
A Note on Correctness Proofs for Over
ow Detection

Logic in Adders for d-th Complement Numbers

Bernd Rederlechner
(Telekom Entwicklungszentrum S�udwest, Saarbr�ucken, Germany

Bernd.Rederlechner@ezsw.telekom.de)

J�org Keller
(FernUniversit�at-GH Hagen, Germany

Joerg.Keller@FernUni-Hagen.de)

Abstract: When adding n-bit 2-th complement numbers, the result can be outside the
range representable with n bits. A well{known theorem justi�es the common over
ow
logic: Let a; b 2 f0; 1gn be the 2-th complement representations of signed integers [a]
and [b], respectively, and let c0 2 f0; 1g be the carry-in bit. Then, [a] + [b] + c0 2

f�2n�1; : : : ; 2n�1 � 1g if and only if cn = cn�1, where ci denotes the carry{bit from
position i�1 to position i when adding the binary numbers a and b. We present a proof
of this theorem which is much shorter than previous proofs. This simpli�cation can
save valuable time in computer science classes. With a small extension the proof even
holds for d-th complement numbers. Although the proof technique is known by some
specialists, nobody seems to have written it up. With this note, it is once documented
in a precise form, thus avoiding re-invention.

Key Words: d-ary arithmetic, correctness proof, computer science education, over-

ow testing

Category: B.2, K.3.2

1 Introduction

Most microprocessors use 2-th complement numbers as internal representation
for signed integers. The addition of 2-th complement numbers is done by adders
for binary numbers. However, the sum of two n-bit 2-th complement numbers
could be outside the range representable by n bits. There are two common meth-
ods to detect such an over
ow. Either, one compares the two most signi�cant
carry bits. Alternatively, one doubles the most signi�cant input bits, uses (n+1)-
bit arithmetic and compares the two most signi�cant sum bits. In both cases,
an over
ow has occured if and only if the bits are not equal.

To justify that adders for binary numbers correctly add 2-th complement
numbers and that the above method to detect an over
ow is correct, most proofs
proceed in the following way: depending on the signs of the numbers to be added,
di�erent cases are discussed. [Hwang (79)], [Scott (85)] and [Spaniol (81)] intro-
duce d-th complement numbers (also called radix-d numbers). Hwang applies
the above technique for a more general proof and �lls about two pages. Di�cult
notations make readability worse. [Spaniol (81)] leaves the proof about over
ow
logic to the reader and only proves that summation is correct in the absence of
over
ows. [Scott (85)] uses a di�erent de�nition, argues informally about the cor-
rectness of summation in absence of over
ows, and shifts the over
ow detection
for 2-th complement numbers into the excercises. The remaining texts that we

Journal of Universal Computer Science, vol. 3, no. 10 (1997), 1121-1125
submitted: 23/6/97, accepted: 2/9/97, appeared: 28/10/97  Springer Pub. Co.



investigated treat only 2-th complement numbers, which is su�cient for a basic
course in computer architecture or arithmetic. [Hotz (72)], [Keller and Paul (95)]
and [Omondi (94)] use the presented scheme with three cases, consuming about
one to one and a half pages without notations. [Ho�mann (83)] derives a for-
mula depending on the most signi�cant bits of the numbers to be added and the
most signi�cant bit of the sum. He completes the proof by putting in all possible
values for these bits, and thus discusses nine cases. [Hotz (90)] and [Savage (76)]
shift the theorem into the exercise part, [Koren (93)] shows the di�erent cases
only informally, and [Hennessy and Patterson (90)] even justify nothing at all.

While none of these proofs is di�cult, they are rather lengthy. Hence, pre-
senting the proof in a computer architecture class takes away valuable time from
other topics. We present a proof which is much shorter than previous proofs. It
is easy to present as it only employs simple equivalence transformations and a
sharp look at the last line. No cases are distinguished, and no additional lemmata
are needed. Only some notations are introduced, the most of which will already
be present when the proof is used in a course on the subject. With a small ex-
tension, the proof also works for d-th complement numbers with arbitrary base
d � 2.

While the technique used is apparently known by some specialists, nobody
seems to have written it up. To avoid that the technique is re-invented over and
over, it is hereby once documented in a precise form.

2 Notations

We use notations from [Keller and Paul (95)], the de�nition of d-th complement
is taken from [Hwang (79)] and [Spaniol (81)]. Let Bd = f0; : : : ; d � 1g. For

a0 = (an�2; : : : ; a0) 2 Bn�1
d

, we de�ne ha0i
d
= han�2; : : : ; a0id =

P
n�2
i=0

ai � d
i

and call a0 the d-ary representation of ha0i
d
. To represent signed integers, we

introduce a sign digit an�1 2 f0; d� 1g =: B0
d
. By a = (an�1; a

0) 2 B0
d
� Bn�1

d

we represent the number [a]d de�ned as

[a]d = [an�1; a
0]d = �

an�1

d� 1
� dn�1 + ha0i

d
=

�
ha0i

d
if an�1 = 0

ha0i
d
� dn�1 if an�1 = d� 1 :

The string a is called the d-th complement representation of [a]d. Obviously,
ha0i

d
2 Sd

n�1 := f0; : : : ; dn�1 � 1g and [a]d 2 T d
n
:= f�dn�1; : : : ; dn�1 � 1g. We

will omit the subscript d if the base d is clear from the context.
For base d = 2, string a0 2 f0; 1gn�1 is the binary representation of the

non-negative integer ha0i
2
=

Pn�2

i=0
ai � 2

i 2 Sn�1 = f0; : : : ; 2n�1 � 1g, and
a = (an�1; a

0) 2 f0; 1gn is the 2-th complement representation of integer [a]2 =
�an�1 � 2

n�1 + ha0i
2
2 Tn = f�2n�1; : : : ; 2n�1 � 1g.

When adding numbers hai
d
and hbi

d
with d-ary representations a; b 2 Bn

d

and a carry{in bit c0 2 f0; 1g, the sum is hcn; sid = hai
d
+ hbi

d
+ c0 where

s = (sn�1; s
0) 2 Bn

d
and cn 2 f0; 1g. For all 1 � i � n, we denote the carry bit

from position i� 1 to position i by ci, i.e.

hci; si�1; : : : ; s0id = ci � d
i + hsi�1; : : : ; s0id

= hai�1; : : : ; a0id + hbi�1; : : : ; b0id + c0 : (1)

1122 Rederlechner B., Keller J.: A Note on Correctness Proofs for Overflow ...



We have
ai + bi + ci = d � ci+1 + si; 0 � i � n� 1 : (2)

The common over
ow logic and the use of d-ary adders for d-th complement
numbers is justi�ed by the following Theorem.

Theorem1. Let a; b 2 B0
d
� Bn�1

d
and c0 2 f0; 1g, and let cn 2 f0; 1g and

s 2 Bn

d
such that hai+ hbi+ c0 = hcn; si. Then,

(a) [a] + [b] + c0 2 Tn if and only if cn = cn�1.
(b) If [a] + [b] + c0 2 Tn, then [a] + [b] + c0 = [s].

Before we prove Theorem 1, note that [Scott (85)] de�nes

T d

n
= f�dn=2; : : : ; dn=2� 1g (assume d to be even),

and for a 2 Bn

d

[a]d = �

�
an�1

d=2

�
� dn + hai

d
=

�
hai

d
if an�1 < d=2

hai
d
� dn if an�1 � d=2 :

For example T 10
4 = f�5000; : : : ; 4999g, [0000]10 = 0, [4999]10 = 4999, [5000]10 =

�5000, and [9999]10 = �1. For d = 2, this de�nition equals the one given by
[Hwang (79)] and [Spaniol (81)].

However, for d � 4, only part (b) of Theorem 1 holds with Scott's de�nition.
Part (a) does not hold as two counterexamples show. First, let x = d=2 � 1,
x0 = d � 2, c0 = 0, and a = b = (x; 0; : : : ; 0) 2 Bn

d
. Then, [a]d = [b]d =

dn=2 � dn�1 2 Tn

d
, but [a]d + [b]d + c0 = dn � 2dn�1 =2 Tn

d
. If we add a and b

with a d-ary adder, we obtain s = (x0; 0; : : : ; 0) 2 Bn

d
, and for all i = 1; : : : ; n,

ci = 0 and thus cn = cn�1.
Second, let ~x = d � 1, a = b = (0; ~x; : : : ; ~x) 2 Bn

d
, and c0 = 0. Then,

[a]d = [b]d = dn�1 � 1 2 Tn

d
, and [a]d + [b]d + c0 = 2dn�1 � 2 2 Tn

d
. If we add

a and b with a d-ary adder, we obtain s = (1; ~x; : : : ; ~x; x0) 2 Bn

d
, cn = 0, and

ci = 1 for all i = 1; : : : ; n� 1, and thus cn 6= cn�1.

3 Proof for 2-th Complement Numbers

Proof. The de�nition of 2-th complement numbers gives:

[a] + [b] + c0 = �2n�1(an�1 + bn�1) + ha0i+ hb0i+ c0

= �2n�1(an�1 + bn�1) + hcn�1; s
0i

= �2n�1(an�1 + bn�1 � cn�1) + hs0i|{z}
2 Sn�1

(3)

With d = 2 and i = n � 1, we can transform (2) to an�1 + bn�1 = 2 � cn +
sn�1 � cn�1. Together with (3), we have

[a] + [b] + c0 = �2n(cn � cn�1) � 2n�1sn�1 + hs0i

= �2n(cn � cn�1) + [s]|{z}
2Tn

(4)

1123Rederlechner B., Keller J.: A Note on Correctness Proofs for Overflow ...



If cn = cn�1, then the term (cn�cn�1) in (4) equals zero and the \if" direction
of (a) as well as (b) holds. If cn 6= cn�1, then �2n(cn � cn�1) 2 f�2n; 2ng, and
for all [s] 2 Tn one observes that [s]�2n =2 Tn. This proves the \only if" direction
of (a).

4 Extension to d-th Complement Numbers

If we repeat the proof for 2-th complement numbers with the formulae for arbi-
trary d, we get the following equivalent to (4):

[a]d + [b]d + c0 = �
dn

d� 1
(cn � cn�1) + [s]d|{z}

2Td
n

Again, we see that the \if" direction of (a) and (b) hold. However, [s]d�dn=(d�1)
is not necessarily outside T d

n because dn=(d� 1) < 2dn�1 for d � 3.
If cn 6= cn�1, then either cn�1 = 0 and cn = 1 or vice versa. If cn�1 = 0 and

cn = 1, then an�1 = bn�1 = d� 1 because of (2), and ha0i+ hb0i+ c0 � dn�1� 1
because of (1). It follows that

[a] + [b] + c0 = �dn�1
�
an�1

d� 1
+

bn�1

d� 1

�
| {z }

=2

+ ha0i+ hb0i+ c0| {z }
�dn�1�1

� �dn�1 � 1 :

If cn�1 = 1 and cn = 0, then an�1 = bn�1 = 0 because of (2), and ha0i+hb0i+c0 �
dn�1 because of (1). It follows that

[a] + [b] + c0 = �dn�1
�
an�1

d� 1
+

bn�1

d� 1

�
| {z }

=0

+ ha0i+ hb0i+ c0| {z }
�dn�1

� dn�1 :

Hence, in both cases [a] + [b] + c0 6= Tn.

References

[Hennessy and Patterson (90)] Hennessy, J. L., Patterson, D. A.: \Computer Archi-
tecture: A Quantitative Approach"; Morgan Kaufmann, San Francisco (1990)

[Ho�mann (83)] Ho�mann, R.: \Rechenwerke und Mikroprogrammierung, 2nd Ed-
tion"; Oldenburg, M�unchen (1983)

[Hotz (72)] Hotz, G.: \Informatik: Rechenanlagen"; Teubner, Stuttgart (1972)
[Hotz (90)] Hotz, G.: \Einf�uhrung in die Informatik"; Teubner, Stuttgart (1990)
[Hwang (79)] Hwang, K.: \Computer Arithmetic. Principles, Architecture, and De-

sign"; Wiley & Sons, News York (1979)
[Keller and Paul (95)] Keller, J., Paul, W. J.: \Hardware Design"; Teubner, Leipzig

(1995)
[Koren (93)] Koren, I.: \Computer Arithmetic Algorithms"; Prentice Hall, Englewood

Cli�s (1993)
[Omondi (94)] Omondi, A. R.: \Computer Arithmetic Systems. Algorithms, Architec-

ture and Implementation"; Prentice Hall, Englewood Cli�s (1994)

1124 Rederlechner B., Keller J.: A Note on Correctness Proofs for Overflow ...



[Savage (76)] Savage, J. E.: \The Complexity of Computing"; Wiley & Sons, New
York (1976)

[Scott (85)] Scott, N. R.: \Computer Number Systems and Arithmetic"; Prentice-
Hall, Englewood-Cli�s (1985)

[Spaniol (81)] Spaniol, O.: \Computer Arithmetic"; Wiley, New York (1981)

1125Rederlechner B., Keller J.: A Note on Correctness Proofs for Overflow ...


