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Abstract: The heuristics most of the current assignment schemes use is based on
satisfying the following rule of thumb: keeping the processors busy leads to a ‘good’ as-
signment. Such schemes are said to be work-greedy. This paper presents new bounds on
the performance of work-greedy schemes, taking into account the degree of parallelism
visible between the tasks and the inter-task communication delays.
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1 Introduction

A program with multiple tasks can be viewed as a dependency graph: the vertices
represent the tasks and the edges represent the dependencies between the tasks.

Dependency graphs may have weights associated with their vertices and
edges: the weight on a vertex indicates the amount of computation the cor-
responding task performs, and the weight on an edge indicates the amount of
communication between the tasks the edge connects. !

Assignment of a dependency graph is a many-to-one mapping function M :
T — P, which maps the set of tasks T onto the set of processors P. M is defined
for each task of T. In essence, the assignment divides the task set T into m, some
possibly empty, ordered subsets or partitions. Here m is the cardinality of the
set P. The total time the set of tasks T takes to execute on the set of processors
P is called the makespan. The objective of the assignment is to minimize the
makespan.

A naive approach to solve the assignment problem is to enumerate all the pos-
sible assignments and choose the assignment that gives the minimum makespan.
However, this approach will take exponential time. It is very unlikely that there
would be any cleverer scheme to find the optimal assignment in polynomial

! Another representation for a program with multiple tasks is an interaction graph
where the vertices represent the tasks and the edges represent interactions between
the tasks. Dependencies are not explicit in an interaction graph. Some models of
computation, for instance CSP [Hoare, 1978] or CCS [Milner, 1989], are well suited
to the interaction graph forms whilst some other models of computation, for in-
stance a dataflow computation model [Gaudiot et al., 1988], are well suited to the
dependency graph forms. The ease of transformation of the program into a suitable
graph form thus depends on the user’s model of computation. Programs written us-
ing PVM, for instance, are easy to model as an interaction graph whereas programs
written in SISAL can be easily modelled as a dependency graph.
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time, since even the restricted cases of the assignment problem have been proved
to be NP-complete [Ullman, 1976, Rayward-Smith, 1987]. Practical assignment
schemes thus settle for some heuristics that would find sub-optimal assign-
ments in polynomial time [El-Rewini and Lewis, 1990, Gerasoulis et al., 1990,
Shirazi et al., 1995, Manoharan and Thanisch, 1991, Wu and Gajski, 1990].

Most of these heuristic schemes are work-greedy: they do not let a pro-
cessor idle when there is a task the processor could execute. That is, an as-
signment is work-greedy if no processor remains idle when there is a task the
processor could execute. Work-greedy assignments are time-driven: tasks and
processors are selected at specific time instances, i.e. when a processor be-
comes free or when a task finishes its execution. For a review of some work-
greedy schemes, see [El-Rewini et al., 1995] and for a comparison of some of the
schemes, see [Manoharan and Topham, 1995].

Work-greedy assignment schemes, in addition to finding where to execute a
task, attempt to find when to execute a task. That is, they always predict the
start and finish times of the tasks. This permits computation of bounds on the
makespans of work-greedy assignments.

A work-greedy assignment does not guarantee optimality. But, it is possible
to show how close to optimal a work-greedy assignment is. This paper presents
some new results bounding the makespans of work-greedy assignments.

The rest of this paper is organized as follows. Section 2 presents the bound on
the makespan of a work-greedy assignment by taking into account the possible
communication delays between the tasks. This bound is an improvement over the
bounds presented by Hwang et al. [Hwang et al., 1989], Sarkar [Sarkar, 1989),
and Lee et al. [Lee et al., 1988]. Section 3 discusses the implications of these
bounds on makespans. The final section concludes with a summary.

1.1 Notations

Some notations that need to be used subsequently are defined here. Other nota-
tions may be defined in context.

n number of tasks.

m number of processors.

T set of tasks { Ty, T1,...,Th—1 }-

P set of processors { Py, P1,...,Ppn_1 }.

T execution time of 7; assumed common on all P;.

v(T;, T;) volume of information transfer between task T; and task Tj.
w total execution time of T on P (i.e. the makespan).

1.2 Assumptions

The primary architectural considerations are the set of processors and the topol-
ogy in which the processors are connected. The processor topology is modelled
as a graph with vertices representing the processors and weighted edges repre-
senting the interconnections between the processors. The weight on a processor
graph edge represents the message transfer rate between the processors con-
nected by this edge. All the processors are assumed to be capable of doing the
functions required by the tasks.



804 Manoharan S.: Bounds on the Performance of Work-greedy Assignment Schemes

Task graphs are assumed to be acyclic. A dataflow execution model is as-
sumed for the execution of task graphs. That is, a task can begin its execution
when all its inputs are available, and finishes only when it has produced all the
required outputs. Communication delay may occur when a task sends its output
to its successor tasks. This delay is dependent on the volume of information
being transferred and the distance the information transfer rates. Tasks, once
scheduled, cannot be preempted. Task replication is not considered, that is, no
task can execute on more than one processor. Nothing is assumed about the
granularity of the tasks: a task may be a procedure; or it may be an instruction.

See Figure 1 for example task and processor graphs. Figure 1(a) shows the
task dependency graph corresponding to the evaluation of an expression z =
F(f(z),g(y)). Figure 1(b) shows a three-processor system where all processors
are connected to each other.

O ¢

Figure 1: Example task and processor graphs.

2 Bound on the Makespan

In this section we establish a bound on the makespan of work-greedy assignments
of dependency graphs, considering communication costs. Examples of work-
greedy assignment schemes that consider communication costs include ETF
[Hwang et al., 1989], ERT [Lee et al., 1988], MCP [Wu and Gajski, 1990] and
MH [El-Rewini and Lewis, 1990].

Hwang et al. [Hwang et al., 1989] and Lee et al. [Lee et al., 1988] proved bou-
nds on the makespans of ETF and ERT. They have proved that

1 )
w' < (2 — —> w' + C1comm
m

where ' is the makespan of the work-greedy assignment (either ETF or ERT), w?
is the makespan of the optimal assignment without considering communication
delays, and C.omm is the maximum communication delay along some chain in
the task graph.

We note that the above bound can be improved in three ways:
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1. When giving a guarantee for the makespan of a certain assignment, it is more
useful to give a guarantee in terms of w, the optimal makespan not ignoring
the communication delay. That is, it is less useful to express w’ in terms of
w' than to express it in terms of w.

2. Tt is possible to generalize the bound so as to make it applicable to all work-
greedy assignments.

3. Incorporating a degree of average software parallelism in the bound will high-
light a symmetrical relationship between software parallelism and hardware
parallelism.

We thus present in the following theorem a new generalized bound.

Let 7* be the sum of execution times of tasks along the longest chain (ignoring
communications) of the dependency graph and 7+ be Y 7;; and let 7 = 77 /7*.
Then we have

Theorem 1.

! -1 C
w—§1+(m )+m “’:“” ifm<m
w ™ T

! -1 C
w—§1+(7r )+7r == ifm>nw
w m T

where w is the length of the optimal makespan, that is not necessarily work-
greedy; and W' is the makespan of any arbitrary work-greedy assignment. Ceomm
is the mazimum communication delay along some chain of tasks.

The proof of this theorem relies on a chain of tasks that we use to calculate
Ceomm and the sum of processor idle times. Before proceeding with the proof,
therefore, we will look at an example illustrating how one would find such a
chain. Refer to the Gantt chart shown in Figure 2.
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Figure 2: Gantt chart showing a task schedule.
The shaded areas in the figure denote executing tasks and the unshaded

areas denote idling processors. In the regions marked A all processors are busy
executing, and in the regions marked B, at least one processor is idle.
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Task T finishes execution at w’. Task Tg could not have started execution
earlier because it is not ready until it receives input from task T5. Task T5
could not have started execution earlier because it is dependent on task 7, and
therefore cannot start before Ty is finished and supplied input. Using similar
arguments we find tasks T3, T3, and T;. Task T7 could not have started earlier
because there is no free processor that could execute it earlier.

If < be the partial order on T, the tasks 77 through to Ts form a chain

T, <Ty <...<Tg

such that at every time instant ¢ € B some task T} in the chain is being exe-
cuted or is waiting for input from T;_; (that has finished executing) to start its
execution.

Ceomm, in this example, is the sum of communication times between 77 and
T>, between Ts and T3, between T5 and Ty, between Ty and Ts, and between T}
and Tg. The sum of all processor idle times, I, is given by

6 6
Iém (ZTi+Ccomm> _ZTi
i=1

i=1

where m, the number of processors, is 5. The equality holds if no more than one
processor is busy in the regions B.
Proof of Theorem 1.

For any (and thus, the optimal) assignment of makespan w, the following
inequality holds true:

o+
w > max |:—,T*:| (1)
m

Let < be the partial order on T. The rule of work-greedy assignments dictates
that for any arbitrary work-greedy assignment of makespan w’, there exists a
chain of tasks

Teqg <Tep < ... < Ty

such that at every time instant ¢ € B some T ; is being executed or is waiting
for input from T¢ ;_; (that has finished executing) to start its execution. Here
B is the set of all points of time in [0,w'] for which at least one processor is idle.
Let mtt(P;, Pj) be the maximum time to transfer unit information from pro-
cessor P; to processor P; (possibly via other processors). Recall that M(T') is
the processor to which task 7T is assigned. Ceomm is calculated as follows:
Ceomm = 3;11 mtt(M(Tcﬁj)v M(Tcﬁj+1)) x U(Tcﬁja T0,j+l)
Let the sum of all the processor idle times in this assignment be I. Then,

v v
I<m ZTC,J- + Ceomm | — ZTc,j (2)
j=1

Jj=1

But for any chain in an assignment, the following inequality holds true:

Yy
DT <7 3)
j=1
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Now since 1
w'=—[r"+1],
m

from (2) and (3) we get,

+ —17*
W < % n % + Covmm (4)

Note again that I includes all idle times of processors.
When 7 /m > 7*, from (1) and (4) we get the bound:

m —1 C1comm
<1 m 5
<1+ ——+ s (5)

SRS

When 7% > 7t /m, from (1) and (4) we get the bound:

m—1 C1comm
<1 6
<1+ = (6)

€&

Both (5) and (6) always hold true. However, when m > 7 the bound of (6)

is tighter, otherwise the bound of (5) is tighter.
O

m is the degree of average software parallelism. It is a lower bound on the
amount of parallelism within a task dependency graph.

Compare the bounds of Theorem 1 with that of Hwang et al.:
Y < (2—i)+0”ﬂ: (1+m—_1)+0”ﬂ§ (1+m_1)+ Ceomm

v m m w* m

wt wt max (i,r*)
m

The bounds of Theorem 1

— are applicable to all work-greedy assignments, not just ETF and ERT,

— express w' in terms of the optimal makespan not ignoring the communication
delay, and

— highlight the symmetrical relationship between m and 7.

2.1 Construction of the chain

The set of all points in time in the interval [0, w'] is divided into two subsets A
and B as follows. A is the set of points in time for which all processors are busy.
B is the set of points in time for which at least one processor is idle.

Let ¥; and ¢; denote respectively the start and finish times of T;. The fol-
lowing algorithm constructs the chain. It is similar to the chain construction
algorithm of Hwang et al. [Hwang et al., 1989]. The differences are the manner
in which communication costs are computed and the notations used.

1. Let the chain C be an ordered set of tasks, set to null initially.

2. T, < a task that finishes at time w'.

3. If ¢, € B, then there exists a processor which for some ¢ > 0 is idle during
the time interval [, — €,%,]. This occurs only when there is a task T}, an
immediate predecessor of T, such that ¢, + mtt(M(Ty,), M(Ty)) v(T,, Tp)
is equal to v,. Insert T, into C, T, < T} and go to 3.
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4. Let u = Lu.b.2 {z|z < ¢, and = € B}. If u is zero, output C and stop.

5. Find a task T} such that v, = max;{;|T; a predecessor of T}, and ¢; < u}.
There is a sequence of tasks, T;, Tj1,... T}, such that T, < T, < Tj1 < ... <
T;, < T,. Insert T, into C, T, < T} and go to 3.

The maximum time to transfer information between processors depends as
well on the underlying routing strategy and the network contention. These de-
pendencies were ignored in the procedure above.

2.2 Bounds when communication cost can be ignored
By setting Ceopmm to zero in Theorem 1, we get the following bounds:
!
-1
Wy m=b
w T
wl

§1+M
w m

ifm<mr (7)

ifm>w (8)

According to bounds (7) and (8), as m — 00, w'/w reaches unity (rather than
2 as Graham’s bound suggests [Graham, 1976]). This highlights the fact that
with unlimited processing resources, any work-greedy assignment is optimal. In
practical terms, a work-greedy assignment is optimal if m > n.
Rearranging (1) and (4) and setting Ceomm to zero lead to the following
bound established by Sarkar [Sarkar, 1989], Theorem 4-4, page 60:
T+ * 1 =+ *
max[—,T ] <w< = [rt 4+ (m-1)77].
m m

2.3 A bound on the number of processors

The number of processors required to finish executing all the tasks in the min-
imum possible time is bounded below by the ratio of the total execution time
requirement of the tasks and the minimum makespan [McNaughton, 1959]. The
total execution time requirement is 7+ and the minimum possible makespan is
7*. A lower bound on the number of processors is thus given by

That is, any (not necessarily work-greedy) assignment will require at least []
processors, if it is to execute the task graph in the minimum possible time.

For tighter lower bounds on the number of processors, the reader is referred
to [Al-Mouhamed, 1990].

2.4 A bound on speedup

The sequential execution time of a task graph is 71. The parallel execution
time of the graph cannot be less than 7*. The speedup from parallel execution,
therefore, cannot be greater than :+ The speedup cannot also be greater than
m, the number of processors. Therefore, the maximum speedup one can obtain

for a given task graph is min(m, 7).

2 Least upper bound
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3 Implications of the Results

The hardware parallelism, m, and the degree of average software parallelism,
7, have a symmetric relation in the bounds of Theorem 1. When m > =, the
makespan may be limited by software ‘sequentialism’; and when ©m > m the
makespan may be limited by hardware inadequacy.

Note that, since 7 is only a lower bound on software parallelism, we can find
cases where m > m and yet the makespan is limited by hardware inadequacy.
For example, consider the task graph of Figure 3. Let 7; = 1 and ¢p; = 0 for
all ;. Thus 77 = 8, 7* = 2, and ™ = 4. Let m, the number of processors, be 5.
The makespan for the assignment of this task graph on these processors is 3. To
reach the optimal makespan of 2, however, one needs to have 7 processors. We
therefore see that the makespan here is limited by hardware inadequacy even
though m > .

To

oo oo erier

Figure 3: A task graph where makespan may be limited by hardware inadequacy.

It is known that, when communication costs can be ignored, any work-greedy
assignment would be close to the optimal assignment by no more than a small
constant factor. However, if communication costs are arbitrary, the performance
can degrade considerably with bad assignment schemes. Consider the following
loose bound derived from (5) and (6):

!
Y <24
w
. Ccomm Ccomm
where A\ = min(m, m) T+ min(m )

A signifies the communication to computation ratio along the critical path of the
(arbitrary) assignment. Bad assignments will have large values of A and thus they
will have a poor performance compared to the optimal assignment. For instance,
a work-greedy assignment scheme that ignores the communication costs when
the dependency graph does have communication requirements may yield a large
value of .
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4 Summary and Conclusions

The heuristics most of the current assignment schemes use is based on satisfying
the following rule of thumb: keeping the processors busy leads to a ‘good’ assign-
ment. Such schemes are said to be work-greedy. Work-greedy assignments are
important since most of them provide a solution with a guarantee: it is known
that, when communication costs can be ignored, any work-greedy assignment
would be close to the optimal assignment by no more than a small constant
factor. It is proved that, should the communication costs be taken into account,
this factor may no longer be small. That is, with communication costs, a work-
greedy assignment can perform worse than the optimal assignment by a large
factor that depends on the communication costs along some path in the task
graph. Therefore, if an assignment problem dictates that it involves possible
communication delays, then the heuristic assignment schemes must take these
delays into account in order to produce good assignments.
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