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Abstract: In this note we present rapidly convergent algorithms depending on the
method of arithmetic-geometric means (AGM) for the computation of Jacobian elliptic
functions and Jacobi's Theta-function. In particular, we derive explicit a priori bounds
for the error accumulation of the corresponding Landen transform.
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1 Introduction and recent results

In 1994 [LuOt94] we have published rigorous a priori estimates for the real AGM-
method and the ascending Landen transform by considering errors inherent in
the 
oating-point representation as well as round-o� errors in the arithmetic to
calculate the square root-, logarithm- and arctan-function and their inverses. The
special interest in the AGM-method arises form quadratic convergence of these
algorithms, so that fast and reliable calculations are possible. Later [LuOt96] we
have extended the method to calculate the corresponding complex- and matrix-
valued functions.

In his thesis [W96] Werner developed a cancellation-free algorithm to evaluate
the inverse Weierstra�-function

P�1(u; e1; e2; e3) :=
1Z
u

dxp
(x� e1)(x� e2)(x � e3)

;

e3 < e2 < e1 � u; e1 + e2 + e3 = 0:

He also analyses the ascending Landen transform to calculate the Jacobian el-
liptic functions sn(u;m) = sin'; cn(u;m) and dn(u;m); where

u = F ('; k) =

'Z
0

�
1� k2 sin2 #

��1=2
d#;m = k2:

Remark that
p
e1 � e3

2
P�1(u; e1; e2; e3) = F

�
arccos

r
u� e1

u� e3
;

r
e2 � e3

e1 � e3

�
:
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Thus we have

m =
e2 � e3

e1 � e3
; cos2 ' =

u� e1

u� e3
:

However, this transformation holds only for
p
"` � ' � �=2 � p

"`; where "`
denotes the screening-". The complete results read as follows

Theorem1. With

a0 :=
p
e1 � e3; b0 :=

p
e1 � e2; ai+1 := (ai + bi)=2;

bi+1 :=
p
ai � bi; d0 := u0 � e1;

di+1 :=
1

2
di

 
1 +

a2i + b2i + dip
(a2i + di) (b

2
i + di) + aibi

!
;

n := dld(2 + ldB � (`� 1)=2)e+ dld(ldB � (`� 1)� 1)e ;
"` := B1�`;B := 2�; "` � 2�52;

it holds that

P�1(u0; e1; e2; e3) = 2=`BnArctan(Bn=`Sqrt`Dn) � (1 + �"`);

j�j � 8:3 � 3:00001n + 4:0001n+ 8:

Here u0; e1; e2;e3 are machine numbers and An; Bn; Dn; Arctan machine approx-
imations of an; bn; dn; arctan and =` the machine division.

In the above theorem ld(�) = log2(�) denotes the dual logarithm. In the sequel
we denote the machine approximations by capital letters. Putting

a0 := 1; b0 := k00; c0 := k0; n := 2 dld(ldB � (`� 1))e � 1;

tn :=
an + bn

2 sin(u � bn)
;

ci+1 :=
c2i

4ai+1
=
ai � bi

2
= ai � ai+1; i = 0; 1; 2; 3; :::;

ti := ti+1 +
c2i

4ti+1
; i := n� 1; :::; 0;

Werner shows that
sn(u;m) = T�10 � (1 + �`"`):

The value of �` depends on the choice of the base B and the exponent `: They
are given in a precalculated table, e.g. �` � 213 for the IEEE double format and
�` � 215 for the quad-format with 128 Bits.

In two other notes we have considered the descending Landen transform to
complete our studies of the AGM-method and elliptic functions. First we have
developed a new algorithm for the evaluation of

F ('; k); "` < ' � �=2� "`; 2"` � k2 � 1� 2"`; '; k
2 2 S0;

which avoids cancellation [LuOt97]. The same method was utilized to derive
bounds for the absolute error of each term in the series representation of Jacobi's
Zeta function
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eZ('; k) := E('; k)� (E=K)F ('; k) =
X

i�1
ci sin'i

E := E
��
2
; k
�
=

�=2Z
0

p
1� k2 sin2 #d#; K := F

��
2
; k
�

and the relative error of the product representation of Jacobi's Theta functione�('; k)[LuOt97-2].
We complete our de�nitions and put as above

k0 := k; k
0

0 =
p
1� k2; '0 := ';

k0i :=
bi

ai
; ki :=

ci

ai
; (1)

tan'i+1 :=
(1 + k0i) tan'i

1� k0i tan
2 'i

:

The descending Landen transform states that

1

2iai
F ('i; ki) =

1

2i+1ai+1
F ('i+1; ki+1); i = 0; 1; 2; 3; ::::

The sequence faig and fbig tend to the limit agm; 'i=2
i to �; 'i=(bi2

i) decreases
to u = F ('; k) = �=agm as well as 'i=(ai2

i) increases to �=agm as i tends to
in�nity. For the approximation error it was proved:

Theorem2. Choose n 2 N such that 1� k0n < "`. Then it holds that

'n

2nan
=

�

agm
(1 + �"`); j�j � 1:

We have shown in [LuOt97] that applying the AGM-method with ld"` � �2n=2
after n iteration steps we have 1� k0n < "`.

2 Basic error analysis

Now we start with two machine numbers '0 = ' 2 (0; �=2) and k2 2 (0; 1)
belonging to the 
oating-point screen S0 := S(B; `0; em0; eM 0) with its even base
B, mantissa length `0 and [em0; eM 0] smallest and largest allowable exponent,
respectively. Computations require guard digits and are made in a �ner screen
S := S(B; `; em; eM); `0 < ` � `0 + const:; em � em0; eM � eM 0:

The relative error for all elementary operations � with machine numbers x
and y is assumed to be bounded by

jx�l y � x� yj
jx� yj < "`:

We assume "` < 10�4 and mention some basic error estimations [LuOt94].
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Given two numbers a; b and their corresponding machine approximations
A;B with jA� aj � jaj "a and jB � bj � jbj "b; then it holds

j(A+` B)� (a+ b)j
ja+ bj � "` +

����1 + "`

a+ b

���� fjaj "a + jbj "bg ;

j(A �` B)� (a � b)j
ja � bj � "` + (1 + "`) f"a + "b + "a � "bg ; (2)

j(A=`B)� (a=b)j
ja=bj � "` + (1 + "`)

�
"a + "b

1� "b

�
:

Using these formulas we will estimate the rounding errors in our algorithms,
so that we can give a priori error bounds for the functions calculated in the
following paragraphs.

Werner [W96-2] obtained a complete error analysis for the evaluation of the
square root by using Newton's method. His result reads as follows:

Starting from an initial value

y0 = (1 + x)=2 where x 2 [0:5; 2] \ S0; B = 2�; "` � 2�52;

the relative error of the square root
p
x calculated by Newton's method

yn = yn�1 �
�
y2n�1 � x

�
2yn�1

; n � dld(�(`� 1)� 2)e+ 2

is bounded by 1:50001"`:
Under the assumption (i + 1)2"` < 10�8 it was proved in [LuOt94] and

[W96-2] that starting from machine numbers

A0 = 1; B0 = k00(1 + �00 � 2:001"`); j�00j � 1;

and applying AGM-iteration we �nd after i steps a relative error of order

Ai = ai(1 + �01 � 2:001 � (i+ 1)"`);

Bi = bi(1 + �01 � 2:001 � (i+ 1)"`); j�01j � 1:

Assuming a sharper restriction "` � 2�52; we see that i4"` � 10�3; if i � 1000;
and we can derive a bound 
i � 2:021i+3"` for the relative error 
i of the
sequence fCig,

Ci = ci(1 + �0i � 
i); j�0ij � 1;

involved in the calculation of Jacobi's Zeta-function by using

C1 =
k2

4a1
(1 + �01 � 6:21"`); ci+1 =

c2i
4ai+1

;


i+1 � 2:001
i + 2:01(i+ 3:5)"`:

This result shows that the absolute error in the representation of ci by the
machine number Ci is roughly speaking bounded by 8"`:

Furthermore, it holds

K 0

1 = k01(1 + �02 � 6:78"`); j�02j � 1;

K 0

i = k0i(1 + �03(1:01 + 4:2 � (i+ 1))"`); j�03j � 1; i > 1: (3)
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3 Jacobi's Theta-function

Now we give an algorithm to compute Jacobi's Theta-function

�(u;m) = e�('; k) = �2k0K
�

�1=2Y
i�0

�
1� k2i sin

2 'i

��1=2i+2
without cancellation including a bound for the relative error.

Algorithm 1. (Theta-Function)

1. Take the values agm; k0i; cot i; cot'i previously computed.
2. Initialize

�n :=
1

k0n

s
1 + cot2 'n

1 + cot2  n
:

3. Loop:
For i := n� 1 downto 0 do

�i :=
1

k0i

s
�i+1 �

1 + cot2 'i

1 + cot2  i

4. End:

�(u;m) :=

s
�0 �

k00
agm

:

Algorithm 2.

1. Initialization:
a) We enter the argument u; 0 < u � K(1 � "`) and the second argument

k2 ful�lling 2"` � k2 � 1� 2"`; u; k
2 2 S0:

b) We put k0 := k, a0 := 1, b0 := k00.
2. Iteration:

a) We calculate successively ai+1; bi+1; k
0
i+1;

p
k0i+1; 2

i+1; i = 0; :::; n� 1:

b) If 1� k0n < "` (i.e. n � 2ld(ld(1="`))) we put

agm := an; 'n := agm � 2n � u; jn := b2'n=�c ; cot n := cot'n=k
0

n:

Then we compute successively for i := n; :::; 1;

ji�1 := bji=2c ;

cot i�1 :=

8<
:
�
cot i +

p
1 + cot2  i

�
=
p
k0i�1; if ji�1 even,

�1=
��

cot i +
p
1 + cot2  i

�
�
p
k0i�1

�
; if ji�1 odd:

3. End:
We take the values n, agm; k0i, cot i, cot'i and compute �(u;m) as pointed
out in Algorithm 1.
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Now we want to estimate the relative error of our machine approximation
�(u;m): Starting from

X = x(1 + �04"`); j�04j � 3(n+ 3)2"`;

we derive

X +` Sqrt`(1 +` X �` X) = (x +
p
1 + x2)(1 + �04"` + 3:53"`):

We �rst consider algorithm 2. By (2) and an accurate cotangent-evaluation, we
derive

Cot n = cot n(1 + �n"`); j�nj � 2:1(n+ 4);

and by induction for i = n� 1 to 0

Cot i = cot i(1 + �i"`); j�ij � 2:1 � (n+ 1� i)(n+ 4):

The same estimation is valid for Cot 'i: De�ning

Ri := (1 +` Cot
2 'i)=`(1 +` Cot

2  i);

in an analogous way we infer

Ri =
1 + cot2 'i

1 + cot2  i
(1 + �05 (5:05 + 8:4(n+ 4) (n+ 1� i)) "`) ; j�05j � 1:

Using (3) and starting in algorithm 1, step 2, we have an error bound for �n

with j�06j � 1 :

Sqrt`Rn=`K
0

n =
1

k0n

s
1 + cot2 'n

1 + cot2  n
(1 + �06 (4:2(n+ 4) + 5:05) "`) :

By induction we derive the following bound for the relative error �i of our ma-
chine approximation �i :

j�ij � (8:4(n+ 4)(n+ 1� i) + 5:05) "`; i = n� 1; :::; 0:

The last term k00=agm can by calculated with a relative error bounded by
2:1(n+1)"`+3:03"` and after a multiplication and root extraction the one of �
is bounded by

(4:2(n+ 4:25)(n+ 1) + 6:1) "`

Thus we have proved

Theorem3. Calculating �(u;m);

0 < u � K(1� "`); 2"` � k2 � 1� 2"`; u; k2 2 S0; "` � 2�52;

as indicated in Algorithms 1 and 2, the relative error is bounded by

(6:1 + 4:2(n+ 4:25)(n+ 1)) "`:
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Remark: In the same way we �nd

Sin'i = sin'i(1 + �i"`); j�ij � 2:1 � (n+ 1� i)(n+ 4) + 3:2:

For i = 0 we have a relative error bound for the machine approximation of

sn(u;m) = sin'0 =

s
1

1 + cot2 '0

of order (2:1 � (n+ 1)(n+ 4) + 3:2) "`: An analogous estimation holds for

dn(u;m) =

s
1 + tan2  0

1 + tan2 '0

with a relative error bounded by (4:2 � (n+ 1)(n+ 4) + 4:6) "`:
By the way we have found a error estimation for the machine approximation

of Jacobi's Zeta-function

Z(u;m) =
X

i�1
ci sin'i

introducing

Sin'i = sin'i(1 + �i � 4:2(n+ 4)(n+ 1� i)"` + 3:2); j�ij � 1;

and Ci = ci(1 + �0i � 2:021i+3); j�0ij � 1:
There is another de�nition of Jacobi's theta-function as a Fourier series

#4

� �u
2K

�
= �(u;m) = 1 + 2

1X
i=1

(�1)i exp
�
��K

0

K
i2
�
cos
�
i
�u

K

�
:

Remark that

K(k) =
�

2agm
; K 0 := K(k0) =

�

2agm0
;

agm0 = lim
i!1

a0i; a
0

0 := 1; b00 = k0:

We prefer our method for large ` because the series converges slowly for large
K. If k = 1� "` = 1� 21�` we have the asymptotic relation [LuOt96]�����K(k)

K 0(k)
� ln

16

k02

���� � k02

2 (1� 5k02=4)
; k0 ! 0;

q := exp

�
��K

0

K

�
� exp

�
� �2

(`+ 2) ln 2

�
(4)

k := 4
p
q
Y

i�1

�
1 + q2i

1 + q2i�1

�4

:

and q(i
2) stays nearby one for small i.
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The product-representation can be used to �nd a �rst approximation for k
as a function of q; when we calculate the inverse function to q(k) with the aid
of Newton's method. We have [BoBo84]

q(k) = exp

�
�� agm

agm0

�
;
dq

dk
= ��q d

dk

agm

agm0
;

d agm0

dk
= lim

i!1
eai; ea0 := 0; eb0 := 1;

eai+1 := (eai +ebi)=2; ebi+1 :=
 
eai
s
b0i
a0i

+ebi
s
a0i
b0i

!
=2;

and there is a similar relation for

d agm

dk
=
d agm

dk0
�kp
1� k2

:

Thus we have developed a quadratic convergent algorithm to calculate #4(v) :

Algorithm 3.

1. Initialization:
Find a �rst approximation ek of k = k(q) using the product-representation
of k in (4):

2. Iteration:
Calculate by Newton's and AGM iteration k = k(q).

3. End:
Compute �(2Kv=�; k2) by our algorithms 1 and 2.

We will apply our results to solve a partial di�erential equation: Sugihara
and Fujino [SF96] discuss Burgers' equation

@u

@t
+ u

@u

@x
= �

@2u

@x2
; 0 � x � 1; u(x; 0) = u0(x); u(0; t) = u(1; t) = 0;

with large Reynolds{number 1=�. They derive a representation of the exact
solution including integrations of #3,

u(x; t) =

+1R
�1

u0;odd(�)w(�)#3
�
0:5(x� �); exp(��2�t)

�
d�

+1R
�1

w(�)#3 (0:5(x� �); exp(��2�t)) d�
;

u0;odd(�x) := �u0(x); w(�) := exp

0
@� 1

2�

�Z
0

u0;odd(�)d�

1
A ;

and consider

#3

� �u
2K

�
= #4

�
�(K � u)

2K

�
for arguments � :=

K 0

�K
� 0:02
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and u near K. It holds q = exp(��2�t) � 1; and the in�nite series con-
verges very slowly. If we assume t = 1; we see from (4) that a precision of
1=(� � ln 2) binary digits is necessary to apply our algorithms 1 and 2 for calcu-
lating #3

�
0:5(x� �); exp(��2�t)

�
and to achieve correct results including error

bounds.
At the moment we implement a function library including all elementary and

elliptic functions utilizing the C++{platform BIAS and arbitrary 
oating point
screens.

However, in a recent talk on the SCAN{97 conference at Lyon Sugihara and
Fujino proposed together with Hoshino another numerical method for the exact
solution of Burgers' equation using the Jacobian Imaginary Transform

#3(u; q) =
1p
�t�

exp

�
�u

2

�t

�(
1 + 2

1X
n=1

exp

�
�n

2

�t

�
cosh

2nu

�t

)
:

When � � 10�3; they cannot apply this representation because of the range
limitation [3:4 � 10�4932; 1:1 � 104932] of the double extended IEEE-format. Thus,

they rede�ne arithmetics to deal with large numbers about 102:77�10
18

in order
to handle Burgers' equation with Reynolds{numbers up to 108.
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