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Abstract: Stack filters are a class of non-linear spatial operators used for the suppression of
noise in signals. In this work their design is formulated as an optimisation problem and a
method that uses Genetic Algorithms (GAs) to perform the configuration is explained. Because
of its computational complexity the process has been implemented as a distributed parallel GA
using the Parallel Virtual Machine (PVM) software. We present the results of applying our
stack filters to the restoration of magnetic resonance (MR) images corrupted with uniform, un-
corellated, noise showing improved statistical performance compared with the median filter and
indicating better retention of image details. The efficiency of the parallel implementation is
examined, addressing both algorithmic and data decomposition, showing that execution times
can be significantly reduced by distributing the task across a network of heterogeneous
processors.
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1 Introduction

Stack filters are adaptive, non linear, spatial operators that can perform well in
suppressing noise. Their main advantages are their ability to adapt to different types of
noise and their generality. Stack filters are supersets of morphological operators and
rank order filters. Their main drawback is the computational complexity of their
configuration. As will be shown, this complexity, in the general case, is of the order of
a double exponential.
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1.1 Definitions

Initially we will describe the stacking property and introduce the idea of a positive
Boolean function (pBf). A binary sequence X possesses the stacking property if:

X, 2X; = i>] Eq: 1
An ordered sequence of n binary signals X, possesses the stacking property if it is

monotonically decreasing, i.e. X, =X, 2...2X,. A Boolean function f possesses the

stacking property if, when applied to an ordered sequence of binary signals that have
the stacking property, produces an output that also has the stacking property:

x2y0 f(%)=zf(y) Eq: 2

It has been shown [Gilbert 54] that a pBf possesses the stacking property if it can be
expressed without complements in its input variables and [Nodes and Gallagher 82]
and [Muroga 71] showed that for n samples each pBf can be uniquely expressed as a
minimum sum of products (MSP) of the input variables:

(%) = Z’plmi(g) Eq: 3
where
m,(X) = [1x Eq: 4

]
some j

th
and pj is a Boolean variable indicating whether the i Boolean product contributes to

the result of applying function f. The symbols of summation and product in the above
equations denote the OR and AND operators respectively.

1.2 Stack Filter Application

A generalised digital filter applies a mathematical process to a collection of one or
more input samples producing one or more output values. When applied to a extended
sequence of input samples, the domain over which the filter is applied is defined as the
region of support (or window) of the filter. The stages of applying a stack filter
operator are described by [Wendt et al. 86, Maragos and Schafer 87] as:

(i)  An N-point discrete signal (having integer values sampled from {0,1,..,M - 1} is

mapped to the filter window R(j) of width n =2r +1, where r is an integer:

R = (R(j- 1) R(}).. R(j+ 1)) Eq: 5
(ii) Each component of R can be decomposed into a binary representation {0,1} by
a threshold operator Ty
T, (R(_])) =1 if R(j) >b;else 0 Eq: 6

where b has values {1, ... M} drawn from the current region of support.
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Summing all the resulting decomposed binary sequences produces the original
signal. This threshold decomposition is formalised into:

R= ZT( ) for all R(J) inR Eq: 7

(iii) Each of the n-bit binary vectors produced by the application of T, is
independently input to the Boolean function f satisfying the conditions in Eq. 2.

(iv) Finally, all the outputs of the Boolean function are summed, under the
convention that true equals 1 and false equals 0, and the resultant scalar F is:

M-1 _
P=y f(Tb(R)) Eq: 8
=1
An example of the above algorithm is given for the very simple case of a 3 X1 median

filter applied to a one dimensional signal [Fig. 1], verifying that the pBf defining the
median filter is of the form:

f=xx, +X,X, +X,X, Eq: 9
where for each threshold operation x; is the result for a given position within the
region of support of the filter, the products are ANDs and the summations are ORs.

The leftmost column represents the thresholding values and the rightmost column the
result of applying the Boolean function to the threshold decomposed signals. For a
threshold of 2: x; =1, x, =0 and x; = 1, resultingin f=1.0+0.1+ 1.1 =0+ 0+ 1
= 1 under the logic definitions above.

The output of the filter is the arithmetic sum of the individual outputs of the
Boolean function for all the binary sequences resulting from the threshold
decomposition of the input signal, i.e. (1 + 1 + 0 =2).
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Figure 1: One dimensional median filter expressed as a stack filter sequence

There are 7 discrete combinations X;; Xp; X33 X1Xa; X1X33 XoX33 X1Xp,X3 and any r (1<r <7)
of these terms can be selected and combined to form a single pBF. Therefore there are
20 pBfs of 3 independent variables due to the permutation of order and grouping,
7581 pBfs of 5 variables and more than 2% (and therefore stack filters) of 7 variables.

For a filter of window size n pixels, [Eq. 3] suggests an upper limit of 2> possible
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stack filters. However a smaller number is suggested as more than one expression,
derived from [Eq. 3], can be simplified to the same final function. Taking this into
account, a lower limit has been derived which states that the number of stack filters S
defined over a window of n pixels is bounded by:

22" < g <2 Eq: 10

For a simple two-dimensional 3 x3 filter, the number of possible stack filters lies
between 2°* and 27",

2 The Objective Function

We will consider the problem of restoring a noise corrupted image. The objective
function returns a measure of how close the restored image is to the original noise free
image. Several error functions that can be used as objective functions have been
suggested by [Kasturi and Walkup 6]. Here we have used the mean absolute error
(MAE) [Gabbouj and Coyle 90] between the noise free image I and restored image L

defined as:

MAE =+ > [to(i,3) = 1,(5.3) Eq: 11

Image

where # is the number of pixels over which the calculation is performed.

3 Configuration Of Stack Filters

3.1 Configuration as an Optimisation Problem

The generalised algorithm used for design is:

(i) given an ideal image and a corresponding image corrupted with a specific type of
noise, select a training window,

(ii) configure a stack filter by minimising the objective function over the training
window of the ideal and the filtered noisy image.

In previous image interpretation tasks [Delibasis and Undrill 94, Undrill et al. 97,
Delibasis et al. 97] we have found Genetic Algorithms (GAs) to be an effective
mechanism to resolve large scale optimisation problems, more time-efficient than
exhaustive search, with a reported superiority [Hill and Taylor 92] over simulated
annealing approaches.

GAs are adaptive methods inspired from the evolution of species which can be used in
function optimisation or machine learning problems. The Darwinian theory of
evolution provides an interaction between the genetic material of an organism or
individual, called genotype, and its phenotypic expression (set of observable
characteristics), called phenotype. The genotype consists of a population of
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chromosomes, each of which consists of a number of gemes. In a GA based
optimisation we encode each of the variables as binary strings (genes), define an
objective function which determines our goodness-of-fit and allow principles of
genetic evolution, generally limited to selection of the number of offspring, gene-
segment crossover and mutation to establish a new chromosome (individual) which
when input to the objective function provides the best solution. The concatenation of
binary strings defining a set of variables, e.g. an 8-bit string to define a variable with
values 0-255, (and in this instance their interaction) is the chromosome which
undergoes genetic development. The system is normally primed by a random selection
of around 100 chromosomes (often constrained to produce realistic practical
instances) and allowed to evolve for at least 100 generations.

3.2 Coding the Boolean Function into a Chromosome

The challenge of stack filter design is determining which pBfto use. [Eq. 3] gives

a good idea of how such a coding can be performed. We first construct every possible

term of the function. Each of the 2" —1 terms of [Eq. 3] is a product of selected input
th

variables (where n is the number of pixels in the window). The i term is the product
th
of the input variables x; for which the j bit of the i™ term equals one. In the median

example of [Eq 9 |, 2° - 1 (7) separate combinations of the 3 input variables are
possible. In the chosen function the (i=2)™ term has p; = 1 and bits 2 and 3 set to 1.
Only 3 out of the possible 7 terms has p; set to 1. Storing these factors in a
chromosome is a natural way to proceed as the information is already in binary form.

3.3 Genetic Operators

The implementation of genetic operators is straightforward and very much as
described in [Goldberg 89]:

(a) Selection determines which individuals will survive and produce offspring and
which will perish. It is controlled by fitness, determined from the objective
function, and can also determine how many offspring are produced. Typically a
fitness cut-off is established and larger numbers of offspring, randomly
determined, are given to the fittest individuals.

(b) Crossover is the where two chromosomes exchange equally sized gene segments.
Several different versions of crossover were tested, involving one-and two-
breakpoints in the chromosome as well as uniform crossover where any bit from a
parent chromosome can switch to any position in the offspring with variable
exchange probabilities. The results showed a significant difference in
convergence speed in favour of uniform crossover, but no differences in the
minimisation achieved.

(¢) Mutation acts upon the chromosome by randomly changing the value of
individual bits, with a probability chosen within a range from 0.01 to 0.001. The
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encoded mask is mutated by randomly selecting a pair of different valued bits and
exchanging them.
(d) Bitwise local search, as described in [Goldberg 89], was applied to the best

chromosome, every 10 generations, after the 30th generation. In this operation we
focus on a single chromosome and by applying mutations see if an even better
solution can be established. This is analogous to first allowing the GA to find a
regional optimum, then seeing if a nearby local optimum can be found. The
reason for this delayed application is that we initiate local search only after the
population has converged around a minimum candidate.

3.4 The Overall Algorithm

Our implementation of a system for stack filter design using serial GAs is seen in
[Fig. 2], expressed as pseudo-code.

3.5 Computational Complexity

Optimised GA based configuration of a 3 x 3 stack filter requires a minimum of 5000
objective function evaluations over a 50 x 50 pixel image training window. Each takes
around 0.3 seconds on a SUN Sparcstation 10/41. For our experiments this training
window represented 1/25th of the total image to be filtered. The GA has an average of
100 generations with a population of 100 chromosomes, which requires 10,000
function evaluations, hence around 1 hour will be needed for our filters to be
established. Once designed the application is simple, being a sequence of thresholding
operations.

initialise first generation randomly
while(not termination_condition) repeat for each chromosome ¢
1. simplify ¢
2. construct the Boolean function that c defines
3. filter the window of the noisy image with the resulting stack filter S
4. calculate the objective function as an image quality measure
between the ideal image and the filtered image
if(specific_condition) apply local search starting from ¢
apply selection algorithm
apply crossover and mutation to produce new_generation

Noo

Figure 2: Serial GA algorithm

4 Parallelisation Approach

The biological metaphor that has motivated genetic search is that in nature millions of
individuals exist in parallel. As expected GAs are highly parallelisable algorithms, well
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scaleable as the amount of computation increases. Since the problems attacked by GAs
are non-polynomial time optimisations (NP problems) and often highly complex,
execution of serial GAs can be very lengthy. The above has encouraged researchers to
design parallel implementation of GAs.

Centralised [mplementations [Bianchini and Brown 93] follow the philosophy of
conventional serial GAs. The master processor performs selection and sends pairs of
individuals to the slave processors. They concurrently apply crossover and mutation
operators and calculate the fitness of each individual. The new individuals are sent back
to the master processor. Part of the computation (selection) cannot be done in parallel,
but for normal problems this does not impose a great overhead since the computation
of fitness is much lengthier than any other operation. The main disadvantage of this
implementation is the prospect of excessive communication causing a bottleneck at the
master processor. Another drawback is the fact that the master processor is idle while
the slaves are computing chromosomes’ fitness. This can be resolved by having the
master processor working on a subset of the population after sending the rest of the
chromosomes to the slaves.

Distributed Implementations utilise the organisation of distributed memory
architectures. A number of processors run completely independent GAs (with
independent populations, operators etc.). Communication happens periodically when
processors send to their neighbours their £ best individuals which are then inserted
into the new populations. This migration allows sub-populations to share genetic
material [Whitley and Starkweather 90]. The topology defining interconnections
between sub-populations is quite arbitrary.

We have examined both approaches. Allowing independent subsets of genetic material
to evolve, with the pooling of the best individuals, [Delibasis 95], found that the use of
multiple processors to promote the development of initially separated populations
failed to produce any genetic improvement, therefore we are concerned solely with
reducing the time to achieve a candidate solution. The centralised implementation
approach has therefore been adopted throughout.

4.1 Algorithmic Decomposition

Selection (step 6 of the serial algorithm), and crossover and mutation (step 7) take
negligible time compared with the evaluation of the fitness function which involves
simplifying the chromosome (step 1), filtering the training image window (step 3) and
calculating the MAE by comparing the restored and the original window (step 4). The
evaluation is carried out separately for each chromosome in the population allowing
parallelisation.

Our specific computing resources consist of a network of inhomogeneous UNIX
workstations [Tab. 1]. The Parallel Virtual Machine[Sunderam et al. 94] (PVM)
software was used as a communication harness between workstations, utilising a
master program that assigns tasks to slave programs running on a single processor and
limiting communication to be between slaves and master.
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Model Performance Index  No. of Systems
SLC 0.5 1
IPC 0.6 2
IPX 1.0 2
Classic LX 1.2 1
Sparc 5-70 2.6 1
Sparc 10-41 2.4 1
Sparc 10-51 3.0 2

Table 1:- Network Processor Performance Details
The GA master program performs the following:

e calculates the table of threshold decompositions for the training image window

o if (first_generation) create n chromosomes randomly else apply genetic operators
to create the next generation

e assign the n fitness evaluation tasks to the k processors and collect the results

o if not(termination) goto second step

The assignment algorithm, assuming n tasks and k processors, is shown in [Fig. 3].

assign the first k of n tasks to k slave programs
i=k
while(i <= n+k-1) do

listen for result from a slave s
if(response) despatch result

set task_index i:= i+1
if( i<= n) assign task i to slave s
}
}

Figure 3: Task assignment to slave processors
The factors that affect the efficiency of this algorithm are:

(i) the ratio of communication to useful computation performed by the slave
program,

(i) the latency of the network in despatching a message,

(iii) any load imbalance between the slave processors,

(iv) the relative proportions of parallel to serial code.

The first factor is affected by the complexity of the task and the amount of data that
needs to be transferred between master and slave. The data packet transferred is the
chromosome, along with the identity of the individual within the population. The data
that the slaves return to the master is a real number (the value of the fitness function),
the individual’s identity and the simplified chromosome, therefore the communication
intervals are small relative to the computation performed by the slave.
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Although the objective function evaluation (the elemental process) can vary by at
least a factor of 5 between the fastest and slowest systems [Tab. 1], the parallelisation
is efficient in respect of load balancing (third factor) between slave processors since
the number of individual tasks n (the population of chromosomes in a generation) is
normally much larger than the number of slave programs k. Typical values for n and k
are 40-120 and 2-10 respectively. It is this high task-to-processor ratio that allows the
incorporation of processors with widely differing powers. As k approaches n the
whole process is limited by the slowest slave processor.

4.2 Data Decomposition

The above approach would be sufficient to significantly accelerate a wide range of GA
applications The only condition is that the genetic operators themselves take
negligible time compared to the fitness function evaluations. Step 5 of the overall
algorithm, local search, requires a large number of function evaluations, but the
approach of algorithmic decomposition cannot be applied here since each step of the
operator depends on the result of the previous step. In the general case this problem
cannot be easily resolved but, as in many image processing tasks, we can use data
decomposition dividing the image into n equal sections, assigning each section to a
different slave. The drawback of data decomposition is that the computation
performed by each slave is now much smaller, thus, if the transfer of data per task is
the same, the communication overhead will increase.

We initially broadcast to every slave the chromosome to which local search will
be applied [Fig. 4], and then transfer the index of the bit of the chromosome that needs
to be mutated. The only other data that is transferred is a flag indicating whether the
previous mutation was successful and this outcome will be retained, or discarded. At
the same time a copy of the chromosome is updated. The distributed algorithm is now
complete.

! broadcast to all slaves: chromosome, number of equally
sized image sections n !
previous_fitness:= fitness; keep_previous:= true
for bit = 1 to all_bits_in_chromosome do {
! assign the first k tasks to the k slave programs !
i=k
while (i <= n+k-1) do {
! listen for a result from a slave s ! {
i=it+1
if (i <=n) then
assign task i to slave s,
receive(s,bit, keep_previous)
fitness:= fitness+result } }
if fitness better_than previous_fitness then
keep_previous:= false else
save recent_mutation to the local copy {
keep_previous:= true
discard recent_mutation }

Fig 4: Parallel GA algorithm
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In this way the amount of data that needs to be transferred is minimised and the main
detrimental factors that remain are the network’s latency and load imbalance.

5 Results And Discussion

5.1 Performance of Stack Filters

[Fig. 5] indicates detail from a transverse section MR image of the brain showing part
of the cerebellum and brain stem. The original image (256 x 256 pixels) has been
corrupted by adding uniform uncorrelated noise with 20% probability, and filtered
images produced by using a 3 x 3 median and a 3 x 3 stack filter designed on a
arbitrarily placed 50 x 50 pixel window. We choose the median since this is often the
filter-of-choice where uncorrelated noise removal and image-feature retention is
required.

Original Original + 20% noise

g >,

Median 3 x 3 stack filter

Figure 5: Stack and median filter applied to an MR image of the brain (containing
parts of cerebrum, brain stem and cerebellum) corrupted with 20% noise

In [Fig. 6] we compare the performance (in terms of MAE) for different noise
probabilities. Stack filters outperform the median filter at all noise levels up to 50%.
Since the MAE is a global index and may not be a good indicator of local visual
quality, the preservation of fine detail in restored image using a stack filter is shown at
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the arrowed points in [Fig. 5]. [Fig 7] shows point B in greater detail.
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Figure 6: Variation of Mean Absolute Error (MAE) with noise level for stack and
median filters (original image contains values 0 - 255)
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Fig 7: Comparison of region B (figure 6) by median and stack filter

5.2 Distributing The Design Process Across A Network

We now examine the efficiency of our algorithm using distributed parallel computing.
[Fig. 8] shows the speed-up factors for the algorithmic decomposition as a function of
computational power. Due to the in-homogeneity of our systems, we define the
distributed system’s total power in units of a mid-range processor, the SUN
SparcStation 10/41. Our reference point is chosen to be a serial implementation on
this system.

Ideally the speedup factor should equate to the computational units applied. This is
shown by the dotted line in [Fig 8]. As extra processors [Tab. 1], ranked in order of
power, are introduced the speed-up factor increases uniformly, but at less than the
ideal rate. The communication overhead is independent of the number of workstations
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and inhomogeneity of processing power does not affect performance as long as the
number of slave processors is much less than the number of tasks (the population of
each generation). A gradual levelling off appears when the computational power
exceeds 4 units and more slow machines are introduced followed by a down-turn at
around 6 units. This is caused by a load imbalance due to the increased number of
processors, as well as the influence of the non-parallelisable components of
computation.

- ideal speed-up
—@— algorithmic decomposition

5 - data decomposition

8 regions

Speed-up Factor

6 < regions < 12

1 2 3 4 5 6

Total Computational Power (Sun 10/41 units)

Figure 8: Speed-up performance of the parallel distributed GA

The efficiency of the data decomposition algorithm (used only by local search) is
also shown in the cross-hatched section of [Fig. 8]. The initial section of the graph is
dominated by the relatively high communication overhead of introducing additional
processors. As more processors are added, their inhomogeneity gives rise to load
imbalance (in other words the faster computers wait for the slower) and this factor
becomes dominant. The speed-up factor reaches a plateau and then decreases. The
detailed performance of data decomposition will depend on the number of image
regions chosen. A maximum speedup exists when the image is partitioned into 8 equal
regions, decreases when fewer are used (greater load imbalance across processors)
and also decreases for more than 8 regions as communication overheads become
dominant. This is shown by the shaded envelope in [Fig 8] where the upper bound
represents 8 equal image regions and the lower bound describes the performance for
12 and 6 regions as explained above.

The algorithm we use has each form of decomposition, in proportions dependent
on the GA formulation, therefore the final speed-up [Fig. 8] will lie between the upper
algorithmic decomposition curve and the data decomposition curve appropriate to the
chosen number of image regions. Since the GA local search is introduced only after a
defined period and at intervals thereafter, the final outcome will be dominated by
algorithmic decomposition. In our workstation configuration the typical time required
for the design of a filter is reduced from 1 hour to around 15 minutes.
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6 Conclusions

The design of stack filters for noise suppression using genetic algorithms is described
and it is shown that the amount of computation required to configure even small filters
is substantial. Since GAs provide a robust method of filter configuration, capable of
incorporating arbitrarily complex objective functions, we have developed a system
that allows a heterogeneous cluster of workstations, operating in parallel, to achieve
this process in acceptable time. Performance improvement factors of up to 4, using 10
systems, are observed. Results are presented for a practical example drawn from
medical imaging showing that the stack filter has an improved performance compared
to the median filter. The computing network we have used is typical of those used in
academic and research communities.
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