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Abstract: In this note we present rapidly convergent algorithms depending on the
method of arithmetic-geometric means (AGM) for the computation of Jacobian elliptic
functions and Jacobi’s Theta-function. In particular, we derive explicit a priori bounds
for the error accumulation of the corresponding Landen transform.
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1 Introduction and recent results

In 1994 [LuOt94] we have published rigorous a priori estimates for the real AGM-
method and the ascending Landen transform by considering errors inherent in
the floating-point representation as well as round-off errors in the arithmetic to
calculate the square root-, logarithm- and arctan-function and their inverses. The
special interest in the AGM-method arises form quadratic convergence of these
algorithms, so that fast and reliable calculations are possible. Later [LuOt96] we
have extended the method to calculate the corresponding complex- and matrix-
valued functions.

In his thesis [W96] Werner developed a cancellation-free algorithm to evaluate
the inverse Weierstraf3-function
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He also analyses the ascending Landen transform to calculate the Jacobian el-
liptic functions sn(u,m) = siny, cn(u,m) and dn(u,m), where
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0
Remark that

Vel — €3, u—ep €2 — €3
Y P Huser,ere3) = F (arccos )

2 u—e3 \ el —es




26 Luther W., Otten W.: Reliable Computation of Elliptic Functions

Thus we have
€y — €3 2
m = , COs” p = .
€1 —e3 Uu—e3

However, this transformation holds only for \/z2; < ¢ < 7/2 — /¢, where &y
denotes the screening-¢. The complete results read as follows

u—ep

Theorem 1. With

ag = /€1 — €3, bo = Ver — €2, Qjy1 = (ai + bz)/2,
bit1:=va; by, do:=up— ey,

1 a? +b? +d;
divs = le (1 i V(a2 +d;) (b7 +d;) + a'ibi) ’
n:=[ld2+1dB-(¢£-1)/2)] + [Id(dB- (¢ -1) — 1)],

gp = BI_Z,B = 25,54 <2792
it holds that

P~ Huo; e1, e, e3) = 2/¢BpArctan(B,,/¢Sqrt,D,,) - (1 + de¢),
16 < 8.3 - 3.00001" + 4.0001n + 8.

Here ug, e1, €2 e3 are machine numbers and A,,, By, Dy, Arctan machine approz-
imations of ay,, by, d,,arctan and [, the machine division.

In the above theorem 1d(-) = log,(+) denotes the dual logarithm. In the sequel
we denote the machine approximations by capital letters. Putting

ap =1, by := kg, co := ko, m:=2[1d(ldB- (¢ —-1))] -1,

a, + b,
ty i= ————,
2sin(u - by)
2
C; a; — bl .
C; = = — = Q; — Q; ,120,1,2,3,...,
i+1 4ai+1 2 i i+1

a2
ti =141 + 4t:+1, 1:=n— ]., ...,0,

Werner shows that
sn(u,m) =Ty - (1 + §eey).

The value of §; depends on the choice of the base B and the exponent £. They
are given in a precalculated table, e.g. §, < 2!3 for the IEEE double format and
d; < 215 for the quad-format with 128 Bits.

In two other notes we have considered the descending Landen transform to
complete our studies of the AGM-method and elliptic functions. First we have
developed a new algorithm for the evaluation of

F(QO,]{?), E(<QOS7T/2—8[, 28f§k2 S 1_2537 807k2 ESIﬂ

which avoids cancellation [LuOt97]. The same method was utilized to derive
bounds for the absolute error of each term in the series representation of Jacobi’s
Zeta function
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Z(p:k) = E(p,k) — (B/K)F(p,k) =3 cising;
w/2

E:E(gk) - / 1 — k2 sin® 9d, K::F(g,k)

and the relative error of the product representation of Jacobi’s Theta function
O(p, k)[LuOt97-2].
We complete our definitions and put as above

k() ::k'7 k(l): l_kQa $o = ¥,

b; c;
k=2 k= 2 1
fim g i 1)
(14 k) tan g;
tan g 1= 2T
an Y41 1k tanZ o;

The descending Landen transform states that

1 1

Ya, (pi, ki) 2i+1a;1,

F(pir1,kit1), 1=0,1,2,3,....

The sequence {a;} and {b;} tend to the limit agm, ¢; /2" to &, ¢;/(b;2") decreases
to u = F(p, k) = &/agm as well as ¢;/(a;2") increases to {/agm as i tends to
infinity. For the approximation error it was proved:

Theorem 2. Choose n € N such that 1 — kI, < g¢. Then it holds that

Pn _ 3
2"a,  agm

(14 dep), 0] < 1.

We have shown in [LuOt97] that applying the AGM-method with lde, > —27/2
after n iteration steps we have 1 — k], < g.

2 Basic error analysis

Now we start with two machine numbers ¢y = ¢ € (0,7/2) and k* € (0,1)
belonging to the floating-point screen S’ := S(B, ¢, em’,eM') with its even base
B, mantissa length ¢' and [em’,eM’] smallest and largest allowable exponent,
respectively. Computations require guard digits and are made in a finer screen
S:=8(B,l,em,eM),l' <</l + const., em < em',eM > eM'.

The relative error for all elementary operations X with machine numbers z
and y is assumed to be bounded by

T X — I X
| 1y y|<5€_
|z % y

We assume £, < 107* and mention some basic error estimations [LuOt94].
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Given two numbers a,b and their corresponding machine approximations
A, B with |A — a] < |a|e, and |B — b| < |b|ep, then it holds

|(A+¢ B) — (a+D)]
PE) 55“‘
|(A-¢ B) —(a-b)]
la - b

|(4/¢B) — (a/b)]| Eat€
/i §8l+(1+6g){1_6bb}.

Using these formulas we will estimate the rounding errors in our algorithms,
so that we can give a priori error bounds for the functions calculated in the
following paragraphs.

Werner [W96-2] obtained a complete error analysis for the evaluation of the
square root by using Newton’s method. His result reads as follows:

Starting from an initial value

yo = (14 x)/2 where 2 € [0.5,2]N S°, B =27, ¢, <2772,

1+4+¢
a+b

{laleq + (bl s},

<er+(1+ep){ea+ev+ea-ev}, (2)

the relative error of the square root 1/ calculated by Newton’s method

(y%—1 - 35)

S 2 (A~ 1)~ 2)] +2

Yn =Yn-1 —

is bounded by 1.50001¢&,.
Under the assumption (i + 1)%g; < 1078 it was proved in [LuOt94] and
[W96-2] that starting from machine numbers

and applying AGM-iteration we find after i steps a relative error of order
A; = ai(l + (51 -2.001 - (Z + 1)5[),
B; = b;i(1+ 67 -2.001- (i + 1)eg), |07] < 1.

Assuming a sharper restriction €, < 2752, we see that i*e, < 1073, if 4 < 1000,
and we can derive a bound v; < 2.021+3¢, for the relative error ; of the
sequence {C;},

Ci =ci(1+6;-v), |07 <1,

involved in the calculation of Jacobi’s Zeta-function by using

k2 c?
Ch = —(1+6-6.21g), cip1 = ——,
! 40,1 ( + 1 Sl) Cit1 4ai+1

Yig1 < 2.001; + 2.01(i + 3.5)e,.

This result shows that the absolute error in the representation of ¢; by the
machine number C; is roughly speaking bounded by 8¢y.
Furthermore, it holds

K| = k(146 6.782),]04] < 1,
Kl = Ei(1+65(1.01 +4.2- (i + 1))eg), |64] < 1,i > 1. (3)
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3 Jacobi’s Theta-function

Now we give an algorithm to compute Jacobi’s Theta-function

o ! 1/2 _ i+2
O(u,m) =B k) = (25 ) T, (1— K sn i) "

™

without cancellation including a bound for the relative error.

Algorithm 1. (Theta-Function)
1. Take the values agm, ki, cot;,cot p; previously computed.

2. Tnitialize l
0. — 1 1+ cot®p,
"R\ 14 cot? ey,
3. Loop:

For 7 :=n — 1 downto 0 do

1 1+ cot? o;
Qi = _\/@H-l . 7(10

k! 1+ cot? ¢,
Algorithm 2.

k,l
O(u,m) =40 - -0
agm
1. Initialization:

a) We enter the argument u,0 < u < K(1 — &¢) and the second argument
k? fulfilling 2e, < k2 <1 —2¢¢, u,k?> € S".
b) We put ko :=k, ap :=1, by := k.
2. Tteration:
a) We calculate successively a;y1,bit1, ki1, /Kifq, 2+l i =0,....,n — 1.
b) If 1 -k, <e; (i.e. n > 21d(1d(1/e())) we put

4. End:

agm = ay, @n = agm 2" -u, j, := [2pn/7|,coth, = cot v, /kl,.

Then we compute successively for i :=mn, ..., 1,
Ji-1 = /2],

(cot i + /1 + cot? zbi) /KL if j;_1 even,
-1/ ((COtl/Ji + /1 + cot? 1/%’) - \/k:;—_l) , if j;—1 odd.

cot ;1 =

3. End:
We take the values n, agm, kj, cot 1;, cot ¢; and compute ©(u, m) as pointed
out in Algorithm 1.
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Now we want to estimate the relative error of our machine approximation
O(u, m). Starting from
X = z(1 4+ 84e¢), |04 < 3(n+ 3)%ey,
we derive
X +¢Sqrty(14+¢ X v X) = (x + V1 4+ 22)(1 + Sjep + 3.53¢).

We first consider algorithm 2. By (2) and an accurate cotangent-evaluation, we
derive
Cotyhy, = cot b (1 + dper), |0n] < 2.1(n + 4),

and by induction for i =n —1to 0
Cotep; = cotth; (1 + dier), 16| < 2.1-(n+1—1i)(n+4).
The same estimation is valid for Cot ¢;. Defining
R; := (144 Cot? ¢;)/e(1 +¢ Cot? 1;),
in an analogous way we infer

_ 1+cot? ¢;

=TT eol? 0 (1405 (5.054+8.4(n+4) (n+1—1))ee),|04] < 1.

Using (3) and starting in algorithm 1, step 2, we have an error bound for @,
with |dg] < 1:

1 [1+4cot? ¢,

By induction we derive the following bound for the relative error ; of our ma-
chine approximation ©); :

|Gl < (84(n+4)(n+1—1i)+5.05)ep, i =n—1,...,0.

The last term k{/agm can by calculated with a relative error bounded by
2.1(n+ 1)e; + 3.03¢, and after a multiplication and root extraction the one of ©
is bounded by

(42(n +4.25)(n+1)+6.1)e,

Thus we have proved
Theorem 3. Calculating ©(u, m),

0<u<K(l—gg), 260 <k*<1—2¢, uk*€8’, g, <27
as indicated in Algorithms 1 and 2, the relative error is bounded by

(6.14+4.2(n +4.25)(n+ 1)) e
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Remark: In the same way we find
Sing; = sing;(1 + 05e¢), lo;| <2.1-(n+1—-i)(n+4)+ 3.2

For i = 0 we have a relative error bound for the machine approximation of

. 1
5 = S = _—
sn(u,m) = sinpg = 4 T+ oot 7o

of order (2.1 (n+ 1)(n +4) 4+ 3.2) e,. An analogous estimation holds for

1+ tan? ¢y
dn{u,m) =\ T3 tan® oo

with a relative error bounded by (4.2 - (n + 1)(n +4) + 4.6) ;.
By the way we have found a error estimation for the machine approximation
of Jacobi’s Zeta-function

Z(u,m) = Z'>1 ¢ sin p;
introducing
Sing; = sing;(1 +0;-4.2(n+4)(n+1—1d)e, +3.2), |0 <1,
and C; = ¢;(1 + 4} -2.02143), |8} < 1.

There is another definition of Jacobi’s theta-function as a Fourier series

V4 (%) =0O(u,m) =1+ 22(—1)iexp <—%Kli2> cos (z%) .

Remark that

™ ™

K(k)

agm' = lim a}, ap:=1,b{ = ko.
i—00

K':=K() =

- 2agm’ - 2agm”’

We prefer our method for large ¢ because the series converges slowly for large
K.Ifk=1-¢;=1-2'""f we have the asymptotic relation [LuOt96]

le
=2(1 - 5k2/4)

cexp (- e (T (4)
T=PA g AT+ 2) 2
: 4
]-+qu
F=ava]l,, (W)
2

and ¢(*") stays nearby one for small 1.

7K (k) 16

K'(k) k2

k' =0,
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The product-representation can be used to find a first approximation for k
as a function of ¢, when we calculate the inverse function to ¢(k) with the aid
of Newton’s method. We have [BoBo84]

o(k) = exp (—r 29 da__. d agm
agm' )’ dk dk agm’’

d ! SO ~
adgkm = lim a;, ap:=0, by :=1,
12— 00

~ ~ . ~ Jal
ai+1 = (az + bl)/Q, bi+1 = 61 j + b; b—IZ /2,

and there is a similar relation for
dagm dagm —k
dk —  dk' J1—k2

Thus we have developed a quadratic convergent algorithm to calculate ¥4 (v) :

Algorithm 3.

1. Initialization: _
Find a first approximation k of k = k(q) using the product-representation
of k in (4).
2. Tteration:
Calculate by Newton’s and AGM iteration k = k(q).
3. End:
Compute @(2Kv/m, k*) by our algorithms 1 and 2.

We will apply our results to solve a partial differential equation: Sugihara
and Fujino [SF96] discuss Burgers’ equation

ou  Ou_ O%u
ot " or oz

with large Reynolds—number 1/v. They derive a representation of the exact
solution including integrations of ¥3,

0<z<1, u(z,0) =up(z), u(0,t) =u(l,t) =0,

}1u070dd(n)w(n)193 (0.5(z — 1), exp(—mvt)) dn

-1

u(l‘,t) = +1 Y

J wmds (0.5(z —n), exp(=72vt)) dn

-1
n

i) = —uo(w), wn) = exp |~ [ uoaa(d |
0

and consider

!

Tuy (K — u) _ K
I3 (ﬁ) =, <T> for arguments v := I

< 0.02
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and u near K. It holds ¢ = exp(—n?vt) ~ 1, and the infinite series con-
verges very slowly. If we assume ¢ = 1, we see from (4) that a precision of
1/(v - In2) binary digits is necessary to apply our algorithms 1 and 2 for calcu-
lating ¥ (0.5(z — n), exp(—r?vt)) and to achieve correct results including error
bounds.

At the moment we implement a function library including all elementary and
elliptic functions utilizing the C++—platform BIAS and arbitrary floating point
screens.

However, in a recent talk on the SCAN-97 conference at Lyon Sugihara and
Fujino proposed together with Hoshino another numerical method for the exact
solution of Burgers’ equation using the Jacobian Imaginary Transform

1 u? = n? 2nu
Y3(u,q) = T exp <_E> {1 + QZexp <_E> cosh;} )

n=1

When v < 1073, they cannot apply this representation because of the range
limitation [3.4- 1074932, 1.1 - 10%%32] of the double extended IEEE-format. Thus,

02.77~1018

they redefine arithmetics to deal with large numbers about 1 in order

to handle Burgers’ equation with Reynolds—numbers up to 108.
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