Reliable Computation of Elliptic Functions

Wolfram Luther
(Gerhard-Mercator-Universität -GH Duisburg, Fachbereich Mathematik
Luther@informatik.uni-duisburg.de)
Werner Otten
(Gerhard-Mercator-Universität -GH Duisburg, Fachbereich Mathematik
Otten@informatik.uni-duisburg.de)

Abstract

In this note we present rapidly convergent algorithms depending on the method of arithmetic-geometric means (AGM) for the computation of Jacobian elliptic functions and Jacobi's Theta-function. In particular, we derive explicit a priori bounds for the error accumulation of the corresponding Landen transform.

AMS Classification: 65D20, 65G05
Key Words: Elliptic functions, Landen transform, AGM-method, a priori rounding error estimation

1 Introduction and recent results

In 1994 [LuOt 94$]$ we have published rigorous a priori estimates for the real AGMmethod and the ascending Landen transform by considering errors inherent in the floating-point representation as well as round-off errors in the arithmetic to calculate the square root-, logarithm- and arctan-function and their inverses. The special interest in the AGM-method arises form quadratic convergence of these algorithms, so that fast and reliable calculations are possible. Later [LuOt96] we have extended the method to calculate the corresponding complex- and matrixvalued functions.

In his thesis [W96] Werner developed a cancellation-free algorithm to evaluate the inverse Weierstraß-function

$$
\begin{aligned}
\mathcal{P}^{-1}\left(u ; e_{1}, e_{2}, e_{3}\right) & :=\int_{u}^{\infty} \frac{d x}{\sqrt{\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)}} \\
e_{3} & <e_{2}<e_{1} \leq u, e_{1}+e_{2}+e_{3}=0
\end{aligned}
$$

He also analyses the ascending Landen transform to calculate the Jacobian elliptic functions $s n(u, m)=\sin \varphi, c n(u, m)$ and $d n(u, m)$, where

$$
u=F(\varphi, k)=\int_{0}^{\varphi}\left(1-k^{2} \sin ^{2} \vartheta\right)^{-1 / 2} d \vartheta, m=k^{2}
$$

Remark that

$$
\frac{\sqrt{e_{1}-e_{3}}}{2} \mathcal{P}^{-1}\left(u ; e_{1}, e_{2}, e_{3}\right)=F\left(\arccos \sqrt{\frac{u-e_{1}}{u-e_{3}}}, \sqrt{\frac{e_{2}-e_{3}}{e_{1}-e_{3}}}\right) .
$$

Thus we have

$$
m=\frac{e_{2}-e_{3}}{e_{1}-e_{3}}, \cos ^{2} \varphi=\frac{u-e_{1}}{u-e_{3}}
$$

However, this transformation holds only for $\sqrt{\varepsilon_{\ell}} \leq \varphi \leq \pi / 2-\sqrt{\varepsilon_{\ell}}$, where ε_{ℓ} denotes the screening- ε. The complete results read as follows

Theorem 1. With

$$
\begin{aligned}
a_{0} & :=\sqrt{e_{1}-e_{3}}, b_{0}:=\sqrt{e_{1}-e_{2}}, a_{i+1}:=\left(a_{i}+b_{i}\right) / 2, \\
b_{i+1} & :=\sqrt{a_{i} \cdot b_{i}}, d_{0}:=u_{0}-e_{1}, \\
d_{i+1} & :=\frac{1}{2} d_{i}\left(1+\frac{a_{i}^{2}+b_{i}^{2}+d_{i}}{\sqrt{\left(a_{i}^{2}+d_{i}\right)\left(b_{i}^{2}+d_{i}\right)}+a_{i} b_{i}}\right), \\
n & :=\lceil\operatorname{ld}(2+\operatorname{ld} \mathcal{B} \cdot(\ell-1) / 2)\rceil+\lceil\operatorname{ld}(\operatorname{ld} \mathcal{B} \cdot(\ell-1)-1)\rceil, \\
\varepsilon_{\ell} & :=\mathcal{B}^{1-\ell}, \mathcal{B}:=2^{\beta}, \varepsilon_{\ell} \leq 2^{-52},
\end{aligned}
$$

it holds that

$$
\begin{aligned}
\mathcal{P}^{-1}\left(u_{0} ; e_{1}, e_{2}, e_{3}\right) & =2 / \ell B_{n} \operatorname{Arctan}\left(B_{n} / \ell \operatorname{Sqrt}_{\ell} D_{n}\right) \cdot\left(1+\delta \varepsilon_{\ell}\right) \\
|\delta| & \leq 8.3 \cdot 3.00001^{n}+4.0001 n+8
\end{aligned}
$$

Here $u_{0}, e_{1}, e_{2}, e_{3}$ are machine numbers and A_{n}, B_{n}, D_{n}, Arctan machine approximations of a_{n}, b_{n}, d_{n}, arctan and $/ \ell$ the machine division.

In the above theorem $\operatorname{ld}(\cdot)=\log _{2}(\cdot)$ denotes the dual logarithm. In the sequel we denote the machine approximations by capital letters. Putting

$$
\begin{aligned}
a_{0} & :=1, b_{0}:=k_{0}^{\prime}, c_{0}:=k_{0}, \quad n:=2\lceil\operatorname{ld}(\operatorname{ld} \mathcal{B} \cdot(\ell-1))\rceil-1, \\
t_{n} & :=\frac{a_{n}+b_{n}}{2 \sin \left(u \cdot b_{n}\right)}, \\
c_{i+1} & :=\frac{c_{i}^{2}}{4 a_{i+1}}=\frac{a_{i}-b_{i}}{2}=a_{i}-a_{i+1}, i=0,1,2,3, \ldots, \\
t_{i} & :=t_{i+1}+\frac{c_{i}^{2}}{4 t_{i+1}}, i:=n-1, \ldots, 0,
\end{aligned}
$$

Werner shows that

$$
s n(u, m)=T_{0}^{-1} \cdot\left(1+\delta_{\ell} \varepsilon_{\ell}\right)
$$

The value of δ_{ℓ} depends on the choice of the base \mathcal{B} and the exponent ℓ. They are given in a precalculated table, e.g. $\delta_{\ell} \leq 2^{13}$ for the IEEE double format and $\delta_{\ell} \leq 2^{15}$ for the quad-format with 128 Bits.

In two other notes we have considered the descending Landen transform to complete our studies of the AGM-method and elliptic functions. First we have developed a new algorithm for the evaluation of

$$
F(\varphi, k), \varepsilon_{\ell}<\varphi \leq \pi / 2-\varepsilon_{\ell}, 2 \varepsilon_{\ell} \leq k^{2} \leq 1-2 \varepsilon_{\ell}, \varphi, k^{2} \in S^{\prime}
$$

which avoids cancellation [LuOt97]. The same method was utilized to derive bounds for the absolute error of each term in the series representation of Jacobi's Zeta function

$$
\begin{aligned}
\widetilde{Z}(\varphi, k) & :=E(\varphi, k)-(E / K) F(\varphi, k)=\sum_{i \geq 1} c_{i} \sin \varphi_{i} \\
E & :=E\left(\frac{\pi}{2}, k\right)=\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \vartheta} d \vartheta, K:=F\left(\frac{\pi}{2}, k\right)
\end{aligned}
$$

and the relative error of the product representation of Jacobi's Theta function $\widetilde{\Theta}(\varphi, k)[\mathrm{LuOt} 97-2]$.

We complete our definitions and put as above

$$
\begin{align*}
k_{0} & :=k, k_{0}^{\prime}=\sqrt{1-k^{2}}, \varphi_{0}:=\varphi, \\
k_{i}^{\prime} & :=\frac{b_{i}}{a_{i}}, k_{i}:=\frac{c_{i}}{a_{i}} \tag{1}\\
\tan \varphi_{i+1} & :=\frac{\left(1+k_{i}^{\prime}\right) \tan \varphi_{i}}{1-k_{i}^{\prime} \tan ^{2} \varphi_{i}}
\end{align*}
$$

The descending Landen transform states that

$$
\frac{1}{2^{i} a_{i}} F\left(\varphi_{i}, k_{i}\right)=\frac{1}{2^{i+1} a_{i+1}} F\left(\varphi_{i+1}, k_{i+1}\right), i=0,1,2,3, \ldots
$$

The sequence $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ tend to the limit agm, $\varphi_{i} / 2^{i}$ to $\xi, \varphi_{i} /\left(b_{i} 2^{i}\right)$ decreases to $u=F(\varphi, k)=\xi /$ agm as well as $\varphi_{i} /\left(a_{i} 2^{i}\right)$ increases to $\xi /$ agm as i tends to infinity. For the approximation error it was proved:

Theorem 2. Choose $n \in \mathbf{N}$ such that $1-k_{n}^{\prime}<\varepsilon_{\ell}$. Then it holds that

$$
\frac{\varphi_{n}}{2^{n} a_{n}}=\frac{\xi}{a g m}\left(1+\delta \varepsilon_{\ell}\right),|\delta| \leq 1 .
$$

We have shown in [$\mathrm{LuOt97}$] that applying the AGM-method with $\mathrm{ld} \varepsilon_{\ell} \geq-2^{n / 2}$ after n iteration steps we have $1-k_{n}^{\prime}<\varepsilon_{\ell}$.

2 Basic error analysis

Now we start with two machine numbers $\varphi_{0}=\varphi \in(0, \pi / 2)$ and $k^{2} \in(0,1)$ belonging to the floating-point screen $S^{\prime}:=S\left(\mathcal{B}, \ell^{\prime}, e m^{\prime}, e M^{\prime}\right)$ with its even base \mathcal{B}, mantissa length ℓ^{\prime} and $\left[e m^{\prime}, e M^{\prime}\right]$ smallest and largest allowable exponent, respectively. Computations require guard digits and are made in a finer screen $S:=S(\mathcal{B}, \ell, e m, e M), \ell^{\prime}<\ell \leq \ell^{\prime}+$ const., em $\leq e m^{\prime}, e M \geq e M^{\prime}$.

The relative error for all elementary operations \times with machine numbers x and y is assumed to be bounded by

$$
\frac{\left|x \times_{l} y-x \times y\right|}{|x \times y|}<\varepsilon_{\ell} .
$$

We assume $\varepsilon_{\ell}<10^{-4}$ and mention some basic error estimations [LuOt94].

Given two numbers a, b and their corresponding machine approximations A, B with $|A-a| \leq|a| \varepsilon_{a}$ and $|B-b| \leq|b| \varepsilon_{b}$, then it holds

$$
\begin{align*}
\frac{|(A+\ell B)-(a+b)|}{|a+b|} & \leq \varepsilon_{\ell}+\left|\frac{1+\varepsilon_{\ell}}{a+b}\right|\left\{|a| \varepsilon_{a}+|b| \varepsilon_{b}\right\} \\
\frac{|(A \cdot \ell B)-(a \cdot b)|}{|a \cdot b|} & \leq \varepsilon_{\ell}+\left(1+\varepsilon_{\ell}\right)\left\{\varepsilon_{a}+\varepsilon_{b}+\varepsilon_{a} \cdot \varepsilon_{b}\right\} \tag{2}\\
\frac{|(A / \ell B)-(a / b)|}{|a / b|} & \leq \varepsilon_{\ell}+\left(1+\varepsilon_{\ell}\right)\left\{\frac{\varepsilon_{a}+\varepsilon_{b}}{1-\varepsilon_{b}}\right\}
\end{align*}
$$

Using these formulas we will estimate the rounding errors in our algorithms, so that we can give a priori error bounds for the functions calculated in the following paragraphs.

Werner [W96-2] obtained a complete error analysis for the evaluation of the square root by using Newton's method. His result reads as follows:

Starting from an initial value

$$
y_{0}=(1+x) / 2 \text { where } x \in[0.5,2] \cap S^{0}, \mathcal{B}=2^{\beta}, \varepsilon_{\ell} \leq 2^{-52}
$$

the relative error of the square root \sqrt{x} calculated by Newton's method

$$
y_{n}=y_{n-1}-\frac{\left(y_{n-1}^{2}-x\right)}{2 y_{n-1}}, n \geq\lceil\operatorname{ld}(\beta(\ell-1)-2)\rceil+2
$$

is bounded by $1.50001 \varepsilon_{\ell}$.
Under the assumption $(i+1)^{2} \varepsilon_{\ell}<10^{-8}$ it was proved in [LuOt94] and [W96-2] that starting from machine numbers

$$
A_{0}=1 ; \quad B_{0}=k_{0}^{\prime}\left(1+\delta_{0}^{\prime} \cdot 2.001 \varepsilon_{\ell}\right),\left|\delta_{0}^{\prime}\right| \leq 1
$$

and applying AGM-iteration we find after i steps a relative error of order

$$
\begin{aligned}
& A_{i}=a_{i}\left(1+\delta_{1}^{\prime} \cdot 2.001 \cdot(i+1) \varepsilon_{\ell}\right) \\
& B_{i}=b_{i}\left(1+\delta_{1}^{\prime} \cdot 2.001 \cdot(i+1) \varepsilon_{\ell}\right),\left|\delta_{1}^{\prime}\right| \leq 1
\end{aligned}
$$

Assuming a sharper restriction $\varepsilon_{\ell} \leq 2^{-52}$, we see that $i^{4} \varepsilon_{\ell} \leq 10^{-3}$, if $i \leq 1000$, and we can derive a bound $\gamma_{i} \leq 2.021^{i+3} \varepsilon_{\ell}$ for the relative error γ_{i} of the sequence $\left\{C_{i}\right\}$,

$$
C_{i}=c_{i}\left(1+\delta_{i}^{\prime} \cdot \gamma_{i}\right),\left|\delta_{i}^{\prime}\right| \leq 1
$$

involved in the calculation of Jacobi's Zeta-function by using

$$
\begin{aligned}
C_{1} & =\frac{k^{2}}{4 a_{1}}\left(1+\delta_{1}^{\prime} \cdot 6.21 \varepsilon_{\ell}\right), c_{i+1}=\frac{c_{i}^{2}}{4 a_{i+1}} \\
\gamma_{i+1} & \leq 2.001 \gamma_{i}+2.01(i+3.5) \varepsilon_{\ell}
\end{aligned}
$$

This result shows that the absolute error in the representation of c_{i} by the machine number C_{i} is roughly speaking bounded by $8 \varepsilon_{\ell}$.

Furthermore, it holds

$$
\begin{align*}
K_{1}^{\prime} & =k_{1}^{\prime}\left(1+\delta_{2}^{\prime} \cdot 6.78 \varepsilon_{\ell}\right),\left|\delta_{2}^{\prime}\right| \leq 1 \\
K_{i}^{\prime} & =k_{i}^{\prime}\left(1+\delta_{3}^{\prime}(1.01+4.2 \cdot(i+1)) \varepsilon_{\ell}\right),\left|\delta_{3}^{\prime}\right| \leq 1, i>1 \tag{3}
\end{align*}
$$

3 Jacobi's Theta-function

Now we give an algorithm to compute Jacobi's Theta-function

$$
\Theta(u, m)=\widetilde{\Theta}(\varphi, k)=\left(\frac{2 k^{\prime} K}{\pi}\right)^{1 / 2} \prod_{i \geq 0}\left(1-k_{i}^{2} \sin ^{2} \varphi_{i}\right)^{-1 / 2^{i+2}}
$$

without cancellation including a bound for the relative error.

Algorithm 1. (Theta-Function)

1. Take the values $a g m, k_{i}^{\prime}, \cot \psi_{i}, \cot \varphi_{i}$ previously computed.
2. Initialize

$$
\Theta_{n}:=\frac{1}{k_{n}^{\prime}} \sqrt{\frac{1+\cot ^{2} \varphi_{n}}{1+\cot ^{2} \psi_{n}}}
$$

3. Loop:

For $i:=n-1$ downto 0 do

$$
\Theta_{i}:=\frac{1}{k_{i}^{\prime}} \sqrt{\Theta_{i+1} \cdot \frac{1+\cot ^{2} \varphi_{i}}{1+\cot ^{2} \psi_{i}}}
$$

4. End:

$$
\Theta(u, m):=\sqrt{\Theta_{0} \cdot \frac{k_{0}^{\prime}}{a g m}}
$$

Algorithm 2.

1. Initialization:
a) We enter the argument $u, 0<u \leq K\left(1-\varepsilon_{\ell}\right)$ and the second argument k^{2} fulfilling $2 \varepsilon_{\ell} \leq k^{2} \leq 1-2 \varepsilon_{\ell}, u, k^{2} \in S^{\prime}$.
b) We put $k_{0}:=k, a_{0}:=1, b_{0}:=k_{0}^{\prime}$.
2. Iteration:
a) We calculate successively $a_{i+1}, b_{i+1}, k_{i+1}^{\prime}, \sqrt{k_{i+1}^{\prime}}, 2^{i+1}, i=0, \ldots, n-1$.
b) If $1-k_{n}^{\prime}<\varepsilon_{\ell}$ (i.e. $\left.n \geq 2 \operatorname{ld}\left(\operatorname{ld}\left(1 / \varepsilon_{\ell}\right)\right)\right)$ we put

$$
\operatorname{agm}:=a_{n}, \varphi_{n}:=\operatorname{agm} \cdot 2^{n} \cdot u, j_{n}:=\left\lfloor 2 \varphi_{n} / \pi\right\rfloor, \cot \psi_{n}:=\cot \varphi_{n} / k_{n}^{\prime}
$$

Then we compute successively for $i:=n, \ldots, 1$,

$$
\begin{gathered}
j_{i-1}:=\left\lfloor j_{i} / 2\right\rfloor, \\
\cot \psi_{i-1}:= \begin{cases}\left(\cot \psi_{i}+\sqrt{1+\cot ^{2} \psi_{i}}\right) / \sqrt{k_{i-1}^{\prime}}, & \text { if } j_{i-1} \text { even } \\
-1 /\left(\left(\cot \psi_{i}+\sqrt{1+\cot ^{2} \psi_{i}}\right) \cdot \sqrt{k_{i-1}^{\prime}}\right), & \text { if } j_{i-1} \text { odd. }\end{cases}
\end{gathered}
$$

3. End:

We take the values $n, \operatorname{agm}, k_{i}^{\prime}, \cot \psi_{i}, \cot \varphi_{i}$ and compute $\Theta(u, m)$ as pointed out in Algorithm 1.

Now we want to estimate the relative error of our machine approximation $\Theta(u, m)$. Starting from

$$
X=x\left(1+\delta_{4}^{\prime} \varepsilon_{\ell}\right),\left|\delta_{4}^{\prime}\right| \leq 3(n+3)^{2} \varepsilon_{\ell}
$$

we derive

$$
X+_{\ell} \operatorname{Sqrt}_{\ell}(1+\ell X \cdot \ell X)=\left(x+\sqrt{1+x^{2}}\right)\left(1+\delta_{4}^{\prime} \varepsilon_{\ell}+3.53 \varepsilon_{\ell}\right)
$$

We first consider algorithm 2. By (2) and an accurate cotangent-evaluation, we derive

$$
\operatorname{Cot} \psi_{n}=\cot \psi_{n}\left(1+\delta_{n} \varepsilon_{\ell}\right),\left|\delta_{n}\right| \leq 2.1(n+4)
$$

and by induction for $i=n-1$ to 0

$$
\operatorname{Cot} \psi_{i}=\cot \psi_{i}\left(1+\delta_{i} \varepsilon_{\ell}\right),\left|\delta_{i}\right| \leq 2.1 \cdot(n+1-i)(n+4)
$$

The same estimation is valid for $\operatorname{Cot} \varphi_{i}$. Defining

$$
R_{i}:=\left(1+\ell \operatorname{Cot}^{2} \varphi_{i}\right) / \ell\left(1+\ell \operatorname{Cot}^{2} \psi_{i}\right)
$$

in an analogous way we infer

$$
R_{i}=\frac{1+\cot ^{2} \varphi_{i}}{1+\cot ^{2} \psi_{i}}\left(1+\delta_{5}^{\prime}(5.05+8.4(n+4)(n+1-i)) \varepsilon_{\ell}\right),\left|\delta_{5}^{\prime}\right| \leq 1
$$

Using (3) and starting in algorithm 1, step 2, we have an error bound for Θ_{n} with $\left|\delta_{6}^{\prime}\right| \leq 1$:

$$
\operatorname{Sqrt}_{\ell} R_{n} / \ell K_{n}^{\prime}=\frac{1}{k_{n}^{\prime}} \sqrt{\frac{1+\cot ^{2} \varphi_{n}}{1+\cot ^{2} \psi_{n}}}\left(1+\delta_{6}^{\prime}(4.2(n+4)+5.05) \varepsilon_{\ell}\right)
$$

By induction we derive the following bound for the relative error ζ_{i} of our machine approximation Θ_{i} :

$$
\left|\zeta_{i}\right| \leq(8.4(n+4)(n+1-i)+5.05) \varepsilon_{\ell}, i=n-1, \ldots, 0
$$

The last term $k_{0}^{\prime} / a g m$ can by calculated with a relative error bounded by $2.1(n+1) \varepsilon_{\ell}+3.03 \varepsilon_{\ell}$ and after a multiplication and root extraction the one of Θ is bounded by

$$
(4.2(n+4.25)(n+1)+6.1) \varepsilon_{\ell}
$$

Thus we have proved
Theorem 3. Calculating $\Theta(u, m)$,

$$
0<u \leq K\left(1-\varepsilon_{\ell}\right), 2 \varepsilon_{\ell} \leq k^{2} \leq 1-2 \varepsilon_{\ell}, \quad u, k^{2} \in S^{\prime}, \varepsilon_{\ell} \leq 2^{-52}
$$

as indicated in Algorithms 1 and 2, the relative error is bounded by

$$
(6.1+4.2(n+4.25)(n+1)) \varepsilon_{\ell}
$$

Remark: In the same way we find

$$
\operatorname{Sin} \varphi_{i}=\sin \varphi_{i}\left(1+\sigma_{i} \varepsilon_{\ell}\right),\left|\sigma_{i}\right| \leq 2.1 \cdot(n+1-i)(n+4)+3.2
$$

For $i=0$ we have a relative error bound for the machine approximation of

$$
\operatorname{sn}(u, m)=\sin \varphi_{0}=\sqrt{\frac{1}{1+\cot ^{2} \varphi_{0}}}
$$

of order $(2.1 \cdot(n+1)(n+4)+3.2) \varepsilon_{\ell}$. An analogous estimation holds for

$$
d n(u, m)=\sqrt{\frac{1+\tan ^{2} \psi_{0}}{1+\tan ^{2} \varphi_{0}}}
$$

with a relative error bounded by $(4.2 \cdot(n+1)(n+4)+4.6) \varepsilon_{\ell}$.
By the way we have found a error estimation for the machine approximation of Jacobi's Zeta-function

$$
Z(u, m)=\sum_{i \geq 1} c_{i} \sin \varphi_{i}
$$

introducing

$$
\operatorname{Sin} \varphi_{i}=\sin \varphi_{i}\left(1+\sigma_{i} \cdot 4.2(n+4)(n+1-i) \varepsilon_{\ell}+3.2\right),\left|\sigma_{i}\right| \leq 1
$$

and $C_{i}=c_{i}\left(1+\delta_{i}^{\prime} \cdot 2.021^{i+3}\right),\left|\delta_{i}^{\prime}\right| \leq 1$.
There is another definition of Jacobi's theta-function as a Fourier series

$$
\vartheta_{4}\left(\frac{\pi u}{2 K}\right)=\Theta(u, m)=1+2 \sum_{i=1}^{\infty}(-1)^{i} \exp \left(-\frac{\pi K^{\prime}}{K} i^{2}\right) \cos \left(i \frac{\pi u}{K}\right) .
$$

Remark that

$$
\begin{aligned}
K(k) & =\frac{\pi}{2 a g m}, K^{\prime}:=K\left(k^{\prime}\right)=\frac{\pi}{2 a g m^{\prime}} \\
a g m^{\prime} & =\lim _{i \rightarrow \infty} a_{i}^{\prime}, a_{0}^{\prime}:=1, b_{0}^{\prime}=k_{0}
\end{aligned}
$$

We prefer our method for large ℓ because the series converges slowly for large K. If $k=1-\varepsilon_{\ell}=1-2^{1-\ell}$ we have the asymptotic relation [LuOt 96]

$$
\begin{align*}
& \left|\frac{\pi K(k)}{K^{\prime}(k)}-\ln \frac{16}{k^{\prime 2}}\right| \leq \frac{k^{\prime 2}}{2\left(1-5 k^{\prime 2} / 4\right)}, k^{\prime} \rightarrow 0 \\
& q:=\exp \left(-\frac{\pi K^{\prime}}{K}\right) \sim \exp \left(-\frac{\pi^{2}}{(\ell+2) \ln 2}\right) \tag{4}\\
& k:=4 \sqrt{q} \prod_{i \geq 1}\left(\frac{1+q^{2 i}}{1+q^{2 i-1}}\right)^{4}
\end{align*}
$$

and $q^{\left(i^{2}\right)}$ stays nearby one for small i.

The product-representation can be used to find a first approximation for k as a function of q, when we calculate the inverse function to $q(k)$ with the aid of Newton's method. We have [BoBo84]

$$
\begin{aligned}
q(k) & =\exp \left(-\pi \frac{a g m}{a g m^{\prime}}\right), \frac{d q}{d k}=-\pi q \frac{d}{d k} \frac{a g m}{a g m^{\prime}} \\
\frac{d a g m^{\prime}}{d k} & =\lim _{i \rightarrow \infty} \widetilde{a}_{i}, \widetilde{a}_{0}:=0, \widetilde{b}_{0}:=1 \\
\widetilde{a}_{i+1} & :=\left(\widetilde{a}_{i}+\widetilde{b}_{i}\right) / 2, \widetilde{b}_{i+1}:=\left(\widetilde{a}_{i} \sqrt{\frac{b_{i}^{\prime}}{a_{i}^{\prime}}}+\widetilde{b}_{i} \sqrt{\frac{a_{i}^{\prime}}{b_{i}^{\prime}}}\right) / 2,
\end{aligned}
$$

and there is a similar relation for

$$
\frac{d a g m}{d k}=\frac{d a g m}{d k^{\prime}} \frac{-k}{\sqrt{1-k^{2}}}
$$

Thus we have developed a quadratic convergent algorithm to calculate $\vartheta_{4}(v)$:

Algorithm 3.

1. Initialization:

Find a first approximation \widetilde{k} of $k=k(q)$ using the product-representation of k in (4).
2. Iteration:

Calculate by Newton's and AGM iteration $k=k(q)$.
3. End:

Compute $\Theta\left(2 K v / \pi, k^{2}\right)$ by our algorithms 1 and 2.
We will apply our results to solve a partial differential equation: Sugihara and Fujino [SF96] discuss Burgers' equation

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1, u(x, 0)=u_{0}(x), u(0, t)=u(1, t)=0
$$

with large Reynolds-number $1 / \nu$. They derive a representation of the exact solution including integrations of ϑ_{3},

$$
\begin{aligned}
& u(x, t)=\frac{\int_{-1}^{+1} u_{0, o d d}(\eta) w(\eta) \vartheta_{3}\left(0.5(x-\eta), \exp \left(-\pi^{2} \nu t\right)\right) d \eta}{\int_{-1}^{+1} w(\eta) \vartheta_{3}\left(0.5(x-\eta), \exp \left(-\pi^{2} \nu t\right)\right) d \eta} \\
& u_{0, o d d}(-x):=-u_{0}(x), w(\eta):=\exp \left(-\frac{1}{2 \nu} \int_{0}^{\eta} u_{0, o d d}(\xi) d \xi\right)
\end{aligned}
$$

and consider

$$
\vartheta_{3}\left(\frac{\pi u}{2 K}\right)=\vartheta_{4}\left(\frac{\pi(K-u)}{2 K}\right) \text { for arguments } \nu:=\frac{K^{\prime}}{\pi K} \leq 0.02
$$

and u near K. It holds $q=\exp \left(-\pi^{2} \nu t\right) \approx 1$, and the infinite series converges very slowly. If we assume $t=1$, we see from (4) that a precision of $1 /(\nu \cdot \ln 2)$ binary digits is necessary to apply our algorithms 1 and 2 for calculating $\vartheta_{3}\left(0.5(x-\eta), \exp \left(-\pi^{2} \nu t\right)\right)$ and to achieve correct results including error bounds.

At the moment we implement a function library including all elementary and elliptic functions utilizing the $\mathrm{C}++-$ platform BIAS and arbitrary floating point screens.

However, in a recent talk on the SCAN-97 conference at Lyon Sugihara and Fujino proposed together with Hoshino another numerical method for the exact solution of Burgers' equation using the Jacobian Imaginary Transform

$$
\vartheta_{3}(u, q)=\frac{1}{\sqrt{\pi t \nu}} \exp \left(-\frac{u^{2}}{\nu t}\right)\left\{1+2 \sum_{n=1}^{\infty} \exp \left(-\frac{n^{2}}{\nu t}\right) \cosh \frac{2 n u}{\nu t}\right\}
$$

When $\nu \leq 10^{-3}$, they cannot apply this representation because of the range limitation $\left[3.4 \cdot 10^{-4932}, 1.1 \cdot 10^{4932}\right]$ of the double extended IEEE-format. Thus, they redefine arithmetics to deal with large numbers about $10^{2.77 \cdot 10^{18}}$ in order to handle Burgers' equation with Reynolds-numbers up to 10^{8}.

References

J. M. Borwein, P. B. Borwein: The arithmetic-geometric mean and fast computation of elementary functions. SIAM Reviews 26 (1984), pp. 351-366
W. Luther, W. Otten: Computation of Standard Interval Functions in MultiplePrecision Interval Arithmetic. Interval Computations 4 (1994), pp. 78-99
W. Luther, W. Otten: The complex arithmetic-geometric mean and multipleprecision matrix functions. Scientific Computing and Validated Numerics. G. Alefeld, A. Frommer, B. Lang eds. Akad. Verlag Berlin 1996, pp. 52-58
W. Luther, W. Otten: Approximation Error and Error Accumulation for the Landen Transform. Reliable Computing, No. 3, 1997, pp. 249-258
W. Luther, W. Otten: Accurate Computation of Elliptic Functions. Submitted to ZAMM
M. Sugihara, S. Fujino: Numerical solutions of Burgers' Equation with a large Reynolds number. Reliable Computing, No. 2, 1996, pp. 173-179
M. Sugihara, S. Fujino, F. Hoshino: A numerical method for the exact solution of Burgers' equation using overload function of C++. SCAN-97, Lyon, France, September 10-12, 1997
K. Werner: Calculation of the Inverse Weierstraß-Function in an Arbitrary Machine Arithmetic. Scientific Computing and Validated Numerics. G. Alefeld, A. Frommer, B. Lang eds. Akad. Verlag Berlin 1996, pp. 72-78
K. Werner: Verifizierte Berechnung der inversen Weierstraß-Funktion und der elliptischen Funktionen von Jacobi in beliebigen Maschinenarithmetiken. PhDThesis, Duisburg 1996 Addresses:

Wolfram Luther; Werner Otten. Gerhard-Mercator-Universität - GH Duisburg. Fachbereich Mathematik / Informatik II, Lotharstrasse 65, D-47048 Duisburg

