with a try me else instruction and consist of the list of clauses separated by
retry me else instructions, except the last, which is separated by a trust me

instruction. Such a code fragment is called a linear chain. The requirement, that
all code fragments must be linear chains is re
ected in the compiler assumption
for the re�nement from interpreter 4 to 5. Formally we have:

mapcl(clls(procdef'(act,db'),db'),db')
= l-chain(procdef5(act,db5),db5)

(22)

where procdef ' and db' are the procdef -function and the Prolog-Program as
used in the ASMs 2, 3 and 4. procdef5 is the new procdef -function for ASM5 and
db5 is the compiled Prolog program. The partial function l-chain terminates, if
the code fragment stored at procdef5(act,db5) is a linear chain, and delivers the
clauses contained in it.

Proving the re�nement correct has about the same complexity as the veri�ca-
tion of the �rst re�nement. It was done by the second author in about a month.
The most interesting point in the veri�cation was, how the compiler assumption
must be transferred to properties in the invariant (see [Ahr95]).

404 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

Veri�cation uncovered two problems in [BR95]. The �rst problem was found
during formalization of the l-chain function which is used in the compiler as-
sumption. The formal de�nition of the chain function (p. 25, which also al-
lows nested chains, see the remark in 6.3) obviously does not guarantee that
try me else, retry me else, trust me instructions in the compiled Prolog pro-
gram are only used in that order, as is stated correctly in the text.

A more important problem was found in the rule system itself and was re-
vealed during formal veri�cation. We found that all ASMs starting from ASM3
introduced in [Section 1.3] contained an unintended indeterminism between two
rules.

To see the problem, consider again the fail rule from ASM4, as it was shown in
Sect. 6.1. The obvious intention of the rule is that retry rule should be executed
afterwards.

Now it seems to be obvious that the only rule that is applicable at all after
execution of the fail rule is indeed retry rule. But our correctness proofs revealed
that fail rule does not invalidate its own guard, so it may be executed again,
leading to an in�nite loop. The rule system is therefore indeterministic (or fol-
lowing the terminology of [Gur95], inconsistent), and does no longer correctly
implement a Prolog interpreter.

Although the error is easy to correct (the conjunctmode = call must be added
to the guard of fail rule), we think this is a typical error that is very di�cult
to �nd even by intensive inspection (and, of course, we had to inspect the code
thoroughly before we could make an attempt to de�ne a coupling invariant). A
reader will always unconsciously resolve the indeterminism in the intended way.
Nevertheless, an implementation is blind for intentions, and will possibly resolve
the con
ict in the wrong way (and ours did!).

6.3 The Sixth and Seventh Interpreter: Switching

Until ASM5, the problem how to select clauses whose head `may unify' with
an activator has been delayed by using an abstract (underspeci�ed) procdef -
function. The problem is now addressed in the two re�nement steps from inter-
preter 5 to 7 which restrict the possible implementations of the procdef -function.

Two extremes have to be considered:

{ A simple implementation, in which procdef(act,db) depends on the leading
predicate symbol pred(act) only. This solution is ine�cient, since it leads to
a lot of (expensive) failed uni�cation attempts (consider e.g. a collection of
facts p(c1), ..., p(cn) in a database).

{ A complex solution, which selects only the clauses uni�able with act. Such
a solution would require to encode the whole uni�cation process already in
the clause selection.

The solution adopted in the WAM is a compromise between these two ex-
tremes. It uses the simple procdef -function as described above and additionally
switching instructions in the compiled code, which jump (,,switch") to relevant
\blocks" of clauses according to leading function symbols of the subterms of
act. E.g. for a predicate p with two arguments, successive clauses for p in which
the second subterm of the head starts with the same function symbol f may be
grouped together, and a switching instruction may try these clauses if and only
if the activators second subterm has leading function symbol f too.

405Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

Before switching instructions can be introduced in ASM7, blocks of simi-
lar clauses have to be grouped together in ASM6 (otherwise backtracking and
switching would not be compatible). This is done by allowing nested chains in-
stead of linear chains in interpreter 6: At every position, where a linear chain
contains a clause, a nested chain may again contain a (nested) chain. The clauses
contained in a subchain then form a \block of similar clauses". Taking up again
the example program of the previous section as given in (20) and (21), the last
two clauses could be grouped together, resulting in a subchain starting at L4:

L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(23)

In Interpreter 7, arbitrary switching instructions can be put in front of chains
or subchains.They come in three types: switch on term(i,Lv,Lc,Ll,Ls) jumps
to address Lv, Lc, Ll or Ls depending on whether arg(act,i) (the ith argument
of act) is a variable, a constant, a list or a structure. switch on struct(i,N,T)

assumes a list of N triples (f,j,L) stored at address T in memory (or some other
datastructure from which this information can be retrieved). It jumps to L, if
arg(act,i) has leading function symbol f and arity j. Similarly a list of N pairs
(c,L) at address T is assumed for switch on const(i,N,T). The instruction
jumps to L if arg(act,i) is the constant c. In our example we could e.g. add the
following switching instructions at L4:

L1: try_me_else(L2)

p(X) :- body1.

L2: retry_me_else(L3)

p(f(X)) :- body2.

L3: trust_me

L4: switch_on_term(L7,failcode,failcode,L6)

L6: switch_on_struct(1,1,T)

L7: try_me_else(L5)

p(g(X)) :- body3.

L5: trust_me

p(g(X)) :- body4.

(24)

Address T would contain a list with the single element (g,1,L7). failcode is a
special code-value, which should point to the backtracking routine. This call had
to be added to the interpreter code given in Appendix 2 of [BR95]. We note that
the call to the backtracking routine is present in the rules of the WAM as given
in [AK91] for switch on struct and switch on const, but only implicitly assumed
for the switch on term instruction.

406 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

Let us remark that this code layout is not optimal (for a systematic treatment
of the variants \one-level" and \two-level" switching see [AK91]). It is given only
for demonstration purposes.

The compiler assumptions

l-chain(procdef5(act,db5),db5)
= n-chain(procdef6(act,db6),db6)

(25)

and

n-chain(procdef6(act,db6),db6)
= s-chain(act,procdef7(pred(act),db7),db7)

(26)

for the two re�nement steps are similar to the one given in the previous section
for 4/5. The partial function n-chain (s-chain) characterizes nested chains (with
switching). Note that the compiler assumptions do not prescribe some concrete
switching scheme (variants of the WAM use di�erent ones), but only restrict the
possible code layouts to reasonable ones.

At this point we like to make some remarks on small deviations from [BR95]:

{ With the introduction of subchains executing one query-literal will no longer
create (at most) one choicepoint. ctreg is no longer su�cient to have the right
cutpt available in enter rule. Two solutions for this restore cutpoint problem
are indicated in [BR95]: Either retry and trust instructions have to be marked
with the depth of the corresponding subchain (indicating the depth in the
stack where the correct cutpt is to be found) or ctreg has to be saved and
restored as part of choicepoints. We have adopted the latter solution, which
according to [AK91] is the standard one.

{ [BR95] does not distinguish between ASM5 and ASM6, since they have
the same set of rules (except that ASM6 requires a solution to the re-
store cutpoint problem) and di�er only in the restriction on the layout of
code (l-chain vs. n-chain). We have separated the two levels, since we wanted
to study the problems, which arise due to the change of datastructures in the
compilation from ASM4 to ASM5 in isolation, without interference of prob-
lems created by optimization steps. In retrospective this was a good decision,
since ASM6 does not occur in the �nal veri�cation work (see below).

{ pcreg and pc are called p, partial functions l-chain, n-chain and s-chain are
uniformly called chain in [BR95].

An informal argument for the equivalence of ASM5, ASM6 and ASM7 is that
they all \execute the same candidate clauses". More precisely, they invoke the
enter rule with the same activators act, and the same candidate clauses stored at
pcreg. Unfortunately, this informal argument is not su�cient for a formal proof.
The reason is that the clause considered in the next activation of enter rule may
currently be stored in a choicepoint anywhere in the stack, due to intervening
applications of the cut rule. Therefore we have to set up a relation between the
choicepoints of the two stacks involved. The complexity of veri�cation depends
mainly on the complexity of this relation.

For the equivalence proof of 5/6 we have to map one stack node from ASM5
to a list of \similar" stack nodes from ASM6. This can be done by a dynamic

407Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

function H (existentially quanti�ed like function F in 1/2) in the coupling in-
variant. Appending the lists H(n) for every n from the stack of ASM5 gives the
stack of ASM6.

The di�culty in stating the invariant correctly is to formalize \similarity"
between node n and nodes n' 2 H(n). The most delicate point in the de�nition
must relate the clauses contained in the (end piece of a) linear chain reachable
from the code pointer pc(n) to those reachable in the nested chains from every
pc(n') for n' 2 H(n). A precise description is very lengthy and complicated.
Also the choicepoint stored in the register set regs := decglseqreg,subreg,cllreg of
ASM5 may correspond to the register set and additionally some varying list nl
of choicepoints of ASM6.

Altogether the invariant derived for 5/6 is about two times the size of the
invariant shown at the end of section 5.2 for the �rst re�nement step. The correct
invariant was found in 2 weeks with 8 iterations.

ASM5 ASM6 ASM7

regs

regs

�
...
�

9=
; nl

regs

�
...
�
�
...
�

9=
;nl

9>>>>>=
>>>>>;

nl0

b

breg �

�
...
�

9=
;H(breg)

�
...
�
�
...
�

9=
;H(breg)

9>>>>>=
>>>>>;

H0(breg)

...
...

...

n �

�
...
�

9=
;H(n)

�
...
�
�
...
�

9=
;H(n)

9>>>>>=
>>>>>;

H0(n)

...
...

...

? ?

�
...
�

9=
;H0(?)

?

Fig. 16.

408 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

The equivalence proof of ASM6 and ASM7 would require to de�ne a relation
that maps a varying number of nodes of the stack of ASM6 to a varying number
of nodes of the stack of ASM7. Also it would involve the two complex de�nitions
of n-chain and s-chain. Therefore we decided that it should be simpler to verify
the re�nement from ASM5 to ASM7 directly, where like in the equivalence proof
of 5/6 one choicepoint of interpreter 5 has to be related to a list of choicepoints
of interpreter 7.

Still, the relation between the two stacks of ASM5 and ASM7 is much more
complex than that between ASM5 and ASM6. The main reason is that in ASM7
there may be code fragments, which when executed with some speci�c query,
call no clause at all, but fail in a switching statement. An example is the code
fragment starting at L3 in (24), when the activator is p(f(X)). Such code frag-
ments give rise to what we call empty choicepoints with the same property (cp ^

n = L3, decglseq ^ n starts with p(f(X))). An empty choicepoint of ASM7 has
no corresponding choicepoint in ASM5.

Fig. 16 compares the three stacks of ASM5, ASM6 and ASM7. Empty choi-
cepoints are indicated with a `�'. Fig. 16 also shows that our coupling invariant
for 5/7 uses an additional dynamic function H0 and an additional list nl0 to
overcome the described problem.

Some further problems not present in the re�nement from ASM5 to ASM6
are:

{ Empty choicepoints on the bottom of the stack of ASM7 cause the problem
of nonsimultaneous termination, as it was already found in 3/4.

{ To formulate a coupling invariant, which holds any time during the compu-
tation requires a horrible number of cases and must be avoided with similar
techniques than those required in 2/3.

{ Termination arguments no longer work by arguing on the �nite length of
clause lists, but by induction on the recursion depth of the nested chain.

The above mentioned problems caused the �rst author to think about an
initial coupling invariant for two weeks before he made a �rst proof attempt
(typically, typing in a �rst guess of a coupling invariant was otherwise done
in some hours). To derive the �nal coupling invariant 17 proof attempts were
necessary in another 6 weeks of work.

In most of the proof attempts only the coupling invariant was modi�ed.
Several modi�cations had to be done to the s-chain-function which characterizes
nested chains with switching.

Our �nal de�nition of the partial s-chain-function given in the notation of
p. 28 in [BR95] is as follows (abort means nontermination, the arguments db7
and act which are actually present in our recursive program have been dropped
for better readability):

s-chain(Ptr) =
if code(Ptr) = failcode then []
else s-ch-rec(Ptr)

409Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

s-ch-rec(Ptr) =
if is clause(code(Ptr)) then [clause(code(Ptr))] else
if code(Ptr) = try me(N) then append(s-ch-rec(Ptr+),s-ch-retry me(N)) else
if code(Ptr) = try(N) then append(s-ch-rec(N), s-ch-retry(Ptr+)) else
if code(Ptr) = switch on term(i,Lv,Lc,Ll,Ls)
then if : is struct(act) _ arity(act) < i then abort else

if is var(arg(act,i)) then s-chain(Lv) else
if is const(arg(act,i)) then s-chain(Lc) else
if is list(arg(act,i)) then s-chain(Ll) else
if is struct(arg(act,i)) then s-chain(Ls) else abort

else
if code(Ptr) = switch on struct(i,N,T)
then if : is struct(act) _ arity(act) < i then abort else

if is struct(arg(act,i))
then s-chain(hashs(T,N,funct(xi),arity(xi))) else abort

else
if code(Ptr) = switch on const(i,N,T)
then if : is struct(act) _ arity(act) < i then abort else

if is const(arg(act,i)) then s-chain(hashc(T,N,xi))
else abort

else abort

s-ch-retry me(Ptr) =
if code(Ptr) = retry me(N)
then append(s-ch-rec(Ptr+),s-ch-retry me(N)) else
if code(Ptr) = trust me then s-ch-rec(Ptr+) else abort

s-ch-retry(Ptr) =
if code(Ptr) = retry(N) then append(s-ch-rec(N),s-ch-retry(N)) else
if code(Ptr) = trust(N) then s-ch-rec(N) else abort

Two changes were made to the actual interpreter compared to the one shown
in [Appendix 2] of [BR95]. The �rst one was to add backtracking to the switching
instructions as already mentioned. This was done before veri�cation. The second
was, that we replaced the test, whether code(procdef(pred(act),db)) = nil in call
rule of ASM7 by procdef(pred(act),db) = failcode. Thereby the nil -instruction
could be removed, which simpli�es the s-chain-function.

The most complex proof ensures that backtracking of ASM7 preserves the
coupling invariant. We have split this proof into three cases, one for the else-
branch of backtracking and two for the then-branch. Still the more complex
proof of the two then-cases (in which the node removed is the only element of
the list nl) required 193 interactions and created a proof tree with 2504 nodes.

6.4 Statistics

The following table gives the number of proof steps, the number of interactively
given proof steps and the number of theorems for the �nal version of the proof

410 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

of each re�nement. Also the time it took to specify and verify each re�nement
and the number of iterations needed to �nd the �nal invariant are given:

1/2 2/3 3/4 4/5 5/6 5/7

Proof Steps 1475 4425 3988 2936 6190 20085
Interactions 246 450 580 237 666 1970
Theorems 16 32 31 32 53 72
Iterations 12 8 5 9 8 17
Verif. time 2 months 2 weeks 1 week 1 month 2 weeks 2 months

Since usually we do not keep old proof attempts, we cannot determine the
total number of proof steps exactly. A rough estimate should be a quarter of the
number of iterations that were needed multiplied by the number of �nal proof
steps.

The size of the interpreters starts with 120 lines of (PASCAL-)code and
reaches 240 lines for ASM7. The algebraic speci�cations of all datatypes used
is composed of about 90 subspeci�cations with altogether 454 axioms. 580 �rst-
order lemmas are used, 249 of them were from the library. The remaining 331
were proved with 441 interactions and 1462 proof steps.

7 Related Work

Work on compiler veri�cation in general (or even more general: data re�nement
and other re�nement relations) is so numerous that we will not even attempt to
give an overview.

From the work on formal system-supported veri�cation of compilers we ex-
emplarily want to mention the work with NQTHM on the formal veri�cation of
a compiler for an imperative language ([Moo88], [You88]). This work is based
on the notion of \interpreter equivalence" which is quite similar to our notion
of equivalence of ASMs. It also contains a lot of references to related work.

Of speci�c work on the formal veri�cation of a Prolog compiler we are aware
only of the parallel work of C. Pusch in Munich. She also veri�ed some re�nement
steps veri�ed with the Isabelle system ([Pus96]).

The formalism used in Isabelle are inductively de�ned relations on the tuple
of variables, which correspond to the semantics of our imperative programs as
relations over their values. Pattern matching notation and polymorphism as used
in functional languages allow to write the rules of an ASM in a more concise
notation than our notation as PASCAL programs.

In contrast to our approach, which starts from a Prolog semantics based on
search trees and tries to model the ASM approach as faithfully as possible, veri-
�cation in Isabelle started from an operational Prolog semantics which is already
based on stacks. With the knowledge of our invariant for the re�nement from
ASM1 to ASM2, and its complexity due to the use of pointer structures, stacks
were modeled as simple lists, which allows to avoid our B-LIST#-procedure.

Instead of our re�nement from ASM1 to ASM2, which has no counterpart in
Isabelle, two other re�nement steps were veri�ed: In the �rst, the representation
of cutpoints as (separate) stacks is re�ned to a representation, where cutpoints
are positions in the main stack. In the second step, the initial procdef -function,
which delivers all clauses is replaced by one which delivers only clauses with the
same leading predicate symbol. Re�nements 3 and 4 as veri�ed in Isabelle are

411Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

the same as our re�nements from ASM2 to ASM4 (in Isabelle, Prolog-constructs
true and fail were not considered, therefore the error we found in the interpreters
3 and 4 was not present in the case study).

The veri�cation e�ort for the four re�nement steps as given in [Pus96] was
6 person months and 3500 interactions. These numbers are about two times the
numbers we got for the veri�cation of the three re�nements to reach ASM4. We
suspect that this is largely due to the use of an asymmetric proof technique
using proof maps, which requires two separate large proofs for correctness and
completeness for each re�nement step instead of one symmetric proof.

8 Conclusion

We have presented a framework for the formal veri�cation of the Prolog to WAM
compilation as given in [BR95]. The framework is based on the translation of
sequential Abstract State Machines to imperative programs over algebraic spec-
i�cations. With this translation correctness and completeness of the re�nement
between two ASMs is expressible as program equivalence in Dynamic Logic.

We introduced a proof technique, based on coupling invariants, which cor-
responds to the use of proof maps over ASMs. We have found that the correct
coupling invariants, which are needed to show correctness and completeness of
re�nement steps, are far too complex to be stated correctly in a �rst attempt.
The incremental development of a correct version takes much more time than
the veri�cation of the correct solution. Therefore, besides the pure power of the
theorem prover, the `proof engineering' support o�ered by the veri�cation sys-
tem (explicit proof trees, correctness management, reuse of proofs etc.) is crucial
for the feasibility of the case study.

Veri�cation showed that [BR95] is indeed an excellent analysis of the compi-
lation problem from Prolog to WAM. Nevertheless an unintended indeterminism
in one of the ASMs had to be removed (6.2), and minor corrections were also
necessary on the formalization of the compiler assumptions. These results show,
that to guarantee compiler correctness, mathematical analysis should be followed
by formal veri�cation.

Let us conclude with an outlook on the continuing work on this case study.
The next two of the remaining 6 re�nement steps are concerned with the compi-
lation of single clauses ([Section 3] in [BR95]). Their correctness should be easy
to show and require no new proof techniques. New problems will have to be
overcome to verify that Prolog-Terms can be represented by pointer structures
(the �nal [Section 4] in [BR95]). Finally it would remain to verify a compiler
built on the basis of the compiler assumptions.

Although we are currently only about half the way from Prolog to the WAM,
veri�cation of the �rst levels has con�rmed our belief that veri�cation of the
WAM is a feasible, but challenging task.

Acknowledgements

We thank our colleagues Wolfgang Reif, Kurt Stenzel and Matthias Ott for their
valuable comments on drafts of this paper.

412 Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

References

[Ahr95] Wolfgang Ahrendt. Von PROLOG zur WAM | Veri�kation der Proze-
dur�ubersetzung mit KIV. Diplomarbeit, Fakult�at f�ur Informatik, Universit�at
Karlsruhe, December 1995.

[AK91] H. A��t-Kaci. Warren's Abstract Machine. A Tutorial Reconstruction. MIT
Press, 1991.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
[BR94] Egon B�orger and Dean Rosenzweig. A mathematical de�nition of full PRO-

LOG. Science of Computer Programming, 1994.
[BR95] Egon B�orger and Dean Rosenzweig. The WAM|de�nition and compiler cor-

rectness. In Christoph Beierle and Lutz Pl�umer, editors, Logic Programming:
Formal Methods and Practical Applications, volume 11 of Studies in Computer
Science and Arti�cial Intelligence. North-Holland, Amsterdam, 1995.

[Gol82] R. Goldblatt. Axiomatising the Logic of Computer Programming. Springer
LNCS 130, 1982.

[Gra96] P. Graf. Term Indexing. Springer LNCS 1053, 1996.
[Gur95] M. Gurevich. Evolving algebras 1993: Lipari guide. In E. B�orger, editor,

Speci�cation and Validation Methods. Oxford University Press, 1995.
[Har84] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook

of Philosophical Logic, volume 2, pages 496{604. Reidel, 1984.
[Kap87] S. Kaplan. A compiler for conditional term rewriting systems. In 2nd Conf.

on Rewriting Techniques anf Applications. Proceedings. Bordeaux, France,
Springer LNCS 256, 1987.

[Moo88] J Moore. Piton: A Veri�ed Assembly Level Language. Technical report 22,
Computational Logic Inc., 1988. available at the URL: http://www.cli.com.

[Pus96] Cornelia Pusch. Veri�cation of Compiler Correctness for the WAM. In Proc.
of the 1996 Intern. Conf. on Theorem Proving in Higher Order Logics, Springer
LNCS, 1996.

[Rei95] W. Reif. The KIV-approach to Software Veri�cation. In M. Broy and
S. J�ahnichen, editors, KORSO: Methods, Languages, and Tools for the Con-
struction of Correct Software { Final Report. Springer LNCS 1009, 1995.

[RS95] W. Reif and K. Stenzel. Reuse of Proofs in Software Veri�cation. In J. K�ohler,
editor, Workshop on Formal Approaches to the Reuse of Plans, Proofs, and
Programs. Montreal, Quebec, 1995.

[RSS95] W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness Proofs for
Software Modules Using KIV. In Tenth Annual Conference on Computer As-
surance, IEEE press. NIST, Gaithersburg (MD), USA, 1995.

[RSS97] W. Reif, G. Schellhorn, and K. Stenzel. Proving System Correctness with
KIV 3.0. In 14th International Conference on Automated Deduction. Proceed-
ings, LNCS. Townsville, Australia, Springer, 1997. to appear.

[Sch94] Peter H. Schmitt. Proving WAM compiler correctness. Interner Bericht 33/94,
Universit�at Karlsruhe, Fakult�at f�ur Informatik, 1994.

[SW83] D. T. Sanella and M. Wirsing. A kernel language for algebraic speci�ca-
tion and implementation. In Coll. on Foundations of Computation Theory,
Springer LNCS 158. Link�oping, Sweden, 1983.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical note 309,
Arti�cial Intelligence Center, SRI International, 1983.

[Wir90] M. Wirsing. Algebraic Speci�cation, volume B of Handbook of Theoretical
Computer Science, chapter 13, pages 675 { 788. Elsevier, 1990.

[You88] W. D. Young. A Veri�ed Code Generator for a Subset of Gypsy. Tech-
nical report 33, Computational Logic Inc., 1988. available at the URL:
http://www.cli.com.

413Schellhorn G., Ahrendt W.: Reasoning about Abstract State Machines: The WAM ...

