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Abstract: This paper presents the formal speci�cation of the programming language
Oberon. Using Montages we give a description of syntax, static, and dynamic semantics
of all constructs of the language. The speci�cation is arranged in �ve re�nement steps,
each of them results in a working sub{language of Oberon. The compactness and
readability of the speci�cation make us believe that it can be used for a reference
manual.

Key Words: abstract state machines, Oberon, Montages, programming languages
speci�cations, reference manuals

Category: F.3.2, D.3.1, D3.3

1 Introduction

In this paper we present the formal speci�cation of the programming language
Oberon [7] using Montages taking advantage of existing ASM speci�cations of the
dynamic semantics of imperative programming languages [1, 2, 6, 3]. A detailed
presentation of Montages is given in [4].

The language speci�cation is presented as a sequence of �ve sub-languages
of Oberon (O1 (section 2), O2 (section 3), O3 (section 4.1), O4 (section 4.2),
O5 (section 5)), each extending its predecessor with some new constructs. The
last of them is complete Oberon. The �rst (section 2) features variables and
designators of pointer and record types. The expressions, procedures, modules,
and �nally type extensions are smoothly introduced in the following re�nement
steps.

The material is presented in such a way that new constructs are speci�ed
either with a new Montage (having M labels) or as a renaming of an existing
Montage. Typically a new construct induces a number of small re�nements of
already given Montages.

Such re�nements are indicating with a label to which part of the preceding
Montage they do concern, the grammar (G labels), static analysis (A labels),
static semantics condition (C labels), or dynamic semantics (D labels).

2 Basic Concepts and Record Types

In this section we present a �rst sub-language of Oberon. In contrast to most
programming language manuals we do not start with expressions, but with prim-
itive and composite objects, their typing, creation, and manipulation.
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The constructs of Oberon can be divided in statements, expressions, Designa-
tors, and Types. Modules and procedures can be used to encapsulate, reuse and
extend these constructs. In the Montages approach one token of each construct
is chosen as task that executes the dynamic semantics of the construct. These
tasks are grouped in universes StatementTask, ExpressionTask, DesignatorTask,
and TypeTask respectively. All designators and expressions are statically typed.
The �eld

StaticType: (ExpressionTask [ DesignatorTask) ! TypeTask (O1.�.1)

denotes the type of an expression or designator.

2.1 Storage

The storage is modeled by a collection of abstract objects. An object is either a
simple object or a composite object that is composed of objects again.

Object = Primitive [ Composite

A primitive object, or location, is an object of an unstructured type, and its
information is stored in a dynamic �eld

Value: Primitive ! (OberonValue [ Composite) (O1.�.2)

Composite objects are used to model instances of structured types. Instances of
such types consist of a composite object together with the objects it is composed
of. These objects build typically a small tree, with the composite object as root.
The descendants in the tree are accessed by a binary function

Field: Composite � (String [ Nat) ! Object (O1.�.3)

whose second argument chooses a component by a name (e.g. records) or a
number(e.g. arrays). In the following we show pointers and records, as examples.

A pointer is modeled by a primitive object. The possible values of a pointer
are composite objects and the prede�ned element Nil. A newly allocated pointer
is guaranteed to be initialized with Nil.

A record is a composite object that is composed of a set of named and typed
�elds. Depending on their type the �elds are locations or composite objects,
which are again composed of other objects. A record is thus the root of a tree
of arbitrary complexity. The leafs of such a tree are locations and the values of
these locations are called the values of a record.

In �gure 1 we show an example record having three �elds a, b, and c, where
the c �eld is a record having two �elds d, and e. All circles are objects, the record-
root and the c-�eld are composite objects. Fields a, b, d, and e are locations,
and have thus a value. The targets of the value arrows are all going in a box
representing the values of the record. The Oberon type describing such a records
is denoted as follows,

RECORD

a, b: T

c: RECORD

d,e: T

END

END
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Figure 1: An example record and its values

where T is an arbitrary unstructured type.
Often one di�erentiates between the dynamic store, the stack, and store that

is statically allocated within the program text. In our model there is only one
store, the above introduced universe Objects. Tokens of the code which require
storage, namely variables and parameters, allocate an object and establish a link
to it through their �eld

AssocOBJ: Token ! Object (O1.�.4)

The variables and parameters are in turn referenced by designators.
The associated object �eld is used throughout the model to link designators

to their semantically associated object in the store. The strong typing of Oberon
guarantees that a variable, parameter, or designator with static type T is always
associated with the root of an instance of T .

2.2 Class Type

A type T can be seen as an instance of a class type which provides services to
create and copy objects of type T .

The parameters for the services are stored in four �elds of the type, called
Mode, Return, Src and Dest. A service is called by passing control to the type,
and by setting the �eld mode to copy or create. The return �eld is used as return
address to which control is passed after termination of a service.

The copy service sets the value(s) of a destination object to the value(s) of
a source object. The two objects are provided as the Src and Dest �elds of the
type. In order to abstract from the technical details, we introduce a macro, which
simulates a method call syntax. The macro

type.COPY(source, destination) ,
type.Mode := copy
type.Src := source
type.Dest := destination
type.Return := NextTask
CurrentTask := type

(O1.D.1)

requires the copy service of type in the above described way: the mode �eld is
set to copy, source and destination are assigned to the corresponding �elds, the
return �eld is set to the next task, and control is passed to type.
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The create service creates a new instance of the type. In the case of structured
types such an instance is a tree of objects; in the case of unstructured types it
a single object. After termination of the service the root of the newly created
instance is accessible as the Dest �eld of the type. The standard method to call
a create service is given by the macro

type.CREATE() ; R ,
if not Allocated then
type.Mode := create
type.Return := CurrentTask
CurrentTask := type
Allocated := true

else
Allocated := false
R

endif

where NewObject , type.Dest

(O1.D.2)

In this macro we de�ne the local macro NewObject which can be used in R
to access the new object type.Dest. The semicolon \;" in the macro is used to
indicate that transition rule R is executed after the allocation. The sequential
execution of the steps is forced in the macro-de�nition using a boolean �eld
Allocated. The rule R typically passes the control to the next task or calls a
copy service in order to initialize the new object.

2.3 Variables

One of the main mechanism in programming languages is the declaration of
named structures, and their use in the algorithms. Such structures include parts
of the store, known as variables, code fragments, known as procedures, and prop-
erties of variables and procedures, so called types. In modern programming lan-
guages all three kinds of structures are created by declarations. A declaration
consists typically of an identi�er, denoting the name, and a characterization.
Types are characterized by a construction from other types (e.g. record, pointer
types), variables are characterized by types, and procedures are characterized
by the type of their parameters, a code fragment using these parameters, and
additional declarations.

In our model we call the identi�ers in the declarations code objects.

CodeObject = Ident (O1.G.1)

The micro syntax of an Ident can be accessed as the attribute

Name: Ident ! String (O1.�.5)

If a declaration is analyzed we update a dynamic function TABLE such that it
maps the name to some distinguished token of the declaration.

TABLE: String ! Token (O1.�.6)

Typically the static analysis of references sets a �eld

Decl: Reference ! Token (O1.�.7)
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to the declaration. Like this, TABLE is only used during static analysis, in
order to link references directly with their declaration. Later in the dynamic
semantics, one can abstract from all static resolvable declaration and reference
mechanisms.

I

T

S-Type

VarDeclaration ::= VarObjectf\," VarObjectg \:" Type

VarObject = CodeObject

StaticType

S-VarObject

LIST

vary v over list S-VarObject
TABLE(v.Name) := v

endvary

condition for all v in list S-VarObject holds
not Prede�ned(v.Name)

VarObject:

StaticType.CREATE() ;
AssocOBJ:= NewObject
CurrentTask := NextTask

Montage O1.M.1: The semantics of a variable declaration.

Montage O1.M.1 de�nes the syntax and semantic of variables and their dec-
laration. Syntactically a variable declaration consists of a list of variable objects
and one common characterization by a type. The �eld StaticType of all variable
objects is set to the type descendant, and each variable object is put in the
TABLE.

The static semantics guarantees only, that prede�ned names cannot be reused.
The alert reader may wonder why there is no condition that the variable objects
have di�erent names. In fact, this condition is tested once for all declarations, e.g.
variable, constant, type, and procedure declarations. (see declaration sequence
Montage O1.M.14).

The dynamic semantics of a variable object calls the create service of its
static type, and sets its associated object to the newly created object.

A simple designator (MontageO1.M.2) is used to reference a variable. The en-
try TABLE(Name) denotes the variable object of the declaration corresponding
to the micro syntax of the simple. The static semantics guarantees the existence
of this entry and prevents it from being a type. The static analysis sets Decl to
the entry and the static type to the static type of the entry.

The dynamic semantics sets the associated object to the associated object of
its declaration and passes control to the next task. The macro SetTo is de�ned
as follows:

SetTo(o) , AssocOBJ:= o (O1.D.3)
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condition TABLE(Name) 6= undef and not TypeTask(TABLE(Name))

Simple:

Decl := TABLE(Name)
StaticType := TABLE(Name).StaticType

CurrentTask := NextTask

Simple = Ident

SetTo(Decl.AssocOBJ)

Montage O1.M.2: The semantics of a simple designator.

2.4 Statements

StatementSequence ::= Statement f\;" Statementg (O1.G.2)

The statements in a statement sequence are sequentially linked through the
next task function in their syntactical order. This is done implicitly (see ListN-
ode de�nitions in [4]). In this section we present the assignment and the new
statement.

Statement = Assignment j NewStatement (O1.G.3)

The assignment (MontageO1.M.3) copies the value(s) of the associated object of
the right designator to the value(s) of the associated object of the left designator.
This is done using the copy service of the type of the left designator.

I T
S2-DesignatorS1-Designator

Assignment ::= Designator \:=" Designator

condition S2-Designator.StaticType AssignableTo S1-Designator.StaticType

Right

Left

NTNT
S-\:="

Left.StaticType.COPY(Right.AssocOBJ, Left.AssocOBJ)

\:=":

Montage O1.M.3: The semantics of an assignment

The static semantics condition guarantees that the source and the destination
have compatible types. It uses the macro AssignableTo, which states, that one
can assign only objects of the same type or objects of pointers referencing to
assignable types.
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t1 AssignableTo t2 ,
t1 6= undef and t2 6= undef and
(t1 = t2
or t1.ReferencedType AssignableTo t2.ReferencedType)

(O1.C.1)

I T
S-Designator S-NEW

NT

Pointer

NewStatement ::= NEW\("Designator\)"

condition POINTER(S-Designator.StaticType)

NEW:

Pointer.AssocOBJ.Value := NewObj
Pointer.StaticType.PointedType.CREATE() ;

CurrentTask := NextTask

Montage O1.M.4: The semantics of a new-statement.

The new statement (Montage O1.M.4) has a designator as argument. This
designator is guaranteed to be of pointer type. The task of the NEW-token is
to allocate a new record and to assign it to the value of the associated object
of the designator. In order to understand why the type of the new record is
Pointer.StaticType.PointedType one has to look at the pointer type Montage
(O1.M.7).

In the last section we introduced variables which are associated with an
object in the store. Simple designators can be used to refer to such an object.
The above introduced assignment and the new statement are used to manipulate
these objects and to allocate new objects. Their full power is only visible after
we introduced concrete types, and complex designators. This will be done in the
next two sections.

2.5 Types

A type declaration, as speci�ed by the Montage O1.M.5, works like a variable
declaration. The TABLE is used to link the declared type-names to the types.

In this section we introduce type identi�ers, pointer types, and record types.

Type = TypeIdent j PointerType j
RecordType

TypeIdent = Ident

(O1.G.4)
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S-Type

condition not Prede�ned(S-TypeObject.Name)

S-TypeObject

TABLE(S-TypeObject.Name) := S-Type

TypeDeclartion
TypeObject

::= TypeObject \=" Type
= Ident

Type = TypeIdent j PointerType j PointableType

Montage O1.M.5: The semantics of a type declaration.

Type identi�ers (Montage O1.M.6) serve as references to user de�ned types
or to prede�ned basic types. The referenced type is denoted by TABLE(Name)
and the static semantics guarantees that this entry is a type task. For reference
purposes, the following de�nition lists all possibilities for type tasks. Most of
them relate to universes that will be introduced in later sections.

TypeTask = GroundType [ POINTER [
PROCEDURE [ PointableTypeTask

(O1.�.8)

terminal leaves of a type identi�er to the referenced type task. Like this, refer-
ences to the type identi�er are directly linked to the referenced type.

condition TypeTask(TABLE(Name))

Terminal := TABLE(Name)
Initial := TABLE(Name)

TypeIdent = Ident

Montage O1.M.6: Semantics of a type identi�er

A pointer type consists of the keywords POINTER OF and the pointed type.
An instance of a pointer type is guaranteed to point either to NIL or to an
instance of the pointed type. The pointable types for this sub-language are record
types.

PointableType = RecordType (O1.G.5)

and the pointable type tasks are the RECORD-tokens:

PointableTypeTask = RECORD (O1.C.2)

The declaration of pointer types allows to use a not yet declared record type.
Such a pointer type must be of the form POINTER TO Ident, where the identi�er
is the name of a possibly undeclared record type. This form of pointer type is
generated by the non-terminal PointerToIdent, whereas the other pointer types
are generated by the non-terminal PointerToAnonym.

PointerType = PointerToIdent j
PointerToAnonym

(O1.G.6)
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T

I

endif
Dest.Value := Src.Value

if Mode = copy then

CurrentTask := Return
endif

CurrentTask := Return

o.Value := Nil
Dest := o

if Mode = create then

endextend

extend Primitive with o

S-POINTER

PointedType

S-PointableType

PointerToAnonym ::= POINTER TO PointableType

condition PointableTypeTask(S-PointableType)

POINTER:

Montage O1.M.7: Semantics of a pointer to an anonymous type.

Pointer types to anonymous types (Montage O1.M.7) can check their static
semantics and perform their static analysis directly. The �eld PointedType de-
notes the type to which the pointer \points".

The dynamic semantics of a pointer type applies independently whether the
type was generated by PointerToAnonymType or PointerToIdent. The rule has
two parts which de�ne the create and copy services. The create service allocates
a new location and the value of the new location is initialized with Nil, whereas
the copy service copies the value �eld of the source to the value �eld of the
destination.

I T

PointedTypeIdent(S-Ident) := true
S-Ident

::= POINTER TO IdentPointerToIdent

S-POINTER

Montage O1.M.8: The semantics of a pointer to identi�er type.

The Montage O1.M.8 shows the semantics of a pointer to identi�er. The
static analysis includes the identi�er in the universe PointedTypeIdent.

The type declaration sequence (Montage O1.M.9) �nally does the static anal-
ysis and checks the static semantics for all identi�ers which have been collected
in the PointedTypeIdent set. The static semantics condition is, that their entry
in the TABLE is a pointable type token, and the static analysis sets the Point-
edType �eld to this type token. The universe PointedTypeIdent is emptied, in
order to reuse it later.
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for all p: PointedTypeIdent holds

TI

endvary

condition
PointableTypeTask(TABLE(p.S-Ident.Name))

PointedTypeIdent(p) := false
p.S-POINTER.PointedType := TABLE(p.S-Ident.Name)

vary p over PointedTypeIdent

::= [TYPE fTypeDeclaration \;"g]TypeDeclSequence

S-TypeDeclaration

S-TypeObject

LIST

Montage O1.M.9: Semantics of a type declaration sequence.

A record type (MontageO1.M.10) consists of a list of �eld declarations. These
declarations de�ne �elds of the record type. The static semantics condition of
RecordType guarantees that all �eld objects have di�erent names. We use the
following macro, which checks a condition for all �elds f1 of record1 and all �elds
f2 of record2.

ForFieldObjects f1 Of record1
AndForFieldObjects f2 Of record2

Holds condition ,
for all d1 in list record1.S-FieldDeclaration holds
for all f1 in list d1.S-FieldObject holds
for all d2 in list record2.S-FieldDeclaration holds
for all f2 in list d2.S-FieldObject holds
condition

(O1.C.3)

The static analysis of a record type sets the attribute Parent of each �eld object
to the RECORD-token, and de�nes the control-
ow such that sequentially the
RECORD-token, then all �eld objects and at the end the END-token get the
control. In addition the function Field is used to link the RECORD-token with
the �eld objects. Like this the structure of records and record types is uni�ed
(see section 2.1).

The create service of a record type allocates a record r, then each �eld object
fi creates an object oi using the the create service of its type, and then the
corresponding �eld fi:Name of r is set to oi. After all �eld objects had the
control, the control is passed to the END-token that passes the control to the
return address of the record type. Thus the task of the RECORD-token is only to
create an new composite object, to assign it to its Dest �eld, and to pass control
to the �rst �eld. The create service of the �eld object (see Montage O1.M.11) is
then calling the create service of its static type, and assigns the resulting new
object to the corresponding �eld of the parent{object.
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I

T

if Mode = copy then

if Mode = create then
extend Composite with o
Dest := o
CurrentTask := NextTask

endextend
endif

RECORD:

CurrentTask := Parent.Return
RecordEnd:

endif

S-END

NT
S-RECORD S-FieldObject

LIST

CurrentTask := NextTask

Parent

LIST

S-Type

Parent

S-FieldDeclaration
NT

RecordEnd = END

vary d over list S-FieldDeclaration
vary f over list d.S-FieldObject
S-RECORD.Field(f.Name) := f

endvary
endvary

RecordType ::= RECORD

[FieldDeclaration f\;" FieldDeclarationg] RecordEnd

condition ForFieldObjects f1 Of Self
AndForFieldObjects f2 Of Self
Holds f16= f2 implies f1.Name 6= f2.Name

Montage O1.M.10: The semantics of a record type.

I

T

S-FieldObject

LIST

S-Type

StaticType

= CodeObject
::= FieldObject f\," FieldObjectg \:" TypeFieldDeclaration

FieldObject

if Mode = copy then
StaticType.COPY(

Parent.Src.Field(Name),
Parent.Dest.Field(Name))

endif

FieldObject:

if Mode = create then
StaticType.CREATE() ;
Parent.Dest.Field(Name) := NewObject

endif
CurrentTast := NextTask

Montage O1.M.11: The semantics of a �eld declaration.
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The copy service of a record type passes control directly to the �eld objects
which copy the values of the corresponding �elds by calling the copy services of
their types. Both services terminate if control is passed to the RecordEnd whose
dynamic semantics passes control to the return address.

2.6 Designators

Designators are used to reference objects in the store. We know already the sim-
ple designator (O1.M.2), which references the associated object of a variable. As
seen there, the dynamic semantics of a designator task calculates the referenced
object and assigns it to its AssocOBJ-�eld. For reference purposes we give the
full de�nition of the universe

DesignatorTask = Simple [ \"" [ FieldSelector
IndexTask [ ShIndexTask [ Guard

(O1.�.9)

In this section we introduce dereferenced and quali�ed designators.

Designator = Simple j Dereferenced j Quali�ed (O1.G.7)

Both of them are constructions having as argument another designator. For the
de�nitions we use the macro

ArgType , S-Designator.StaticType (O1.C.4)

which denotes the static type of this argument.

I T
S-Designator

condition POINTER(ArgType)

Dereferenced ::= Designator\""

NT

Argument

S-\""

\"":

S-\"".StaticType := ArgType.PointedType

if Argument.AssocOBJ.Value 6= Nil then
AssocOBJ:= Argument.AssocOBJ.Value
CurrentTask := NextTask

else
CurrentTask := RunTimeError

endif

Montage O1.M.12: The semantics of a dereferenced designator

The dereferenced designator (Montage O1.M.12) is used to construct from
a reference to a pointer p, a referenced to the pointed object p.Value. If the
pointed object is Nil, a runtime error is raised. The static semantics condition
of a dereferenced designator is that the argument is a pointer.
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The quali�ed designator (MontageO1.M.13) is used to access �elds of records.
The argument designator may reference either a record or a pointer. In the �rst
case we include the �eld selector in the universe DirectSelector and in the second
case we include it in the universe IndirectSelector.

I T

S-FieldSelector.StaticType := IndirectField.StaticType
elseif POINTER(ArgType) then
DirectSelector(S-FieldSelector) := true

IndirectSelector(S-FieldSelector) := true

if RECORD(ArgType) then
S-FieldSelector.StaticType := DirectField.StaticType

endif

or (POINTER(ArgType) and IndirectField 6= undef)

DirectFieldSelector:

IndirectFieldSelector:

if Argument.AssocOBJ.Value 6= Nil then

condition RECORD(ArgType) and DirectField 6= undef

else

AssocOBJ:= Field(Argument.AssocOBJ, Name)

endif

S-Designator

CurrentTask := NextTask

CurrentTask := NextTask
AssocOBJ:= Field(Argument.AssocOBJ.Value, Name)

= IdentFieldSelector
Quali�ed ::= Designator\."FieldSelector

CurrentTask := RunTimeError

NT
S-FieldSelector

Argument

Montage O1.M.13: The semantics of a quali�ed designator

As well depending on these cases, the selected �eld of the record type is either
directly accessible

DirectField ,
ArgType.Field(S-FieldSelector.Name)

(O1.A.1)

or accessible via implicit dereferencing:

IndirectField ,
ArgType.PointedType.Field(S-FieldSelector.Name)

(O1.A.2)

The static semantics guarantees that in the case of a record argument-type
the direct �eld is de�ned and in the case of a pointer argument-type the indirect
�eld is de�ned.

The dynamic semantics of a direct �eld selector sets the associated object to
the corresponding �eld of the argument. In the case of an indirect �eld selector,
there is the possibility that the associated object of the argument is a pointer to
Nil. This case leads to a run-time error, and control is passed to RunTimeError.
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Otherwise the argument is dereferenced and the associated object is set to the
corresponding record-�eld.

Remark: In the static analysis we use the Field-function to access �elds of
the record type, and in the dynamic semantics we use the same function Field
to access the �elds of a record object.

2.7 Programs

Up to now we de�ned a core of an imperative language with pointers. Here we
complete it to a working sub-language.

I T

condition for all i1, i2: CodeObject

holds i1 6= i2 implies i1.Name 6= i2.Name
satisfying i1 CodeObjectOf Self and i2 CodeObjectOf Self

S-VarDeclaration

S-TypeDeclSequence

DclSequence ::= TypeDeclSequence [VAR fVarDeclaration \;"g]

LIST

Montage O1.M.14: Semantics of a declaration sequence

A declaration sequence (Montage O1.M.14) contains all declarations. Its
static semantics guarantees that the code objects have di�erent names. To de�ne
this predicate we need to know all code objects of a declaration sequence.

i CodeObjectOf ds ,
exists vd in list ds.S-VarDeclaration
such that i in list vd.S-VarObject

or
exists td in list ds.S-TypeDeclSequence.S-TypeDeclaration
such that i = td.S-TypeObject

(O1.C.5)

The construct Program (Montage O1.M.15) is not existing in Oberon, but
we use it until we introduce modules in section 5. Until then the non-terminal
Program is the start symbol of our grammar.

TI

::= PROGRAM DeclSequence
BEGIN Statement f\;" Statementg END

Program

NT
S-StatementS-DeclSequence

LIST

Montage O1.M.15: The semantics of a program (not existing in Oberon).

456 Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



3 Adding Expressions and Related Concepts

The sub-language given in the last section missed expressions and their evalua-
tion. The result of the evaluation of an expression is stored as a �eld:

VALUE: ExpressionTask ! (OberonValue [ Composite) (O2.�.1)

where OberonValue is the universe of all possible values in Oberon, e.g. numbers,
characters, strings, booleans, and Nil. For reference purposes we give here the
de�nition of ExpressionTask, most involved universes will be explained later in
this section.

ExpressionTask = Constant [ DesignatorTask [ \�" [ Sign
[ RelOp [ AddOp [ MulOp [ \&" [ \OR"

(O2.�.2)

3.1 Constants

Constant = number j character j string j set j
TRUE j FALSE j NIL

condition LeastContainingGroundType(ConstValue) 6= undef

Constant:

VALUE := ConstValue
CurrentTask := NextTask

StaticType := LeastContainingGroundType(ConstValue)

Montage O2.M.1: The semantics of a constant.

The most basic expressions are constants (Montage O2.M.1), which evaluate
always to the same result. For simplicity we assume that their micro-syntax is
already transformed to the corresponding semantical entity (a number, a string,
a character, a set, or one of the elements false, true, or Nil) and accessible as the
�eld

ConstValue: Constant ! OberonValue (O2.�.3)

For all expressions consisting only of constants the �eld ConstValue is calculated
during static analysis. We will comment on this static calculations in the section
3.5.

The dynamic semantics of a constant simply copies its ConstValue into the
VALUE �eld and passes control to the next task. The static type of a constant
is the least containing ground type of its constant value. The static function

LeastContainingGroundType: OberonValue ! GroundType (O2.�.4)

maps a value to the least of the ground types which contains the value. If none of
the ground types contains the value, the result is undef. The prede�ned ground
types are:
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GroundType = NumericType [
fBOOLEAN, CHAR, STRING, SETg

NumericType = IntegerType [ fREAL, LONGREALg
IntegerType = fSHORTINT, INTEGER, LONGINTg

(O2.�.5)

Here we only need to know, that numeric types have two static �elds,

Min: (NumericType [ fSETg) ! OberonValue
Max: NumericType ! OberonValue

(O2.�.6)

which deliver their smallest and the largest permitted value. Max(SET) is the
largest integer that may be put in an Oberon set. In order to integrate ground
types nicely in our model, we initialize the TABLE with links to them. TABLE
thus maps the string \SHORTINT" to SHORTINT, e.t.c. The dynamic semantics
of the ground types can now be given as follows:

GroundType:

if Mode = create then
extend Primitive with o
Dest := o
CurrentTask := Return

endextend
elseif Mode = copy then
if NumericType(Self) and
(Scr.VALUE < Min or Scr.VALUE > Max) then
CurrentTask := RunTimeError

else
Dest.VALUE := Src.VALUE
CurrentTask := Return

endif
endif

(O2.D.1)

3.2 Factors

Composed expressions are built up from factors. Besides constants, factors may
be designators, negated factors, or expressions in parentheses.

Factor = Constant j Designator j
NegatedFactor j
ExprInParentheses

(O2.G.1)

Designators may be used as expressions only if they are of unstructured type.
In this case a designator task must set not only its AssocOBJ �eld, but as well
its VALUE �eld. In order to achieve this, we have to rede�ne the de�nition of
the macro SetTo (O1.D.3) as follows

SetTo(o) ,
AssocOBJ:= o
if UnstructuredType(StaticType) then
VALUE := o.Value

endif

(O2.D.2)
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where UnstructuredType is the union of GroundType and POINTER. After this
rede�nition all designator speci�cations of the last section can be reused.

In the �rst sub-language (2) we presented assignments with two designator
arguments (O1.M.3). Here we generalize them to assignments from expressions
to designators, by changing the grammar to

Assignment ::= Designator \:=" Expression (O2.G.2)

and by substituting S1-Designator and S2-Designator with S-Designator and
S-Expression respectively. Like this the static parts of Montage O1.M.3 remain
valid, but we have to rede�ne the macro AssignableTo (see O1.C.1 for the old
de�nition) such that it allows to assign an object of some ground type to another
one including this type.

t1 AssignableTo t2 ,
t1 6= undef and t2 6= undef and
(t1 = t2
or t1.ReferencedType AssignableTo t2.ReferencedType
or t1 4t2 )

(O2.C.1)

SHORTINT 4 INTEGER 4 LONGINT 4 REAL 4 LONGREAL (O2.C.2)

The dynamic semantics of an Assignment must be re�ned as well. The right
hand side is now an expression, which possibly has only a value, but no associated
object. Thus in the case of unstructured types we have to assign directly the value
of the right-hand-side to the value of the associated object of the left-hand-side.

\:=":

if UnstructuredType(Left.StaticType) then
Left.AssocOBJ.Value := Right.VALUE
CurrentTask := NextTask

else
Left.StaticType.COPY(Right.AssocOBJ, Left.AssocOBJ)

endif

(O2.D.3)

The only purpose of the ExprInParentheses Montage (O2.M.2) is to de�ne
the initial and terminal leaves of this production.

I T

ExprInParenthesis ::= \(" Expression \)"

S-Expression

Montage O2.M.2: Semantics of an expression in parenthesis.

A negated factor (Montage O2.M.3) must have an argument of boolean type;
the static type of the \�"-task is set to BOOLEAN and the constant value is set
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to the negated constant value of the argument 1; the dynamic semantics sets the
value to the negated value of the argument.

I T
S-\�"

NT

Argument

S-\�".StaticType := BOOLEAN

NegatedFactor ::= \�" Factor

S-Factor

S-\�".ConstValue := : S-Factor.ConstValue

condition

\�":

S-Factor.StaticType = BOOLEAN

VALUE := : Argument.VALUE
CurrentTask := NextTask

Montage O2.M.3: Semantics of a negated factor

3.3 Composed Expressions

The binary expression Montage O2.M.4 is an abstract Montage which will be
re�ned to concrete Montages later. Its static analysis sets the data-
ow functions
Left and Right, calculates the type, and the constant value.

TI

BinaryExpression

Right

Left

NT

::= Expression BinOp Expression

NT
S-BinOpS1-Expression S2-Expression

S-BinOp.StaticType := CalculatedType
S-BinOp.ConstValue := ConstResult

condition CalculatedType 6= undef and ConstCalculationsCondition

Montage O2.M.4: Generic Montage for binary expressions.

The calculated type is

CalculatedType , ResultingType(S-BinOp,
S1-Expression.StaticType, S2-Expression.StaticType)

(O2.A.1)

and the function ResultingType is de�ned as follows:

1 In our setting the negation of undef is undef
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Operator Left Type Right Type Result Type

SymmetricRelOp l 2 NumericType r 2 NumericType BOOLEAN

SymmetricRelOp CHAR CHAR BOOLEAN

SymmetricRelOp STRING STRING BOOLEAN

\=", \#" SET SET BOOLEAN

\=", \#" l 2 POINTER r 2 POINTER: BOOLEAN

l AssignableTo r or

r AssignableTo l

\=", \#" l 2 PROCEDURE r 2 PROCEDURE: BOOLEAN

IdenticProcTypes(l, r)

\=", \#", OR, \&" BOOLEAN BOOLEAN BOOLEAN

\+", \-", \*" l 2 NumericType r 2 NumericType LCST(l,r)

\/" l 2 NumericType r 2 NumericType LCST(REAL,

LCST(l,r))

DIV, MOD l 2 IntegerType r 2 IntegerType LCST(l,r)

\+", \-", \*", \/" SET SET SET

IN l 2 IntegerType SET BOOLEAN

The de�nition of LeastCommonSuperType (in the table abbreviated to LCST)
is de�ned over ground types according to the sub-typing O2.C.2.

The binary expressions Product, Term, Sum, and Relation are all re�nements
of the Montage O2.M.4. The parts of Montage O2.M.4 are reused by replacing
S1-Expression, and S2-Expression with the selector functions for the left and
right argument and by replacing S-BinOp with the selector function for the
operator. Taking for instance

Sum ::= SimpleExpression AddOp Term
AddOp = \+" j \-"

we get the corresponding Montage by taking Montage O2.M.4 and replac-
ing S1-Expression with S-SimpleExpression, S2-Expression with S-Term, and
S-BinOp with S-AddOp. In summary the grammar rules for composed expres-
sions are:

Expression = SimpleExpression j Relation
Relation ::= SimpleExpression RelOp

SimpleExpression
RelOp = SymmetricRelOp j IN
SymmetricRelOp = \=" j \#" j \<" j

\<=" j \>" j \>="
SimpleExpression = Term j SignedTerm j

Sum j Disjunction

(O2.G.3)
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SignedTerm ::= Sign Term
Sign = \+" j \-"
Sum ::= SimpleExpression AddOp Term
AddOp = \+" j \-"
Term = Factor j Product j Conjunction
Product ::= Term MulOp Factor
MulOp = \*" j \/" j DIV j MOD

(O2.G.4)

For the dynamic semantics rules of the operators we use a function

Apply: (RelOp [ AddOp [ MulOp) �
OberonValue � OberonValue ! OberonValue

(O2.�.7)

which applies the operators to two values. The de�nition of Apply corresponds
to the usual mathematical meaning of the symbols. More precisely, the numeric
symbols are interpreted in a standard way, DIV is interpreted as the integer
part of the result of a division, MOD as the modulo function, and IN is the 2
relation. If one of the arguments is unde�ned, the result is unde�ned as well. For
convenience we de�ne the macro

Result ,
Apply(CT, Left.VALUE, Right.VALUE)

(O2.D.4)

which produces the value of the binary expression. For the calculation of the
constant value we use a macro

ConstResult ,
Apply(S-BinOp,

S1-Expression.ConstValue,
S2-Expression.ConstValue)

(O2.A.2)

which produces the constant value, if for both arguments the constant value is
de�ned. In the following we give the dynamic semantics of the di�erent operators.
The de�nition of the macro ConstCalculationsCondition (O2.C.3) re
ects the
runtime tests in the static semantics and is given at the end.

The dynamic semantics of relation operations and of MOD just sets the value
and passes control to the next task.

RelOp, MOD:

VALUE := Result
CurrentTask := NextTask

(O2.D.5)

The dynamic semantics of numeric operators can raise run{time{errors on sev-
eral occasions. First of all their may be over
ows. A static boolean macro

v ContainedIn t , v � t.Min and v � t.Max (O2.D.6)

tests whether a number is contained in a numeric type of Oberon. Using this
macro the dynamic semantics for binary addition, subtraction, and multiplica-
tion raises a run-time-error if there is an over
ow.
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AddOp, \�":

if Result ContainedIn StaticType then
VALUE := Result
CurrentTask := NextTask

else
CurrentTask := RunTimeError

endif

(O2.D.7)

The dynamic semantics of the two division operators \/" and DIV raises in
addition a run-time-error if the right argument is 0.

\/", DIV:

if Result ContainedIn StaticType and
Right.VALUE 6= 0 then
VALUE := Result
CurrentTask := NextTask

else
CurrentTask := RunTimeError

endif

(O2.D.8)

The static semantics checks which have to be done for the constant calculations
correspond to the above run time checks. They are summarized in the macro

ConstCalculationsCondition ,
ConstResult 6= undef implies
(NumericType(CalculatedType) implies
ConstResult ContainedIn CalculatedType)

and ((\/"(S-BinOp) or DIV(S-BinOp)) implies
S2-Expression.ConstValue 6= 0)

(O2.C.3)

I T

CurrentTask := NextTask
else
CurrentTask := RunTimeError

endif

Sign:

VALUE := Apply(CT, 0, Argument.VALUE)

NT

Argument

if Apply(CT, 0, Argument.VALUE) ContainedIn StaticType then

S-Sign.StaticType := S-Term.StaticType

SignedTerm ::= Sign Term

S-SignS-Term

S-Sign.ConstValue := Apply(S-Sign, 0, S-Term.ConstValue)

condition NumericType(S-Term.StaticType) and
(S-Term.ConstValue 6= undef implies
Apply(S-Sigh, 0, S-Term.ConstValue) ContainedIn S-Term.StaticType)

Montage O2.M.5: The semantics of a signed term
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The range check in the signed term Montage (O2.M.5) is needed since ranges
of ground types may be asymmetric. The constant calculations again re
ect the
dynamic case.

3.4 Conjunction and Disjunction

The logical expressions Conjunction and Disjunction are lazy evaluated. Both
of them are re�nements of the Montage O2.M.6. The abstract Montage is again
reused by replacing S1-Expression, and S2-Expression with the selector func-
tions for the left and right argument and by replacing S-LogOp with the selector
function for the corresponding operator.

Conjunction ::= Term \&" Factor
Disjunction ::= SimpleExpression OR Term

(O2.G.5)

The dynamic semantics rules for both productions use a 
ag

RightVisited: (\&" [ OR) ! Boolean (O2.�.8)

which is used to remember whether only the left argument has been evaluated
or as well the right one. If the result of the logical expression can be deduced
only from the left argument, the right argument is never getting control.

\&":

if Left.VALUE = true then
if RightVisited then
VALUE := Right.VALUE
RightVisited := false
CurrentTask := NextTask

else
RightVisited := true
CurrentTask := RightInitial

endif
else
VALUE := false
CurrentTask := NextTask

endif

(O2.D.9)

OR:

if Left.VALUE = false then
if RightVisited then
VALUE := Right.VALUE
RightVisited := false
CurrentTask := NextTask

else
RightVisited := true
CurrentTask := RightInitial

endif
else
VALUE := true
CurrentTask := NextTask

endif

(O2.D.10)
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I T

Left.StaticType = BOOLEAN and Right.StaticType = BOOLEANcondition

::= Expression LogOp Expression

Right

Left

NT

LogicalExpression

S-BinOpS1-Expression S2-Expression

RightInitial

NT

S-LogOp.ConstValue :=
S-LogOp.StaticType := BOOLEAN

Apply(S-LogOp, S1-Expression.ConstValue, S2-Expression.ConstValue)

Montage O2.M.6: The semantics of logical expressions

3.5 Constant Declarations

A constant declaration binds an identi�er to an expression. This expression must
be constant.

In summary the mechanism for constant evaluation works as follows. Each
constant and constant object sets its constant value to the de�ned value. A simple
designator copies this �eld, thus if it was designating a constant object, the �eld
is set to a value, else to undef. Composite expressions apply their operator to the
constant values of their argument. If one of the arguments was not a constant,
e.g. its constant value is undef, the resulting constant value is undef as well. The
static semantics of a constant declaration (Montage O2.M.7) guarantees that
the ConstValue of the expression descendant is de�ned.

I T

S-Expression

condition
not Prede�ned(S-ConstObject.Name)
S-Expression.ConstValue 6= undef and

S-ConstObject

ConstDeclaration ::= ConstObject \=" Expression

ConstObject = CodeObject

TABLE(S-ConstObject.Name) := S-ConstObject
S-ConstObject.ConstValue := S-Expression.ConstValue
S-ConstObject.StaticType := S-Expression.StaticType

Montage O2.M.7: The semantics of a constant declaration.
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In the Montages O2.M.1, O2.M.3, O2.M.4, O2.M.5, and O2.M.6 the Const-
Value is de�ned for all expressions except simple designators. For simple desig-
nators, we have to extend the static analysis rule of Montage O1.M.2 with the
following rule:

block static analysis of Simple with:

if ConstObject(TABLE(Name)) then
ConstValue := TABLE(Name).ConstValue

endif

(O2.A.3)

In order to use constants at run-time, we need to re�ne as well the dynamic
semantics rule of simple designators (Montage O1.M.2).

Simple:

if VarObject(Decl) then
SetTo(Decl.AssocOBJ)

elseif ConstObject(Decl) then
VALUE := Decl.ConstValue

endif
CurrentTask := NextTask

(O2.D.11)

What now remains to do is to add constant declarations to the declaration
sequence, which is described in Montage O1.M.14. As a �rst step we pre�x the
right-hand-side of the DeclSequence production rule with

prefix r-h-s of
DeclSequence production O1.M.14 with:

[CONST fConstDeclaration \;"g]

(O2.G.6)

Then we add to the graphical part of Montage O1.M.14 a list box containing a
box labeled with S-ConstDeclaration. This nested pair of boxes is putted between
the left border and the S-TypeDeclSequence box. This means that the constants
are analyzed �rst, e.g. they can be used in the other declarations.

The static semantics of declaration sequences remains valid, but we have to
re�ne the macro CodeObjectOf by disjuncting its old de�nition (O1.C.5) with

disjunct definition of
CodeObjectOf O1.C.5 with:

exists cd in list ds.S-ConstDeclaration
such that i = cd.S-ConstObject

(O2.C.4)

3.6 Control Statements

The sub-language of section 2 allowed only a �xed sequence of statements to be
executed. Control statements allow conditional execution, selection, or repetition
of statement sequences.

Oberon features �ve control statements, which are added to the choices of
the synonym production O1.G.3:
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Statement ::= Assignment j NewStatement j
IfStatement j CaseStatement j
WhileStatement j
RepeatStatement j
LoopStatement

(O2.G.7)

The Montages O2.M.11, O2.M.12, O2.M.14, O2.M.13, O2.M.8, O2.M.9 are self
explanatory. The loop Montage (O2.M.10) uses a global nullary function

GlobalBlockEnd: EndLoop (O2.�.9)

which is used to store the current block end within a loop. An exit statement
(see Montage O2.M.10) passes control to that block end. If there is a nested
loop within a loop, the old block end is stored as the �eld OldBlockEnd of the
LOOP-task and GlobalBlockEnd is set to the end of the inner loop. At the end
of the inner loop GlobalBlockEnd is set back to the old value.

The static semantics guarantees that there is no exit statement outside of a
loop. This condition is part of the Montage of the start symbol Program.

NoExitOutsideLoop ,
for all e in EXIT holds
exists l in LoopStatement such that
e SyntacticallyIn l

(O2.C.5)

n1 SyntacticallyIn n2 ,
n1.Up = n2 or
n1.Up SyntacticallyIn n2

(O2.C.6)

I

TrueTask

NT

Condition
T

NT
S-Expression S-WHILE

WhileStatement ::= WHILE Expression DO StatementSequence END

S1-StatementSequence

condition S-Expression.StaticType = BOOLEAN

WHILE:

if Condition.VALUE = true then
CurrentTask := TrueTask

else
CurrentTask := NextTask

endif

Montage O2.M.8: Semantics of a while statement
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I

Condition

FalseTask

TNT
S1-StatementSequence

RepeatStatement ::= REPEAT StatementSequence UNTIL Expression END

condition S-Expression.StaticType = BOOLEAN

REPEAT:

if Condition.VALUE = false then
CurrentTask := FalseTask

else
CurrentTask := NextTask

endif

S-UNTILS-Expression

Montage O2.M.9: Semantics of a repeat statement

LoopBegin

NT TI

NT

LoopEnd

= EXIT

= END

ExitStatement

LOOP:

OldBlockEnd := GlobalBlockEnd
GlobalBlockEnd := LoopEnd

EndLoop:
GlobalBlockEnd := LoopBegin.OldBlockEnd
CurrentTask := NextTask

EXIT:

CurrentTask := GlobalBlockEnd

S-StatementSequence

EndLoop
::= LOOP StatementSequence EndLoopLoopStatement

S-EndLoopS-LOOP

Montage O2.M.10: Semantics of a loop statement
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NT

NT

NT

NT

T

I

NT

EndIf:

CurrentTask := NextTask

S-EndIf

S-StatementSequence

IfStatement ::= IF ThenPart

EndIf = END

fELSIF ThenPartg
[ELSE StatementSequence] EndIf

S1-IfPart

LIST

S2-IfPart

S-StatementSequence

S-StatementSequence

Montage O2.M.11: Semantics of an if statement

T

Condition

TrueTask

I NT

else
CurrentTask := NextTask

endif

CurrentTask := TrueTask

S-Expression S-THEN

THEN:

if Condition.VALUE = true then

condition S-Expression.StaticType = BOOLEAN

ThenPart ::= Expression THEN StatementSequence

S-StatementSequence

Montage O2.M.12: Semantics of a then part
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\:"

I

TrueTaskCaseLabel

T
S-\:"

S-Expression

endif

condition S-Expression.StaticType = SET and S-Expression.ConstValue 6= undef

Case ::= Expression \:" StatementSequence

if CaseValue.VALUE 2 CaseLabel.ConstValue then

CurrentTask := NextTask
else
CurrentTask := TrueTask

S-StatementSequence

Montage O2.M.13: Semantics of a case

NTCaseValue

I

NT

TNT

NT

EndCase:

CurrentTask := RunTimeError

NoNode(S-StatementSequence) := false

CaseStatement

EndCase = END

::= CASE Expression OF

S-Expression

S-Case

if NoNode(S-StatementSequence) then
DoAbort(S-StatementSequence) := true

S-EndCase

DoAbort:

S-StatementSequence

endif

S-StatementSequence

S-\:"

LIST

IntegerType(S-Expression.StaticType) or S-Expression.StaticType = CHARcondition

CurrentTask := NextTask

Case f\j" Caseg
[ELSE StatementSequence] EndCase

Montage O2.M.14: Semantics of a case statement
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3.7 Array Types

An array is a composed object that represents a sequence of elements that are all
of the same type. The elements of an array are accessed using the Field function
with the element{position as second argument. The numbering of the positions
starts with zero. The type of an array �xes the length of the element sequence
and de�nes the element type. The syntax for an array type with length n and
element type t is

ARRAY n OF t

If t is again an array type, say of length m, the following shorthand notation is
allowed to denote such a two dimensional array.

ARRAY n, m OF t

Syntactically this can be managed by introducing the name OfElementType for
the part after the �rst dimension of an array type. The following productions

ArrayType ::= ARRAY Expression
OfElementType

OfElementType = NormalElementType j
ShorthandArrayType

NormalElementType ::= OF Type
ShorthandArrayType ::= ShorthandArray Expression

OfElementType
ShorthandArray = \,"

(O2.G.8)

allow to treat the shorthand notation analogue to the normal one, by treat-
ing a ShorthandArray{task like an ARRAY{task. The Montages for ArrayType
(O2.M.15) and for ShorthandArrayType (O2.M.16) work both as follows.

The static semantics guarantees that the length expression is constant and
that its constant value is a positive integer. The LENGTH �eld is set to that
constant value while the element type is set to the OfElementType part.

The create service of an array type allocates a composed object and a se-
quence of new objects of element type. The sequence of new elements are acces-
sible as Field(0), Field(1), e.t.c.

A �eld Counter is used to iterate from 0 to (LENGTH -1). If the counter is
unde�ned, it is initialized with 0 and a new element is created using the create
service of the element type as follows:

CreateElement ,
ElementType.Mode := create
ElementType.Return := CurrentTask
CurrentTask := ElementType

(O2.D.12)

CreateElement sets the return address to the current task. Like this the control
comes back and a next iteration step can be done. At each iteration step the
newly created element is assigned to the �eld at the counter's position, the
counter is incremented, and again a new element is created. If the iteration
terminates, the last element is assigned to its �eld, the counter is reset to undef,
and control is passed to the return task.
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T

I ElementType

S-Expression

S-Expression.ConstValue � 0 and IntegerType(S-Expression.StaticType)

ARRAY, ShorthandArray:

ArrayType

condition

S-ARRAY S-OfElementType

if Mode = create then
if Counter = undef then
Counter := 0
extend Composite with o
Dest := o

endextend
CreateElement

else
(Dest.Field(Counter) := ElementType.Dest
if Counter < (LENGTH - 1) then

else
Counter := undef
CurrentTask := Return

endif
endif

endif

if Mode = copy then
if Counter = undef then
Counter := 0

else
if Counter < LENGTH then

CreateElement
Counter := Counter + 1

CopyElement
Counter := Counter + 1

else
Counter := undef
CurrentTask := Return

endif
endif

endif

::= ARRAY Expression OfElementType

S-ARRAY.LENGTH := S-Expression.ConstValue

Montage O2.M.15: Semantics of an array type without shorthand notation.

I ElementType

T

S-Expression.ConstValue � 0 and IntegerType(S-Expression.StaticType)

S-Expression

condition

S-ShorthandArray S-OfElementType

S-ShorthandArray.LENGTH := S-Expression.ConstValue

ShorthandArrayType

ShorthandArray

::= ShorthandArray Expression OfElementType

= \,"

Montage O2.M.16: Semantics of an array type with shorthand notation.
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I T

NormalElementType

S-Type

::= OF Type

Montage O2.M.17: The help construction normal element type.

The copy service of an array type copies the values of the elements of its
source to the values of the elements of its destination. The macro

CopyElement ,
ElementType.Scr := Src.Field(Counter)
ElementType.Dest := Dest.Field(Counter)
ElementType.Return := CurrentTask
CurrentTask := ElementType

(O2.D.13)

calls the create service of the element type with the elements at position Counter.
Unlike the standard copy macro O1.D.1 the return address is set to the current
task. Like this, the iteration can be done as in the create case.

Arrays are pointable types, therefore we have to re�ne the synonym pro-
duction PointableType (O1.G.5) and the universe PointableTypeTask (O1.C.2).
After this re�nements the pointer type Montages (O1.M.7, O1.M.8) are still
valid.

PointableType = RecordType j ArrayType (O2.G.9)

PointableTypeTask = RECORD [ ARRAY (O2.C.7)

3.8 Indexed Designators

The elements of an array can be accessed using an indexed designator.

Indexed ::= SequenceOfIndexed Expression
IndexTask

IndexTask = \]"
SequenceOfIndexed = DesignatorBracket j

ShorthandIndexed
DesignatorBracket ::= Designator\["
ShorthandIndexed ::= SequenceOfIndexed Expression

ShIndexTask
ShIndexTask = \;"

(O2.G.10)

The textual part of the static analysis of both indexed and shorthand indexed
designators is essentially the following macro, which does the implicit derefer-
encing for the typing.
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SetTypeOfIndexTask(selector) ,
if IsArray(ArgTypeOfIndexed) then
selector.StaticType := ArgTypeOfIndexed.ElementType

elseif POINTER(ArgTypeOfIndexed) then
selector.StaticType :=
ArgTypeOfIndexed.PointedType.ElementType

endif

(O2.A.4)

where the type of the designator is

ArgTypeOfIndexed , S-SequenceOfIndexed.StaticType (O2.A.5)

and the test for array types is

IsArray(t) , ARRAY(t) or ShorthandArray(t) (O2.A.6)

The static semantics condition of the two Montages states essentially, that the
argument designator is either an array or a pointer to an array.

The dynamic semantics of an index task (respectively of a shorthand index
task) raises a run{time{error in the case of a range over
ow and in the case of
an attempt to dereference a Nil-pointer.

if IsArray(Argument.StaticType) then
SetTo(Argument.AssocOBJ.Field(Index.VALUE))

= DesignatorBracket j ShorthandIndexed
= \]"

SequenceOfIndexed
IndexTask

Argument

SetTypeOfIndexTask(S-IndexTask)

if Argument.Value 6= Nil then
SetTo(Argument.VALUE.Field(Index.VALUE))

(IsArray(ArgTypeOfIndexed) or

else

(POINTER(ArgTypeOfIndexed) and

CurrentTask := RunTimeError

Index

NT

CurrentTask := RunTimeError
else

NT

elseif POINTER(Argument.StaticType) then

endif
endif

endif

TI

condition IntegerType(S-Expression.StaticType) and

IsArray(ArgTypeOfIndexed.ElementType)))

S-Expression S-IndexTask

Index.VALUE < 0 then

IndexTask, ShIndexTask:

if Index.VALUE � StaticType.LENGTH or

Indexed

S-SequenceOfIndexed

::= SequenceOfIndexed Expression IndexTask

Montage O2.M.18: Semantics of an indexed designator.
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I T

DesignatorBracket

S-Designator

::= Designator \["

Montage O2.M.19: The help construction designator-bracket.

(IsArray(ArgTypeOfIndexed) or

NTNT TI

Index

Argument

ShIndexTask = \;"

(POINTER(ArgTypeOfIndexed) and

S-Expression S-ShIndexTask

condition

IsArray(ArgTypeOfIndexed.ElementType)))

IntegerType(S-Expression.StaticType) and

SetTypeOfIndexTask(S-ShIndexTask)

ShorthandIndexed ::= SequenceOfIndexed Expression ShIndexTask

S-SequenceOfIndexed

Montage O2.M.20: Semantics of a shorthand indexed designator.

4 Procedure Types, Declarations, and Calls

In its simplest form, a procedure is just a named sequence of statements, the so
called procedure{body. A procedure call is a statement which executes the body.
In addition Oberon procedures encompass

{ the concept of a result: a procedure delivering a result can be used as ex-
pression;

{ the concept of parameters;
{ the concept of local types, variables and procedures.

In the following we specify procedures in two re�nement levels. In the �rst
(section 4.1) we abstract from parameters and explain all mechanisms needed
for recursive calls, data encapsulation, and visibility scopes. In the second (sec-
tion 4.2) we introduce actual and formal parameters, and how their typing is
checked. Section 4.3 introduces open arrays. Section 4.4 shows how procedure
types, variables, and the corresponding assignments work. Section 4.5 explains
forward declarations and how the di�erent procedure declarations are integrated
in the declaration sequence. Finally 4.6 gives the speci�cation of functions and
the return statement.
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4.1 A model without parameters

One of the aspects of procedures is the encapsulation of both code and data.
The simple notion of procedure as named sequence of statements provides only
encapsulation of code. The declaration of local variables, allows to encapsulate
data in a private part of the store. Local types can be seen as encapsulation
of the structure of local data, and local procedures allow to use the concept of
encapsulation within a procedure.

Local declarations correspond to declaration sequences (see MontageO1.M.14
and re�nements in O2.G.6 and O4.G.1). A code object (e.g. variable, type, pro-
cedure) which is locally declared in a procedure can only be referenced within
that procedure.

The section of the code in which a code object can be referenced is called
its scope. In our setting we model the di�erent scopes as natural numbers. The
scope of (code objects declared in) the program is 1. The scope of (code objects
declared in) a procedure local to a program is 2. The scope of (code objects
declared in) a procedure local to a procedure with scope n is n + 1. For each
scope we introduce a new declaration table. All tables are represented by a binary
dynamic function

Table: Nat � String ! CodeObject (O3.�.1)

whose �rst argument is used to chose a scope. During the static analysis, we
guarantee that a dynamic function

Scope: Nat (O3.�.2)

denotes the scope of the currently analyzed code. In all up to now given Mon-
tages, the declaration table is used on the current scope. Thus the old Montages
are still valid if we rede�ne TABLE (O1.�.6) as follows:

TABLE(name) , Table(Scope, name) (O3.A.1)

If we enter during static analysis a new scope, the entries in the old declaration
table are copied to the new one. Like this the global objects are visible until they
are overwritten by a local declaration.

condition not Prede�ned(Name)

ProcObject = CodeObject

ProcObject:

CurrentTask := NextTask

Scope := Scope + 1

TABLE(Name) := Self

Table(Scope + 1, n) := TABLE(n)
satisfying n 6= Name

vary n over String
Table(Scope + 1, Name) := Self

endvary

Montage O3.M.1: The semantics of a procedure object.
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TI

S-PROCEDURE

S-ProcedureEnd

S-ProcObject

ProcDeclaration
DeclSequence
[BEGIN StatementSequence ] ProcedureEnd Ident

ProcedureEnd = END

StaticType

NT

S-DeclSequence
NT

S-StatementSequence
NT

Scope := Scope - 1
S-Ident

::= PROCEDURE ProcObject \;"

condition S-ProcObject.Name = S-Ident.Name

ProcedureEnd:

RecLevel := RecLevel -1
CurrentTask := CALLER.NextTask

Montage O3.M.2: The semantics of a simpli�ed procedure declaration.

The static analysis of a procedure declaration (Montage O3.M.2) analyses
�rst its procedure object. The static analysis of this procedure object (Montage
O3.M.1) increments the scope, and copies the declaration tables of the old scope.
In addition it enters itself in the procedure declaration table of both the old and
the new scope. The static analysis of the procedure declaration continues by
analyzing the local declaration sequence and the statement sequence. After this
the increased scope is decremented to its old value (see textual part of static
analysis of Montage O3.M.2). The token S-PROCEDURE serves as representant
of the type of the procedure.

Before we explain the dynamic semantics of a procedure call we shortly de-
scribe the general problems that have to be considered for the speci�cation of
recursive procedure calls. During execution four kinds of results have been pro-
duced by the already executed tasks and can be reused by the tasks that are
still going to be executed:

{ The result of the evaluation of an expression task is assigned to its VALUE
�eld.

{ The associated object of a variable (or parameter) object is stored in its
AssocOBJ �eld.

{ The calculated associated object (and eventually value) of a designator task
is stored in its AssocOBJ (and eventually VALUE) �eld.

{ The actual length of an array type is stored in its LENGTH �eld.

If the same task is executed twice (e.g. if it is part of a loop) the results stored
by VALUE and AssocOBJ are overwritten. While (O2.M.8), repeat (O2.M.9),
and loop statements (O2.M.10) rely on this behavior.
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As mentioned procedures are named units of code which can be executed
by calling them. Such a call is an ordinary statement. As a procedure contains
statements, it can contain a call to itself as well. This leads to the situation that
the tasks of the itself calling procedure are executed twice. But the results of
the �rst execution should here not be overwritten by the recursive call: they are
still needed after the recursive call.

To resolve the above problem we use the same technique as for the scopes.
The recursion levels are represented by natural numbers and a dynamic unary
function

RecLevel: Nat (O3.�.3)

is initialized with 0 and is guaranteed to hold always the recursion level of the
code in execution, e.g. the current recursion level. For each recursion level there
are three unary functions for the associated object, the value, and the length.
Again these functions are represented by binary functions whose �rst argument
is used to chose the recursion level.

AssoccObj: Nat � (VarObject [ DesignatorTask) ! Object (O3.�.4)

RecLevelValue: Nat � ExpressionTask! OberonValue (O3.�.5)

RecLevelLength: Nat � ARRAY ! Nat (O3.�.6)

Since all presented Montages access the associated objects, values, and length
only on the current recursion level, we can re�ne the old functions to macros as
follows:

n.AssocOBJ , AssoccObj (RecLevel, n) (O3.D.1)

n.VALUE , RecLevelValue(RecLevel, n) (O3.D.2)

n.LENGTH , RecLevelLength(RecLevel, n) (O3.D.3)

In order to understand how a procedure call works, we have to know how
a designator works if it references a procedure. As for normal designators the
static analysis of a simple designator (O1.M.2) copies the entry in the table to
its declaration �eld and sets the static type to the static type of the declaration.
For procedure designators, the dynamic semantics of a simple sets the VALUE
directly to the declared procedure.

add elsif-clause to dynamic semantics
of Simple O1.M.2:

elseif ProcObject(Decl) then
VALUE := Decl

(O3.D.4)

All other designators treat references to procedures correctly and must not be
re�ned.
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where NewRecLevel ,RecLevel + 1

RecLevel := NewRecLevel

CurrentTask := Procedure.VALUE

I NT

vary o over VarObject [ ParamObject [ DesignatorTask

Call =

RecLevelLength(NewRecLevel, o) := o.LENGTH

PROCEDURE(S-Designator.StaticType)

Call:

AssoccObj (NewRecLevel, o) := o.AssocOBJ

T

endvary
vary o over ExpressionTask
RecLevelValue(NewRecLevel, o) := o.VALUE

endvary
vary o over ARRAY

Caller(NewRecLevel) := CurrentTask
endvary

condition

S-Designator

ProcedureCall ::= Call Designator

Procedure

S-Call

Montage O3.M.3: Semantics of a simpli�ed procedure call.

A procedure call (Montage O3.M.3) consists of a designator, which must be
of procedure type. The dynamic semantics rule increments the recursion level
with one and the values of AssocOBJ, VALUE, and LENGTH are copied to the
new recursion level. The unary dynamic function

Caller: Nat ! Call (O3.�.7)

is used to store the Call-token that invocated a recursion level , and the macro

CALLER , Caller(RecLevel) (O3.D.5)

denotes the caller that invocated the current recursion level. The dynamic se-
mantics of a Call-token sets the caller of the new recursion level to itself and
passes control to the procedure.

After execution of the procedure body the control is given back to the caller
and the recursion level decremented with one. This is, for instance, done by the
dynamic semantics of a ProcedureEnd-task, see Montage O3.M.2.

4.2 Introducing parameters

In this section we add formal parameters to the procedure declaration and ac-
tual parameters to the procedure call. The basic mechanisms remain the same
and most of the speci�cation is concerned with the typing constraints of the
parameters.
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endif

else
S-PROCEDURE.HasBrackets := true

if not NoNode(S-FormalParameter.S-\(" ) then

TI

S-PROCEDURE.HasBrackets := false

S-ProcedureEnd

S-FormalParameters

S-FPSection

LIST

LIST

FormalParameter(�)

StaticType

NT

S-ResultTypeId

S-DeclSequence
NT

S-StatementSequence

NT

Scope := Scope - 1

NT

S-ProcObject

S-PROCEDURE S-ParamObject

StaticResultType

condition S-ProcObject.Name = S-Ident.Name
and NamesInFormalParamsAndDeclSequenceDi�erent

ProcedureEnd:

RecLevel := RecLevel -1
CurrentTask := CALLER.NextTask

S-Ident

ProcDeclaration ::= PROCEDURE ProcObject [FormalParameters] \;"
DeclSequence
[BEGIN StatementSequence ] ProcedureEnd Ident

ProcedureEnd = END

Montage O4.M.1: The semantics of a procedure declaration with formal param-
eters.

The re�ned speci�cation of a procedure declaration (Montage O4.M.1) en-
compasses formal parameters. The static analysis de�nes graphically the binary
function

FormalParameter: PROCEDURE � Nat ! ParamObject (O4.�.1)

which maps the PROCEDURE{token to the formal parameters and the �eld

StaticResultType: PROCEDURE ! TypeTask (O4.�.2)
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which maps the PROCEDURE{token to the result type. A PROCEDURE{token
together with these two functions forms a procedure type. A procedure type
may as well be given explicitly. This is explained in detail by the procedure{
type Montage O4.M.6. The type ResultTypeId is guaranteed to be unstructured
(see O4.A.3).

The static semantics of a procedure declaration guarantees that the names
of the formal parameters are di�erent from the names of the code objects in the
declaration sequence of the procedure.

NamesInFormalParamsAndDeclSequenceUnique ,
for all p: ParamObject
satisfying p ParamObjectOf S-FormalParameters holds
for all c: CodeObject
satisfying c CodeObjectOf S-DeclSequence holds
p.Name 6= c.Name

(O4.C.1)

where the de�nition of ParamObjectOf will be given after the formal parameters
Montage and a new de�nition of CodeObjectOf, accounting as well for procedure
objects, will be given later in this section (O4.C.15).

implies UnstructuredType(S-ResultTypeId))
and (not NoNode(S-ResultTypeId)

p1 6= p2 implies p1.Name 6= p2.Name
satisfying p2 ParamObjectOf Self holds

for all p2: ParamObject
satisfying p1 ParamObjectOf Self holds

for all p1: ParamObject

I T
S-ParamObject

LIST

FormalParameters ::= \(" [FPSectionf\;" FPSectiong] \)" [\:" ResultTypeId]

S-ResultTypeId

condition

LIST

S-FPSection

Montage O4.M.2: The semantics of formal parameters.

The static semantics of formal parameters (MontageO4.M.2) guarantees that
all parameter objects have di�erent names. We use again the macro ParamOb-
jectOf which takes as second argument a FormalParameters-node and is de�ned
as follows.

p ParamObjectOf fp ,
exists FPs in list fp.S-FPSection
such that p in list FPs.S-ParamObject

(O4.C.2)
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PROCEDURE(S-Designator.StaticType)
and CompatibleParameters

where NewRecLevel ,RecLevel + 1

RecLevelLength(NewRecLevel, o) := o.LENGTH

I TNT NT

Call =

Call:

endvary
Caller(NewRecLevel) := CurrentTask
RecLevel := NewRecLevel
CurrentTask := Procedure.VALUE

vary o over ARRAY

vary o over VarObject [ ParamObject [ DesignatorTask
AssoccObj (NewRecLevel, o) := o.AssocOBJ

endvary
vary o over ExpressionTask
RecLevelValue(NewRecLevel, o) := o.VALUE

endvary

S-Designator

ProcedureCall ::= Call Designator[\("[ Expression f\," Expression ]\)"]

S-Call

ActualParameter(�)

Procedure

condition

LIST

S-Expression

Montage O4.M.3: Semantics of a procedure call with actual parameters.

A call of procedures with parameters (Montage O4.M.3) consists of a des-
ignator and a list of expressions, the so called actual parameters. The static
semantics of a procedure call guarantees that actual and formal parameters ei-
ther both have brackets or not, and that the actual parameters are correctly
typed with respect to the formal parameters of the procedure type. The actual
parameters are accessible as the list of expressions and the formal parameters are
accessible via the enumeration function FormalParameter. The following macro
CompatibleParameters checks whether the two lists have the same length, and
whether all elements are CallCompatible.

CompatibleParameters ,
S-Expression.ListLength =
S-Designator.StaticType.FormalParameterLength

and
NoNode(S-\(") = S-Designator.StaticType.HasBracket
and
for all e in list S-Expression holds
CallCompatible(e,
S-Designator.StaticType.FormalParameter(e.Position))

(O4.C.3)

The macro CallCompatible is de�ned di�erently for variable parameter objects,
which are members of the universe VariableParamObject, and for value param-
eter objects, which are members of the universe ValueParamObject.
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ParamObject = VariableParamObject [ ValueParamObject (O4.�.3)

In short, a variable parameter is a reference to a variable, which can be updated
in the procedure. Thus the static semantics of variable parameters must guaran-
tee, that the actual parameter is a designator with an associated object, and not
only an expression. In addition the types of this objects must be VariableParam-
CompatibleTypes. For this re�nement level VariableParamCompatibleTypes is
de�ned as the identity:

VariableParamCompatibleTypes (t1, t2 ) , t1 = t2 (O4.C.4)

A value parameter is an independent variable, which is initialized with the
value of the actual parameter. Thus actual parameters of value parameters may
be arbitrary expressions whose type is assignment compatible with the formal
parameter.

CallCompatible(e, p) ,
VariableParamObject(p) implies
VariableParamCompatibleTypes(e.StaticType, p.StaticType)
and DesignatorTask(e)
and (Simple(e) implies VarObject(e.Decl))

and
ValueParamObject(p) implies
e.StaticType AssignableTo p.StaticType

(O4.C.5)

The formal semantics of variable and value parameters is given by Montage
O4.M.4.

The static analysis sets the static type of all parameter objects and puts them
either in the universe VariableParamObject or in the universe ValueParamOb-
ject. The dynamic semantics of both types of parameters uses the macro

MyActualParameter ,
CALLER.ActualParameter(FormalParameterPosition)

(O4.D.1)

to refer to their corresponding actual parameter. As noted a variable parameter
just copies the associated object reference of its actual parameter, whereas the
value parameter allocates a new object of its type and copies the value(s) of its
actual parameter to this new object. The macro

SetLENGTH ,
if ARRAY(StaticType) then
StaticType.LENGTH :=
MyActualParameter.StaticType.LENGTH

endif

(O4.D.2)

sets the LENGTH of an array typed parameter to the LENGTH of its actual
parameter. This is needed in order to deal with open array types.
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VariableParamObj:

SetLENGTH
AssocOBJ:= MyActualParameter.AssocOBJ
CurrentTask := NextTask

if NoNode(S-VAR) then
vary p over list S-ParamObject
ValueParamObj(p) := true

endvary
else
vary p over list S-ParamObject
VariableParamObj(p) := true

endvary
endif

= OpenArrayType j TypeIdent

endif
StaticType.COPY(MyActualParameter.AssocOBJ, NewObject)

else

I

T

CurrentTask := NextTask

ValueParamObj:

NewObject.Value := MyActualParameter.VALUE

SetLENGTH
StaticType.CREATE() ;
AssocOBJ:= NewObject
if UnstructuredType(StaticType) then

LIST

StaticType

S-FormalType

FPSection

S-ParamObject

FormalType
::= [VAR] ParamObjectf\," ParamObjectg \:" FormalType

Montage O4.M.4: Semantics of Value and Variable Parameters.

4.3 Open Arrays

Open arrays (Montage O4.M.5) can be used as the formal type of parameters,
and as element types of open arrays. The model must be re�ned at several places
in order to treat open arrays correctly:

{ Assignments between open arrays are not allowed. Thus we have to rede�ne
the de�nition of AssignableTo (O2.C.1) by conjuncting the old de�nition
with

conjunct AssignableTo O2.C.1 with:
not OpenArray(t1 ) and not OpenArray(t2 )

(O4.C.6)

{ In contrast, for a formal parameter of open array type any array with the
same dimensionality and the same element type may be given as actual
parameter. In order to allow for this we have to weaken the de�nition of
CallCompatible macro (O4.C.5) by disjuncting it with

disjunct CallCompatible O4.C.5 with:
OpenArrayParamCompatibleTypes

(e.StaticType, p.StaticType)

(O4.C.7)
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OpenArrayParamCompatibleTypes(t1, t2 ) ,
IsArray(t1 ) and OpenArray(t2 ) and
(t1.ElementType = t2.ElementType
or OpenArrayParamCompatibleTypes

(t1.ElementType, t2.ElementType)

(O4.C.8)

ElementTypeI

T

S-FormalType

OpenArrayType ::= OpenArray OF FormalType
OpenArray = ARRAY

S-OpenArray

Montage O4.M.5: Semantics of an open array type.

4.4 Procedure Types and Variables

In Oberon one can declare variables of procedure types. As noted above a proce-
dure type consists of a PROCEDURE-token and the two functions FormalParam-
eter and StaticResultType. The procedure type Montage (O4.M.6) corresponds
exactly to that part of the procedure declaration Montage (O4.M.1). The dy-
namic semantics corresponds to ground types.

Designators of procedure type may be used in comparisons, assignments, and
as parameters, leading to the following re�nements:

{ Designators of procedure type may be compared for equality and inequality,
if their procedure types are identical (see table of S-o2ACalculatedType).
Identity of procedure types is de�ned as follows:

IdenticProcTypes(t1, t2 ) ,
t1 6= undef and
t1.StaticResultType = t2.StaticResultType and
t1.FormalParameterLength = t2.FormalParameterLength
and
for all i: Nat
satisfying 1 � i � t1.FormalParameterLength holds
IdenticFormalTypes
(t1.FormalParameter(i).StaticType,
t2.FormalParameter(i).StaticType)

(O4.C.9)

IdenticFormalTypes(t1, t2 ) ,
t1 = t2 or
OpenArray(t1 ) and OpenArray(t2 ) and
IdenticFormalTypes(t1.ElementType, t2.ElementType)

(O4.C.10)
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{ A designator of procedure type may be assigned to another one if the types
are identical.

disjunct AssignableTo O4.C.6 with:
IdenticProcTypes(t1, t2 )

(O4.C.11)

In addition, if the right-hand-side of the assignment is a procedure constant,
this constant must not be a prede�ned procedure. Thus we need to add to
the static semantics of the assignment (Montage O1.M.3 and re�nements
given after O2.G.2) the following.

conjunct condition of Assignment O1.M.3 with:
ProcOrForwardObject(S-Expression.ConstValue) implies
not Prede�ned(S-Expression.ConstValue.Name)

(O4.C.12)

{ If a parameter is of procedure type the same rules apply as for other types.
Nonetheless we have to rede�ne the de�nition of the macro VariableParam-
TypeCompatible (O4.C.4), since identity of procedure types is expressed by
the macro IdenticProcTypes.

VariableParamCompatibleTypes (t1, t2 ) ,
t1 = t2 or IdenticProcTypes(t1, t2 )

(O4.C.13)

if not NoNode(S-FormalParameter.S-\(") then
S-PROCEDURE.HasBrackets := true

else

endif
S-PROCEDURE.HasBrackets := false

I

T

endif

if Mode = create then
extend Primitive with o
Dest := o
CurrentTask := Return

endextend
endif

if Mode = copy then

CurrentTask := Return

ProcedureType ::= PROCEDURE [FormalParameters] \;"

S-FormalParameters

S-FPSection

S-ParamObject

LIST

LIST

FormalParameter(�)

S-ResultTypeId

Dest.VALUE := Scr.VALUE

S-PROCEDURE

StaticResultType

ProcedureType:

Montage O4.M.6: Semantics of a procedure type.

486 Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



4.5 Forward Declarations

if not NoNode(S-FormalParameter.S-\(") then
S-PROCEDURE.HasBrackets := true

else

endif
S-PROCEDURE.HasBrackets := false

I T

S-PROCEDURE

S-FormalParameters

S-FPSection

S-ParamObject

LIST

LIST

FormalParameter(�)

StaticType

S-ResultTypeId

StaticResultType

S-ForwardObject

ForwardDeclaration ::= PROCEDURE\"" ForwardObject [FormalParameters]

Montage O4.M.7: Semantics of a forward declaration.

condition not Prede�ned(Name)

ForwardObject = CodeObject

TABLE(Name) := Self

ForwardObject:

CurrentTask := NextTask

Montage O4.M.8: Semantics of a forward object.

In order to allow for fast one{pass compilers Oberon restricts references to code
objects which have been declared earlier. But on the other hand it should be
possible that two procedures call them in a mutual recursive way, e.g. procedure
A calls procedure B which in turn calls A. In such a situation it is required
to give a forward declaration (Montage O4.M.7) of the procedure. A forward
declaration contains the procedure type, and a the name of the procedure. The
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identi�er is a forward object, which enters itself in the TABLE (see O3.M.1).
Both procedure and forward declarations are part of the declaration sequence

(O1.M.14, and re�nement in O2.G.6). Since procedure use types, variables, and
constants, their declarations are put at the end of the declaration sequence. We
post�x the grammar of the declaration sequence with

postfix r-h-s of DeclSequence
production O2.G.6 with:

fProcOrForwardDecl \;" g

(O4.G.1)

ProcOrForwardDecl ::= ProcDeclaration j
ForwardDeclaration

(O4.G.2)

The dynamic semantics of a forward declaration just passes the control to the
�rst task of the real procedure declaration. The static analysis of the declaration
sequence sets the next task of a forward declaration to its procedure declaration.

block static analysis of DeclSequence O1.M.14 with:
vary fd over list S-ProcOrForwardDecl
satisfying ForwardDeclaration(fd)
fd.S-ForwardObject.NextTask :=
TABLE(fd.S-ForwardObject.Name)

endvary

(O4.A.1)

The static semantics of a declaration sequence guarantees that there is for each
forward declaration a procedure declaration with the same name and identical
type.

conjunct condition of DeclSequence O1.M.14 with:

for all fd in list S-ProcOrForwardDecl
satisfying ForwardDeclaration(fd) holds
exists pd in list S-ProcOrForwardDecl
satisfying ProcDeclaration(pd) such that
fd.S-ForwardObject.Name =
pd.S-ProcObject.Name and

IdenticProcTypes
(fd.S-PROCEDURE, pd.S-PROCEDURE)

(O4.C.14)

The macro CodeObjectOf (O1.C.5, re�nement in O2.C.4) must be re�ned in
order to yield true for procedure objects as well.

disjunct definition of CodeObjectOf O2.C.4 with:
exists pd in list ds.S-ProcOrForwardDecl
satisfying ProcDeclaration(pd) such that
i = pd.S-ProcObject

(O4.C.15)

What remains to do is a small, but subtle point. Designator of procedure
types can be compared , and they should be considered as equal, if their values
point either to the same object, or to a forward object and to the corresponding
procedure object. Thus we have to rede�ne the function Apply (O2.�.7) for
\="-operators as follows:
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for op 2 \=":

Apply(op, left, right) ,
left = right or
(ForwardObject(left) and left.NextTask = right or
ForwardObject(right) and right.NextTask = left)

(O4.D.3)

and analogously for \#"-operators.

4.6 Functions and the Return Statement

A procedure call can be used as statement, if it has no result type or as expression
if it has a result type. If it is used as expression, it is a synonym of Factor. The
test whether a call is correctly used as statement or expression looks as follows:

conjunct condition of ProcedureCall O4.M.3 with:
(Statement(Self) implies NoNode(CallResultType)
and
(Factor(Self) implies TypeTask(CallResultType)

(O4.C.16)

where

CallResultType ,
S-Designator.StaticType.StaticResultType

(O4.C.17)

The static analysis of the procedure call must in addition set the static type:

block static analysis of ProcedureCall O4.M.3 with:
if Factor(Self) then
S-Call.StaticType := CallResultType

endif

(O4.A.2)

The return statement (Montage O4.M.9) is used within the body of a pro-
cedure declaration. Its static semantics checks whether it is part of a procedure
declaration, e.g. whether the scope is larger then 0, and whether the type of its
argument is assignment compatible to the result type. The result type of a scope
is denoted by

ResultType: Nat ! TypeTask

ResultTYPE , ResultType(Scope)

(O4.�.4)

This function is set by the ResultTypeId, whose Montage is obtained from the
type identi�er Montage (O1.M.6) by adding to the static analysis an update.

ResultTypeId Montage is
TypeIdent Montage O1.M.6 where

block static analysis with:
ResultTYPE := TABLE(Name)

(O4.A.3)

489Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



S-Expression.StaticType AssignableTo ResultTYPE) and

Scope > 0 and
(ResultTYPE 6= undef implies

CALLER.RefLevelValue(RecLevel -1) := Argument.VALUE

(ResultTYPE = undef implies NoNode(S-Expression))

CurrentTask := CALLER.NextTask
RecLevel := RecLevel - 1

ReturnStatementExists := true

TI

endif

ReturnStatement ::= RETURN [Expression]

NT

Argument

S-RETURNS-Expression

condition

if not NoNode(Argument) then

RETURN:

Montage O4.M.9: Semantics of a return statement.

The static analysis of the return statement sets a boolean function

ReturnStatementExists: Boolean (O4.�.5)

which is needed to test the static semantics condition that there must be at
least one return statement in the body of a function declaration.

conjunct condition of ProcDeclaration O4.M.1 with:

not NoNode(S-FormalParameters.S-ResultTypeId) implies
ReturnStatementExists

(O4.C.18)

The static analysis of a procedure declaration must reset both the ResultTYPE
and the ReturnStatementExists.

block static analysis of ProcDeclaration O4.M.1 with:
ResultTYPE := undef
ReturnStatementExists := false

(O4.A.4)

Finally the dynamic semantics of a return task (Montage O4.M.9) sets the
value of its caller, decrements the recursion level and passes control to the next
task of the caller.

5 Modules and Data Type Extension

In this section we specify Oberon support for modular programming and data
type extensions.

490 Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



5.1 Modules

ModuleList ::= Module f Module g (O5.G.1)

A list of modules replaces the program construct (O1.M.15) as start symbol of
our language. Like a program a module contains a declaration sequence and a
statement sequence, called the body of the module. In addition a module contains
a list of imports of other modules. Within a module exported code objects of
imported modules can be use. A code object is exported if it is marked with an
asterix \*".

CodeObject = ExportIdent (O5.G.2)

For simplicity we assume that the \*"-mark of an export identi�er is recog-
nized by the scanner, and that the name and the export mark are available as
independent micro-syntax functions Name and Exported.

Name: ExportIdent ! String
Exported: ExportIdent ! Boolean

(O5.�.1)

Like this the name of an export identi�er is accessed like the name of a normal
identi�ers, and the existing speci�cations can remain valid.

The static analysis of a module (Montage O5.M.1) updates the �eld function
such, that the module object corresponds to a record, with all exported code
objects as �elds2. Thus an exported object of a module can be accessed by
applying the �eld function to its module object.

endvary
endif

S-ModObject.Field(c.Name) := TABLE(c.Name)

S-ModObject.Field(c.Name) := c
else

condition S-ModObject.Name = S-Ident.Name

I

NTNT

if TypeObject(c) then

T

NT NT

satisfying c CodeObjectOf S-DeclSequence and c.Exported
vary c over CodeObject

S-Import

LIST

Module = MODULE ModObject\;"

[BEGIN StatementSequence] END Ident\."
[IMPORT [Import f\," Importg]] DeclSequence

S-StatementSequence

S-DeclSequenceS-ModObject

Montage O5.M.1: Semantics of a module.

2 As usual an exception are types that are entered in the table instead of their type
objects (see as well Montage O1.M.5).

491Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



CurrentTask := NextTask
Initialised := true

else
CurrentTask := Return

CurModule := Self

ModuleTable(Name) = undef and not Prede�ned(Name)

endif

ParentModule := Self
StaticType := Self

condition

ModObject = Ident

TABLE(Name) := Self
Scope := 0
ModuleTable(Name) := Self

ModObject:
if Initialised then

endvary
Table(0, n) := undef

vary n over String
satisfying not Prede�ned(n)

Montage O5.M.2: Semantics of a module object.

A module object enters itself in the table

ModuleTable: String ! ModObject (O5.�.2)

sets the scope to 0, and purges the non-prede�ned entries in the table. The
function

CurModule: ModObject (O5.�.3)

is set to the currently analyzed module. In the module Montage O5.M.1 we see
that the module object is the anchor of a NextTask-linked ring list. The dynamic
semantics of the module object sets the boolean �eld

Initialised: ModObject ! Boolean (O5.�.4)

and passes control to the next task. If Initialised is already set, the module
object passes control directly back to its return task. Like this it is guaranteed
that each module is initialized only once.

The dynamic semantics of an import (Montage O5.M.3) passes control to
the imported module and sets the return task of that module to its next task.
Syntactically an import consists of an import object and an optional identi�er.
If the identi�er is present, it denotes the name of the imported object, and the
import object denotes a second name, the so called local name, which will be
used within the module to refer to the imported object. If the optional identi�er
is not present, the import object denotes both the global and the local name of
the imported object. The static analysis of an import enters the imported object
under its local name in the TABLE. The static semantics guarantees that the
imported module is in the ModuleTable.
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if NoNode(S-Ident) then

CurrentTask := Decl
Decl.Return := NextTask

T

(not NoNode(S-Ident) implies ModuleTable(S-Ident) 6= undef)

Decl := ModuleTable(S-ImportObject.Name)

else
ModuleTable(S-ImportObject.Name)

Decl := ModuleTable(S-Ident.Name)

and
(NoNode(S-Ident) implies ModuleTable(S-ImportObject) 6= undef)

I

TABLE(S-ImportObject.Name) :=

TABLE(S-ImportObject.Name) :=
ModuleTable(S-Ident.Name)

endif

condition TABLE(S-ImportObject.Name) = undef
and

S-Ident

Import
= IdentImportObject
::= ImportObject [\:" Ident]

ImportObject:

S-ImportObject

Montage O5.M.3: Semantics of an import.

The static semantics of Oberon guarantees that the local names of imported
modules cannot be used for user de�ned constants, types, variables, and pro-
cedures. Therefore we need to add a static semantics condition for all of them.

conjunct condition of ConstDeclaration O2.M.7 with:

not ModObject(TABLE(S-ConstObject.Name))
(O5.C.1)

conjunct condition of TypeDeclaration O1.M.5 with:
not ModObject(TABLE(S-TypeObject.Name))

(O5.C.2)

conjunct condition of VarDeclaration O1.M.1 with:
for all v in list S-VarObject holds
not ModObject(TABLE(v.Name))

(O5.C.3)

conjunct condition of ProcObject O3.M.1 with:
not ModObject(TABLE(Name))

(O5.C.4)

Another static constraint is that only globally declared code objects may be
exported. Therefore a code object in the declaration sequence of a procedure
declaration is not allowed to be marked with the export \*".

conjunct condition of ProcDeclaration O4.M.1 with:

for all c: CodeObject
satisfying c CodeObjectOf S-DeclSequence holds
not c.Exported

(O5.C.5)
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Before we specify how the imported objects can be referenced, we complete
our collection of minor re�nements of the static semantics of Oberon with an
additional condition for assignments. The assignment of procedures to procedure
variables is only allowed for globally declared procedures. From the structure of
modules, declaration, and procedure declarations we see that globally declared
procedures are located exactly four levels below their module in the derivation
tree.

conjunct condition of Assignment O4.C.12 with:
ProcOrForwardObject(S-Expression.VALUE) implies
Module(S-Expression.VALUE.Up.Up.Up.Up)

(O5.C.6)

5.2 External References

External type identi�ers are an additional synonym of pointable types (O2.G.9).

PointableType = ExternalTypeIdent j
RecordType j ArrayType

(O5.G.3)

A reference to an externally de�ned type (Montage O5.M.4) gets the module
object using the TABLE and then accesses the type using the �eld function.

ExternalType ,
TABLE(S1-Ident.Name).Field(S2-Ident.Name)

(O5.A.1)

The static analysis sets the initial and terminal leaves of an external type
identi�er to the initial and terminal leaves of the referenced type. The static
semantics guarantees that the referenced type is de�ned, e.g. is member of the
universe TypeTask. The static semantics guarantees as well that the module of
the external type is imported, and that the used type is exported. This second
static semantics constraint is implied from the �rst, since only imported modules
are in the TABLE and only exported types are accessible as �elds.

Initial := ExternalType
Terminal := ExternalType

TypeTask(ExternalType)

ExternalTypeIdent

condition

::= Ident\."Ident

Montage O5.M.4: Semantics of an external type reference.

Result type identi�ers (Montage O5.M.5) can reference external types as
well. As already noted in O4.A.3 the static analysis must set the global function
ResultTYPE.

LocalType , TABLE(S1-Ident.Name) (O5.A.2)
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Initial := ExternalType

endif

(NoNode(S2-Ident) implies TypeTask(LocalType))
and
(not NoNode(S2-Ident) implies TypeTask(ExternalType))

else

Terminal := ExternalType

if NoNode(S2-Ident) then

S2-Ident

condition

ResultTypeId

Initial := LocalType
Terminal := LocalType

S1-Ident

ResultTYPE := LocalType

::= Ident[\."Ident]

ResultTYPE := ExternalType

Montage O5.M.5: Semantics of a result type identi�er.

External constants, variables, and procedures are referenced with quali�ed
designators (Montage O1.M.13). A quali�ed designator is an external reference
if the type of the argument is a ModObject (see update StaticType := Self in
Montage O5.M.2). In this case the following rule modi�es the �eld selector such
that its dynamic behavior corresponds exactly to that of a simple designator.

block static analysis of Qualified O1.M.13 with:

if ModObject(ArgType) then
S-FieldSelector.StaticType := DirectField.StaticType
S-FieldSelector.Decl := DirectField
Simple(FieldSelector) := true

endif

(O5.A.3)

The static semantics of a quali�ed designator must be rede�ned in order to
guarantee that only exported objects are referenced. The �rst two parts of the
following condition guarantee that one accesses only exported �elds of exter-
nally declared record types. A record type is declared externally if its parent
module ParentModule is not equal to the currently analyzed module CurMod-
ule (O5.�.3). The third part of the condition guarantees that only exported
external objects are referenced.

replace condition of Qualified O1.M.13 with:

RECORD(ArgType) and DirectField 6= undef and
(ArgType.ParentModule 6= CurModule
implies DirectField.Exported)

or POINTER(ArgType) and IndirectField 6= undef and
(ArgType.PointedType.ParentModule 6= CurModule
implies IndirectField.Exported)

or ModObject(ArgType) and
not TypeTask(DirectField) and
DirectField.Exported

(O5.C.7)
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5.3 Record Extension

In this section we present record type extensions [8]. A record type extension
adds new �elds to a given base type. The extension is a sub-type of its base
type, e.g. wherever an instance of the base type can be used, an instance of the
extended type is allowed as well. If the base type is an external de�ned type,
the non{exported �elds may be overwritten. This speci�c situation is the only
possibility to overwrite �elds in Oberon, but it leads to a much more general
record model. This more general model can be used to model the class concept
of strong{typed object{oriented languages like Java.

Syntactically the base type of a record type is given in parentheses after the
RECORD-token.

infix in production RecordType O1.M.10
after RECORD:

[\(" BaseTypeId \)"]
BaseTypeId = TypeIdent j ExternalTypeIdent

(O5.G.4)

As we have seen for the quali�ed designators, one needs to know in which module
a record type is declared. Thus the static analysis of a record type sets the �eld
ParentModule to the current module.

block static analysis of RecordType O1.M.10 with:
S-RECORD.ParentModule := CurModule

(O5.A.4)

The �eld

BaseType: RECORD ! Type (O5.�.5)

is de�ned graphically with a data 
ow arrow from the RECORD-token to a
block representing the BaseTypeId. The static semantics must guarantee that
the names of the record �elds are di�erent from the names of the �elds of the
base type. An exception are non-exported �elds of the base type which may be
overwritten, if they externally declared. The condition uses the macro O1.C.3 in
order to quantify over the �eld of two record types. The term

Self.S-BaseTypeId.Terminal.Up

refers to the RecordType-Node of the base type.

conjunct condition of RecordType O1.M.10 with:
not NoNode(S-BaseTypeId) implies
RECORD(S-BaseTypeId) and
ForFieldObjects f1 Of Self.S-BaseTypeId.Terminal.Up
AndForFieldObjects f2 Of Self
(S-BaseTypeId.ParentModule = CurModule
implies f1.Name 6= f2.Name)

and
(f1.Exported
implies f1.Name 6= f2.Name)

(O5.C.8)
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The create service of a record type with base type creates a record y of the
base type and then a second new element x is allocated and inherits all �elds of
y. The two objects x and y are linked by the in�x function

As: Composite � RECORD ! Composite (O5.�.6)

e.g. if the type of y is Y then (x As Y) is set to y. The RecordEnd -token
maintains the re
exive, transitive closure of these links. In the following we give
the formal rules for this process.

RECORD:

if Mode = create then
if NoNode(BaseType) then
extend Composite with o
Dest := o

endextend
CurrentTask := NextTask

else
BaseType.CREATE() ;
extend Composite with o
Dest := o
vary s over String
o.Field(s) := NewObject.Field(s)

endvary
(o As BaseType) := NewObject

endextend
CurrentTask := NextTask

endif
endif

(O5.D.1)

If there is no base type, the rule is the same as the create service in the old
record type Montage O1.M.10. Otherwise the create service of the base type is
called, and afterwards a new object is allocated, the �elds of the base type object
are copied, and the relation As is updated. Like this there is only a As-linked list
from the record to its super{types. The RecordEnd-token of each record type
makes the local transitive closure, e.g. de�nes the As-relation between itself and
all its super-types. The relation

LocalAsClosure: RECORD � Composite ! Boolean (O5.�.7)

contains all pairs (t, r) such that the new record Parent.Dest interpreted as t
is r:

{ LocalAsClosure(Parent, Parent.Dest)
{ for t, r1, r2:
t 2 REORD and r1, r2 2 Composite
and LocalAsClosure(t, r1)
and (r1 As t.BaseType) = r2:
LocalAsClosure(t.BaseType, r2)

Using this relation the dynamic semantics of the RecordEnd-token is
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RecordEnd:

if Mode = create then
vary t over RECORD
vary r over Composite
satisfying LocalAsClosure(t,r)
(Parent.Dest As t) := r
(r As Parent) := Parent.Dest

endvary
endvary
CurrentTask := Parent.Return

(O5.D.2)

The copy service of a record type replaces the source and the destination
with their correct versions. If there is a base type, its copy service is used to
copy the �elds belonging to the base type.

RECORD:

if Mode = copy then
Scr := (Scr As CurrentTask)
Dest := (Dest As CurrentTask)
if NoNode(BaseType) then
CurrentTask := NextTask

else
BaseType.COPY(Src, Dest)

endif
endif

(O5.D.3)

The changes of the record model triggers the following re�nements:

{ The macro Assignable to must be re�ned in order to allow assignments of
sub-type instances to super-type instances:

disjunct definition of AssignableTo O4.C.11 with:
t1 ExtensionOf t2

(O5.C.9)

where ExtensionOf is recursively de�ned as follows:

t1 ExtensionOf t2 ,
t1.BaseType = t2 or
exists t such that
t1.BaseType = t and t ExtensionOf t2

(O5.C.10)

In combination with the existing de�nition this implies as well, that a pointer
to sub{type instance and a pointer to a super{type instance are assignable.

{ In the dynamic semantics of an assignment we have to make a case distinction
between pointable (structured), pointer, and ground types. The copy service
guarantees type correctness in the case of pointable types, in the case of
pointer types, we apply the As{function, and in the case of ground types
there is no problem.
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replace dynamic semantics of Assignment O2.D.3 with:
\:="

if PointableTypeTask(Left.StaticType) then
Left.StaticType.COPY(Right.AssocOBJ, Left.AssocOBJ)

elseif POINTER(Left.StaticType) then
Left.AssocOBJ.Value :=
(Right.VALUE As Left.StaticType.PointedType)

else
Left.AssocOBJ.Value := Right.VALUE

endif

(O5.D.4)

{ In section 4.2 we speci�ed that a variable parameter may only be actualized
with a parameter of identical type (see O4.C.13. This rule is now relaxed for
extensions of the parameter type.

VariableParamCompatibleTypes (t1, t2 ) ,
t1 = t2 or
IdenticProcTypes(t1, t2 ) or
t1 ExtensionOf t2

(O5.C.11)

5.4 Type Guards and Tests

In this chapter we complete the speci�cation of Oberon with constructs that are
needed for strong{typing in a language featuring type extensions: type guards
and type tests

Both type guards and type test consist of a designator and a guarding type.
The guarding type must be an extension of the static type of the designator. If
the designator references a variable parameter, it may be a pointer or a record,
otherwise it must be a pointer. The static semantics of type guard and test is
the following macro.

TypeGuardAndTestConditions ,
POINTER(S-GuardTypeId) and
S-GuardTypeId.PointedType ExtensionOf
S-Designator.StaticType.PointedType

or
RECORD(S-GuardTypeId) and
VariableParamObj(S-Designator.Decl) and
S-GuardTypeId ExtensionOf S-Designator.StaticType

(O5.C.12)

The non-terminal TypeGuard is a synonym of Designator. The dynamic se-
mantics of a type guard (Montage O5.M.6) tests whether the argument can be
interpreted as the guarding type. If yes, the corresponding interpretation is as-
signed to the value respectively the associated object. If no, a run{time{error is
raised.

The non-terminal TypeTest is a synonym of Expression. The dynamic seman-
tics of a type test (Montage O5.M.7) sets the value �eld to true, if the argument
can be interpreted as the guarding type otherwise the value is set to false.
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T

GuardTypeId = TypeIdent j ExternalTypeId

I NT

endif
endif

else

NT

endif
CurrentTask := RunTimeError

Argument

StaticType

else

CurrentTask := RunTimeError

else

TypeGuard

if (Argument.AssocOBJ As StaticType) 6= undef then
SetTo(Argument.AssocOBJ As StaticType)
CurrentTask := NextTask

S-Designator

if (Argument.AssocOBJ.Value As StaticType.PointedType) 6= undef then
AssocOBJ:= Argument.AssocOBJ
VALUE := (Argument.AssocOBJ.Value As StaticType.PointedType)
CurrentTask := NextTask

if RECORD(StaticType) then

S-\)"S-GuardTypeId

::= Designator\(" GuardTypeId \)"

condition TypeGuardAndTestConditions

\)":

Montage O5.M.6: Semantics of a type guard.

StaticType

Argument

endif

NTI NT T

else

condition TypeGuardAndTestConditions

S-GuardTypeIdS-Designator

TypeTest ::= Designator IS GuardTypeId

S-IS

IS:
if RECORD(StaticType) and (Argument.AssocOBJ As StaticType) 6= undef
or

(Argument.AssocOBJ.Value As StaticType.PointedType) 6= undef then
POINTER(StaticType) and

VALUE := true

VALUE := false

CurrentTask := NextTask

Montage O5.M.7: Semantics of a type test.
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WithStatement ::= WITH Guard DO
StatementSequence WithEnd

WithEnd = END

Guard ::= VariableId GuardTask
GuardTypeId

GuardTask = \:"
VariableId ::= Ident[\."Ident]

(O5.G.5)

The with statement is used to apply a type guard to a whole statement sequence.
The variable identi�er is a local or external reference to a variable (Montage
O5.M.8). The static semantics of the guard part of a with statement (Montage
O5.M.9) checks the same as the TypeGuardAndTestConditions.

GuardConditions ,
TypeGuardAndTestConditions with
S-Designator substituted by S-VariableId

(O5.C.13)

The dynamic semantics is similar to the dynamic semantics of a type guard,
but it changes directly the associated object of the declaration. Analogously the
static analysis changes the typing of the declaration. All changes are reset to the
initial values by the with statement (Montage O5.M.10).

(NoNode(S1-Ident) implies VarObject(TABLE(S2-Ident.Name))
and

Simple(S2-Ident) := true
if NoNode(S1-Ident) then

(not NoNode(S1-Ident) implies VarObject(ExternalVarObject))

else

I

endif
where ExternalVarObject ,

Field(TABLE(S1-Ident.Name), S2-Ident.Name)

T

S2-Ident.StaticType := ExternalVarObject.StaticType

condition

S2-Ident

::= [Ident\."]IdentVariableId

S1-Ident

S2-Ident.StaticType := TABLE(S2-Ident.Name).StaticType

S2-Ident.Decl := ExternalVarObject

S2-Ident.Decl := TABLE(S2-Ident.Name)

Montage O5.M.8: Semantics of a variable identi�er.
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else

T

CurrentTask := RunTimeErrorelse

I

endif

Argument

StaticType

endif

NT NT

else

GuardTask = \:"

endif

CurrentTask := RunTimeError

Guard

S-VariableId.Decl.StaticType := S-GuardTypeId

S-GuardTypeId

if (Argument.AssocOBJ.Value As StaticType.PointedType) 6= undef then
Argument.AssocOBJ.Value :=

(Argument.AssocOBJ.Value As StaticType.PointedType)
CurrentTask := NextTask

::= VariableId GuardTask GuardTypeId

S-VariableId

condition GuardConditions

GuardTask:
if RECORD(StaticType) then
if (Argument.AssocOBJ As StaticType) 6= undef then
Argument.Decl.AssocOBJ:= (Argument.AssocOBJ As StaticType)
CurrentTask := NextTask

S-GuardTask

Montage O5.M.9: Semantics of the guard part of a with statement.

NT

T

else

NT

endif

Argument

WithEnd

I

CurrentTask := NextTask

(Argument.Decl.AssocOBJ.Value As Argument.StaticType.PointedType)
Argument.Decl.AssocOBJ.Value :=

S-StatementSequenceS-Guard

S-VariableId

S-WithEnd

S-Guard.S-VariableId.Decl.StaticType := S-Guard.S-VariableId.StaticType

WithEnd:
if RECORD(Argument.StaticType) then
Argument.Decl.AssocOBJ:=
(Argument.Decl.AssocOBJ As Argument.StaticType)

= END

::= WITH Guard DO StatementSequence WithEndWithStatement

Montage O5.M.10: Semantics of a with statement.

502 Kutter Ph. W., Pierantonio A.: The Formal Specification of Oberon



6 Conclusions

In this paper, we gave the speci�cation of all constructs of the programming
language Oberon. The features which have not been covered are the built{in
procedures, the exact textual representation of numbers and sets, and the module
System which de�nes low level features that break the data abstraction, e.g. allow
for byte wise access of the store.

In order to obtain a correct speci�cation we adhered to the original Oberon
report [7] and to a book on programming in Oberon [5]. Nevertheless for certain
details we had to consult several times the creator of the language [9]. In one
case the design-intentions [9] where di�erent to what has been implemented in
the original compiler, i.e. a type guard of a pointer to Nil should not raise a
run{time{error.
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