
Optimum Extendible Prefix Codes1

Cristian S. Calude
(Computer Science Department, The University of Auckland, Private Bag 92019,

Auckland, New Zealand
Email: cristian@cs.auckland.ac.nz.)

Ioan Tomescu
(Bucharest University, Faculty of Mathematics, Str. Academiei 14, R-70109,

Bucharest, Romania
Email: ioan@inf.math.unibuc.ro.)

Abstract: Suppose that we have L messages coded by a prefix code (over an alphabet
M with m letters) having a minimum weighted length. The problem addressed in
this paper is the following: How to find s codewords for new messages so that by
leaving unchanged the codification of the first L messages (by compatibility reasons),
the resulting extended code is still prefix (over M) and has a minimum weighted length?
To this aim we introduce the notion of optimum extendible prefix code and then, by
modifying Huffman’s algorithm, we give an efficient algorithm to construct the optimum
extension of a non-complete prefix code, provided the initial code is optimal.

Key Words: Kraft’s inequality, Huffman tree, optimum extendible prefix code

Category: F.1

1 Introduction

A prefix codeword set has to satisfy Kraft’s inequality [8], and, conversely, Kraft’s
inequality is a sufficient condition for the existence of a prefix code with the
specified set of codeword lengths.

Huffman’s algorithm [7] solves the problem of finding a prefix code with the
minimum weighted length: Given the weights p1, p2, . . . , pL ≥ 0 find the lengths
l1, l2, . . . , lL satisfying Kraft’s inequality whose weighted length

∑L
i=1 pili is less

than or equal to the weighted length of any prefix code of cardinality L.
Chaitin [3] has extended Kraft’s inequality for recursively enumerable prefix

codes (i.e. for codes enumerated by algorithms): as long as Kraft’s strict in-
equality is guaranteed, one can extend indefinitely any prefix code. This result is
essential in algorithmic information theory (see [4, 2]). In this context we address
the following question: Is it possible to extend an optimal prefix code, under the
assumption that the extension is still optimal? Of course, if the code is complete,
1 Proceedings of the First Japan-New Zealand Workshop on Logic in Computer

Science, special issue editors D.S. Bridges, C.S. Calude, M.J. Dinneen and
B. Khoussainov.

Journal of Universal Computer Science, vol. 3, no. 11 (1997), 1167-1179
submitted: 8/8/97, accepted: 22/11/97, appeared: 28/11/97  Springer Pub. Co.



then no extension is possible. We prove that in all remaining cases an optimal
extension can be constructed and we give an efficient algorithm to construct the
optimum extension.

Mathematically, we will solve an optimization problem: as in Huffman’s case
we optimize the weighted length function. However, the restrictions are differ-
ent: classically, one optimizes over all integers satisfying Kraft’s inequality, while
here we optimize over all integers satisfying Kraft’s strict inequality which cor-
responds to extendible prefix codes.

2 Notation

Consider an alphabet M = {0, 1, . . . ,m − 1} containing m ≥ 2 letters. The set
of all words over M (endowed with the natural order 0 < 1 < · · · < m− 1) can
be represented as an infinite complete m-ary tree U in which the root is labeled
by the empty word. For instance, in the binary case, the first four levels of this
tree are the following:

����
0����

00����
000
�� TT

001

,
,, l

ll
01����

010
�� TT

011

!!
!!

!! aaaaaa 1����
10����

100
�� TT

101

,
,, l

ll
11����

110
�� TT

111

Figure 1

The tree is drawn with the root on the top, all edges are pointed downward,
and the sons are lined up horizontally in the lexicographical order. A sub-tree
of U is called “positional m-ary directed tree” in the graph-theoretical literature
[6].

A prefix code is a set of words C such that no word in C is a proper prefix of
another word in C. Prefix codes are uniquely decodable, as the end of a codeword
is immediately recognizable. For example, the set {0i1 | i ≥ 1} is a prefix code
over the binary alphabet. The codewords of a prefix code C = {w1, w2, . . . , wL}
over M satisfy Kraft’s inequality

L∑
i=1

m−li ≤ 1, (1)

where li = |wi| denotes the length of wi. See [1, 5] for more facts on prefix codes.
The sum in the left-hand side of (1) is called the characteristic sum of C.

1168 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



The set of words which correspond to terminal vertices of a finite sub-tree of
U form a prefix code; this correspondence is bijective. If C is a prefix code over
M , then the associated m-ary tree T (C) has height h(T (C)) = max{|w| | w ∈
C}. The inequality (1) holds true with equality iff T (C) is complete, i.e. in
case every non-terminal vertex of T (C) has exactly m sons. A prefix code C
is complete if T (C) is complete. In what follows we shall adopt the graph-
theoretical terminology from [6].

3 Kraft’s Inequality Revisited

In this section we prove a slightly stronger version of the Kraft’s inequality.
Recall that the degree of a vertex is equal to the number of its sons.

Lemma 3.1. Let C = {w1, w2, . . . , wL} be a prefix code over M such that the
root of its associated m-ary tree T (C) has the degree f, 1 ≤ f ≤ m. Then the
characteristic sum of C satisfies the inequality

L∑
i=1

m−li ≤ f

m
. (2)

The equality holds true iff every non-terminal vertex of T (C), different from the
root, has exactly m sons.

Proof. By hypothesis, the root of T (C) has f sons, say v1, v2, . . . , vf . Every vi
is the root of some sub-tree of T (C). Let Ci be the corresponding code, i.e. a
word is in Ci if it is obtained from a unique word in C, by removing its first
letter; so a word in Ci has the length shorter by one than its corresponding word
in C. Accordingly, if Si is the characteristic sum of Ci, then

L∑
i=1

m−li =
1
m

f∑
i=1

Si ≤
f

m
.

The last inequality is a consequence of Kraft’s inequality for Ci. 2

For example, if m = 3, C = {00, 01, 022, 20}, then f = 2, C1 =
{0, 1, 22}, C2 = {0}, and S1 = 7/9, S2 = 1/3, S = 1

3(S1 + S2) ≤ 2/3.

Lemma 3.2. If a vector of word lengths (l1, l2, . . . , lL) satisfies the inequality
(2), then one can effectively construct a prefix code C over M corresponding to
the given vector of word lengths such that its associated m-ary tree T (C) has its
root of degree f (1 ≤ f ≤ m).

The proof is similar to the case in which (1) is used instead of (2); see, for
instance, [6], pp. 130-131.

Assume now that we have L positive weights, p1 ≥ p2 ≥ · · · ≥ pL.

1169Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



Huffman’s Optimization Problem (HOP): Construct a prefix code C =
{w1, w2, . . . , wL} over M such that if li = |wi|, for all 1 ≤ i ≤ L, then the cost

cost(C) =
L∑
i=1

pili

is minimum among all prefix codes of cardinality L.

In view of Lemma 3.2, to solve the above problem we have to construct a
vector of word lengths l1, l2, . . . , lL which has a minimum cost among all vectors
satisfying the inequality (1). Huffman’s algorithm is actually producing such a
solution: start with L′ = L and the weights p1 ≥ p2 ≥ · · · ≥ pL. At every step
we add the least, i.e. the last, d numbers in the ordered sequence, put the result
in the proper place, and decrease the length L′ = L′−d+1. The current number
d is computed as follows: if m = 2, then d = 2; otherwise,

d =

{
m, if L′ ≡ 1 (mod m− 1),
m− 1, if L′ ≡ 0 (mod m− 1),
ρ, if L′ ≡ ρ (mod m− 1), and 2 ≤ ρ ≤ m− 2.

(3)

The values for d stabilize after one step, as L′ ≡ 1 (mod m − 1), and d
becomes equal to m from there on.

The operation is repeated until we end up with L′ = m weights, each to be
assigned length one. Then we start working our way back up: we assign the same
length to weights in the previous step, and we increase by one the length of each
of the last d weights. Starting with the second step one has L′ ≡ 1 (mod m− 1);
the correction, if any, for the initial L is operated at the first step, in case m ≥ 3.
The resulting prefix code C is optimal.

Notice that every prefix code constructed by Huffman’s algorithm is com-
plete, satisfying (1) with equality.

4 Binary Optimum Extendible Prefix Codes

In this section we solve the following problem:

Extendible Huffman’s Optimization Problem (EHOP). The Binary
Case: Given L positive weights p1 ≥ p2 ≥ · · · ≥ pL find a binary prefix code
C = {w1, w2, . . . , wL} such that if li = |wi|, 1 ≤ i ≤ L, then

L∑
i=1

pili

is minimum over all positive integers l1, l2, . . . , lL such that

L∑
i=1

2−li < 1. (4)

1170 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



Using Huffman’s algorithm we build an optimal tree HT (p1, p2, . . . , pL) for
the given weights p1 ≥ p2 ≥ · · · ≥ pL. This optimal tree is complete, i.e. (1) is
satisfied with equality.

Now consider a terminal vertex u of HT (p1, p2, . . . , pL) having the maximum
depth associated to a minimum weight p = min{p1, p2, . . . , pL}. We transform u
into an internal vertex having a new (left or right) son v on the level depth(u)+1,
and we associate to v the weight p. We have obtained a non-complete binary
tree EHT (p1, p2, . . . , pL), call it extendible Huffman tree (built for the weights
p1, p2, . . . , pL).

Theorem 4.1. The extendible Huffman tree EHT (p1, p2, . . . , pL) is a solution
for the binary EHOP.

Proof. Let C be an optimum extendible prefix code for EHOP. Since Kraft’s
strict inequality (4) is satisfied, its associated tree T0 = T (C) is not complete.
Suppose first that T0 contains an internal vertex x having depth(x) ≤ h(T0)− 2
and a single son; assume that x has maximum depth.

����
x����
AA����

z����
y
�� AA

�� AA

��
����

x����
AA����

z����
y
��

�� AA

��

Figure 2a Figure 2b

����
x����

y
�� AA����
z����
AA

�� AA

��
����

x����
y
�� AA����

AA

��

Figure 3a Figure 3b

1171Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



We can move a terminal vertex y lying on the last level (see Figure 2a, respec-
tively, Figure 2b) as son of x (see Figure 3a, respectively, Figure 3b; in the last
case its father z is deleted). A new non-complete binary tree T1 is obtained from
T0, and cost(T1) < cost(T0), which contradicts the hypothesis on C. It follows
that all internal vertices having a single son have the depth equal to h(T0)− 1.
If T0 has two vertices x and z having each a single son, y, and t, respectively, on
level h(T0), we can delete the vertex t. In this way z becomes a terminal vertex
and we associate to z the weight of t. A new non-complete binary tree T2 is
obtained such that cost(T2) < cost(T0). Hence T0 has a unique vertex u on the
level h(T0)− 1 having a single son v on the level h(T0). The optimal extendible
tree is among the trees whose internal nodes have two sons except one, and the
only one internal node that has a single son is of dept h(T0)− 1. Let p(v) be the
weight of v and T ′ be the binary tree deduced from T0 be deleting v; associate
to u the weight p(v). Then,

cost(T0) = cost(T ′) + p(v)
≥ cost(HT (p1, p2, . . . , pL)) + min{p1, p2, . . . , pL}
= cost(EHT (p1, p2, . . . , pL)),

since cost(T ′) ≥ cost(HT (p1, p2, . . . , pL)) and p(v) ≥ min{p1, p2, . . . , pL}. 2

Now we propose an algorithm for constructing an optimal extension of an
optimal, non-complete, binary prefix code. Given the weights p1, p2, . . . , pL we
build the extendible Huffman tree T1 = EHT (p1, p2, . . . , pL) which is optimal
by Theorem 4.1. This tree generates the code C = {w1, w2, . . . , wL} satisfying
EHOP. Let li = |wi|, for 1 ≤ i ≤ L. Suppose that we want to extend C with s
new words wL+1 , wL+2 , . . . , wL+ s having the weights pL+1 , pL+2 , . . . , pL+ s, such
that if li = |wi|, for L+ 1 ≤ i ≤ L+ s, then

L+ s∑
i= L+1

pili

is minimum over all positive integers lL+1 , lL+2 , . . . , lL+ s such that

L+ s∑
i= L+1

2−li < 1−
L∑
i=1

2−li .

We notice that in this case the extendibility condition

L+ s∑
i=1

2−|wi| < 1,

is fulfilled. To this aim let R = EHT (pL+1 , pL+2 , . . . , pL+ s) be an extendible
Huffman tree built for the weights pL+1 , pL+2 , . . . , pL+ s. Let v be the unique
terminal vertex of T1 having depth(v) = h(T1) and u its father. We shall join
u and the root r of R by an edge such that u has now two sons: v and r (see
Figure 4).

1172 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



T1

����
����
�� AA

�
� @@����
����
�� AA

u����
v
�� AA

r����
����
�� AA����
��

�� AA

�� AA

R

new edge

Figure 4

We have obtained an extendible binary tree T which is a solution of our
problem, i.e. its associated prefix code extends C, and satisfies the extendibility
and optimality conditions.

Notice that if the strict inequality above is relaxed to a non-strict one, R
must be the complete tree HT (pL+1 , pL+2 , . . . , pL+ s).

Theorem 4.2. The tree T is an optimal extension of T1.

Proof. Let h(T1) = t. We get

cost(T ) = cost(T1) + cost(R) + t
L+ s∑
i= L+1

pi,

and any binary tree built by extension of T1 has its cost function of this form as
the unique vertex of T1 having a single son is u.
It is clear that T is extendible iff R is extendible; since R =
EHT (pL+1 , pL+2 , . . . , pL+ s) it follows that T is extendible and optimal. 2

The above extension can continue indefinitely; it may be stopped by extend-
ing the tree with a complete Huffman tree, not with an extendible Huffman
tree.

1173Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



5 Optimum Extendible Prefix Codes: The Non-Binary Case

We are now ready to deal with the general problem:

Extendible Huffman’s Optimization Problem (EHOP): Given L pos-
itive weights p1 ≥ p2 ≥ · · · ≥ pL and a positive integer m ≥ 2, find a
prefix code C = {w1, w2, . . . , wL} over M = {0, 1, . . . ,m − 1} such that if
li = |wi|, 1 ≤ i ≤ L, then

L∑
i=1

pili

is minimum over all positive integers l1, l2, . . . , lL such that

L∑
i=1

m−li < 1. (5)

5.1 Restricted Huffman Trees

We start solving the following problem:

Restricted Huffman’s Optimization Problem (RHOP): For given in-
tegers 1 ≤ f ≤ m, m ≥ 3, and a vector of L ≥ f positive weights (p1, p2, . . . , pL)
such that p1 ≥ p2 ≥ · · · ≥ pL, construct a prefix code C over the alphabet
M = {0, 1, . . . ,m − 1} such that the word lengths (l1, l2, . . . , lL) satisfy the fol-
lowing two conditions:

(a) The root of T (C) has degree f .
(b) The weighted length cost(C) =

∑L
i=1 pili is minimum among all prefix codes

of cardinality L.

An optimum Huffman tree satisfying (b) will be denoted, as in the bi-
nary case, by HT (p1, p2, . . . , pL), and an optimum tree restricted by the
first condition will be denoted by RHT (f ; p1, p2, . . . , pL). It is clear that an
RHT (m; p1, p2, . . . , pL) is also an HT (p1, p2, . . . , pL).

In building RHT (f ; p1, p2, . . . , pL) we again rely on Huffman’s algorithm and
change the construction of d in (3) as follows:

d =

{
ρ+ 1, if ρ 6= 0,
m, if ρ = 0 and L′ > f ,
f, if ρ = 0 and L′ = f ,

(6)

where L′−f ≡ ρ (mod m−1) and 0 ≤ ρ ≤ m−2. After the first step the length
of the vector of word lengths, L′, satisfies the relation L′ ≡ f (mod m − 1)
and will be equal to f modulo m − 1 from there on. The rule (6) ensures that
eventually we end up with exactly f weights, each to be assigned length one.

Let Λ = (λ1, λ2, . . . , λL) be an optimal word length vector for the weight
vector Π = (p1, p2, . . . , pL), p1 ≥ p2 ≥ · · · ≥ pL, such that conditions (a) and
(b) are fulfilled.

1174 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



Exactly as for the case when only the second condition is satisfied one can
prove that if pi > pj , then λi ≤ λj , so we may assume that λ1 ≤ λ2 ≤ · · · ≤ λL.

Lemma 5.1. Let Λ,Π be as above. Then,

λL−d+1 = λL−d+2 = · · · = λL−1 = λL,

where d comes from the above formula (6) replacing L′ by L.

Proof. First we show that

m− 2 ≥ f mλL−1 −
L∑
i=1

mλL−λi ≥ 0. (7)

The right-hand inequality follows directly from Kraft’s inequality (Lemma 3.1).
The left-hand inequality can be proved as follows. Assume that

m− 1 ≤ f mλL−1 −
L∑
i=1

mλL−λi .

Thus,
L−1∑
i=1

mλL−λi +m ≤ f mλL−1.

Dividing by mλL we get

L−1∑
i=1

m−λi +m−(λL−1)≤ f

m
,

which contradicts the optimality of Λ by Lemma 3.2. Now let L − f ≡
ρ (mod m − 1), where 0 ≤ ρ ≤ m − 2. Since for every non-negative integer
k, mk ≡ 1 (mod m− 1), we have

f mλL−1 −
L∑
i=1

mλL−λi ≡ f − L ≡ −ρ (mod m− 1).

By (7) we conclude that

f mλL−1 −
L∑
i=1

mλL−λi =
{

0, if ρ = 0,
m− 1− ρ, if 1 ≤ ρ ≤ m− 2. (8)

Let j be the last index which satisfies λj < λL. It follows that

λj+1 = λj+2 = · · · = λL.

1175Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



We can re-write (8) as

f mλL−1 −
j∑
i=1

mλL−λi =
{
L− j, if ρ = 0,
L− j +m− 1− ρ, if 1 ≤ ρ ≤ m− 2. (9)

If λL = 1, then λ1 = · · · = λL = 1, and the proof is complete. Otherwise, in (9)
the left-hand side is divisible by m since all powers of m are positive. Then, the
right-hand side, in addition to being positive must be divisible by m too. Thus,
– if ρ = 0, then L− j = km, for some positive integer k, and
– if 1 ≤ ρ ≤ m− 2, then L− j +m− 1− ρ = km, for some positive integer k.
By (6) this implies that
– if ρ = 0, then L− j ≥ m ≥ d, since f ≤ m− 1, and
– if 1 ≤ ρ ≤ m− 2, then L− j ≥ ρ+ 1 = d.

2

We continue by proving that the modified rule (6) leads to a solution for
RHOP. Let us denote by Π0 the original vector of heights (in a non-increasing
order), and by Πi the weight vector after i iterations of the above process. The
vector of word lengths assigned to Πi is denoted by Λi.

Theorem 5.2. Let Π0, Π1, . . . , Πs and Λ0, Λ1, . . . , Λs be the weight vectors
and the word length vectors, as constructed above. Then, for every 0 ≤ i ≤ s, Λi
is optimal for Πi.

Proof. The construction assures that Li, the number of weights in Πi, satisfies
the equation Li ≡ f (mod m − 1), for every 1 ≤ i ≤ s. Also, Ls = f , and
obviously Λs = (1, 1, . . . , 1)︸ ︷︷ ︸

f times

is optimal for Πs. For the proof of the fact that if

Λi+1 is optimal for Πi+1 , then Λi is optimal for Πi we use Lemma 5.1 and follow
closely the proof of the validity of Huffman’s algorithm for HOP (see [6], for
instance). 2

In conclusion, the m-ary tree built by means of the rule (6) is indeed a
RHT (f ; p1, p2, . . . , pL).

5.2 Extendible Restricted Huffman Trees

An m-ary tree is called extendible if the vector of word lengths associated with
its terminal vertices satisfies Kraft’s strict inequality (5), and a restricted m-ary
tree is extendible if the inequality

L∑
i=1

m−li <
f

m
(10)

is verified.
From the above conditions we deduce that we can construct arbitrarily

many new descendants of non-terminal vertices such that for the extended

1176 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



tree the vector of word lengths satisfies again the inequalities (1) and (2), re-
spectively. As in the binary case we shall denote by EHT (p1, p2, . . . , pL) and
ERHT (f ; p1, p2, . . . , pL), respectively, an m-ary tree associated to a prefix code
C over M satisfying (5) plus (b), or (10) plus (a), (b), respectively. These trees
will be called optimum extendible Huffman tree and optimum extendible restricted
Huffman tree, respectively.

From (3) and (6) we deduce that EHT (p1, p2, . . . , pL) = HT (p1, p2, . . . , pL)
unless L ≥ m and L ≡ 1 (mod m − 1), and ERHT (f ; p1, p2, . . . , pL) =
RHT (f ; p1, p2, . . . , pL) unless L > f and L ≡ f (mod m− 1) (if f ≤ m− 1).

Suppose now that f ≤ m − 1 (in case f = m a restricted Huffman tree
coincides with a Huffman tree). The construction in the next lemma closely
follows the construction described in the binary case.

Lemma 5.3. The trees EHT (p1, p2, . . . , pL) and ERHT (f ; p1, p2, . . . , pL) can
be constructed as follows:

A) If L ≥ m and L ≡ 1 (mod m − 1) we consider the terminal vertex x in
T = HT (p1, p2, . . . , pL) belonging to the maximum level h(T ), and having as-
signed a minimum weight p = min{p1, p2, . . . , pL}. The vertex x is transformed
into an internal vertex, joined to a new son y on the level h(T )+1; we associate
to y the weight p.

B) If L > f and L ≡ f (mod m − 1), then the same construction is performed
on the tree RHT (f ; p1, p2, . . . , pL).

Proof. We prove only case B), as the first one is similar. Let C be a prefix
code over M satisfying (10), and (a), (b) in RHOP; let T (C) be the m-ary
tree associated with C. By Lemma 3.1 T (C) contains non-terminal vertices x
different from the root that have less than m sons. As in the binary case, such a
vertex x belongs to the level h(T (C))−1 (otherwise, C would not be optimum).
Now we assume that there exist two vertices x and y on the level h(T (C)) − 1
such that x has n1 ≤ m − 1 sons, and y has n2 ≤ m − 1 sons on the level
h(T (C)). If n1 + n2 ≤ m, then we take n1 − 1 sons of x and make them sons
of y; the unique remaining son of x is deleted and its weight is assigned to x
(which becomes a terminal vertex). A new extendible tree T1 is obtained and
cost(T1) < cost(T (C)), a contradiction. If n1 + n2 ≥ m + 1, then we move
some sons of x and make them sons of y such that y has now exactly m sons
on the level h(T (C)). The tree T2 thus obtained has the same cost as T (C):
cost(T2) = cost(T (C)). By repeating this procedure we find an optimum tree T
having a unique vertex x on the level h(T )−1 such that x has less than m sons.
If x has a ≤ m− 1 sons, then

L− (a− 1) ≡ f (mod m− 1).

Since L ≡ f (mod m− 1) we deduce that a = 1. From now on the proof goes on
as in binary. 2

1177Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



Lemma 5.4. If L > f and f ≤ m− 2, then

cost(ERHT (f ; p1, p2, . . . , pL)) > cost(ERHT (f + 1; p1, p2, . . . , pL)).

Proof. In ERHT (f ; p1, p2, . . . , pL) we take a terminal vertex lying on a level
greater than one and make it son of the root. A new tree T with the root of
degree f + 1 is produced. This tree is extendible and

cost(ERHT (f ; p1, p2, . . . , pL)) > cost(T ) ≥ cost(ERHT (f + 1; p1, p2, . . . , pL)).

2

Now we are able to propose an algorithm to generate an optimal extension of
an optimal, non-complete, m-ary prefix code. Starting with weights p1, p2, . . . , pL
and proceeding as in binary, we build T1 = EHT (p1, p2, . . . , pL) which generates
an m-ary code C = {w1, w2, . . . , wL} such that

∑L
i=1 m

−li < 1 and
∑L
i=1 pili is

minimum among all prefix codes of cardinality L. Suppose we want to extend C
with s new words wL+1 , . . . , wL+ s having lengths |wi| = li, for L+1 ≤ i ≤ L+s,
such that

∑L+ s
i=1 m−li < 1, i.e. the new code is extendible again. If the new words

have weights pL+1 , . . . , pL+ s we have to choose the word lengths lL+1 , . . . , lL+ s
such that

∑L+ s
i= L+1 pili is minimum. We proceed as follows: let x be the unique

non-terminal vertex of T1 having b ≤ m − 1 sons on the last level of T1. If
b = m − 1, then we build the tree T2 = EHT (pL+1 , . . . , pL+ s) having the root
r and define T to be the union of T1 and T2, where r becomes the mth son of
x. In case 1 ≤ b ≤ m− 2 we construct T2 = ERHT (m− b; pL+1 , . . . , pL+ s) with
the root r and define T by identifying r with x into a single vertex having m
sons.

Theorem 5.5. The tree T is an optimal extension of T1 for every m ≥ 3.

Proof. In view of Lemma 5.4 and proceeding as in binary (see the proof of
Theorem 4.2), we show that T is an extendible m-ary tree which extends T1 and
achieves the minimum weighted length

∑L+ s
i= L+1 pili. 2

Notice that if we want T not to be extendible then, as in binary, we must
choose T2 = HT (pL+1 , . . . , pL+ s), respectively, RHT (m − b; pL+1 , . . . , pL+ s),
instead of EHT (pL+1 , . . . , pL+ s), respectively, ERHT (m− b; pL+1 , . . . , pL+ s).

6 Concluding Remarks

The extension discussed in this paper has been performed under the assumption
that the initial prefix code is itself optimal and satisfies Kraft’s strict inequality.
It would be interesting to study the corresponding problem for an initial arbitrary
extendible prefix code, satisfying only Kraft’s strict inequality.

1178 Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes



Acknowledgement

This work has been done while the second author has visited the Univer-
sity of Auckland. The first author has been partially supported by AURC
A18/XXXXX/62090/F3414030, 1994.

References

1. J. Berstel, D. Perrin. Theory of Codes, Academic Press, New York, 1985.
2. C. Calude. Information and Randomness: An Algorithmic Perspective, Springer-

Verlag, Berlin, 1994.
3. G. J. Chaitin. A theory of program size formally identical to information theory,

J. Assoc. Comput. Mach. 22(1975), 329–340. (Reprinted in: G. J. Chaitin. In-
formation, Randomness and Incompleteness, Papers on Algorithmic Information
Theory, World Scientific, Singapore, 1987. (2nd ed., 1990), 197–223.)

4. G. J. Chaitin. Algorithmic Information Theory, Cambridge University Press,
Cambridge, 1987. (third printing 1990)

5. T. M. Cover, J. A. Thomas. Elements of Information Theory, John Wiley, New
York, 1991.

6. S. Even. Algorithmic Combinatorics, Macmillan, New York, 1973.
7. D. A. Huffman. A method for the construction of minimum-redundancy codes,

Proc. IRE 40 (1952), 1098–1101.
8. L. G. Kraft. A Device for Quantizing Grouping and Coding Amplitude Modulated

Pulses, MS Thesis, Electrical Eng. Dept., MIT, Cambridge, MA, 1949.

1179Calude C.S., Tomescu I.: Optimum Extendible Prefix Codes


