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Abstract: The arithmetic on the extended set of proper and improper intervals is
an algebraic completion of the conventional interval arithmetic and thus facilitates
the explicit solution of certain interval algebraic problems. Due to the existence of
inverse elements with respect to addition and multiplication operations certain inter-
val algebraic equations can be solved by elementary algebraic transformations. The
conditionally distributive relations between extended intervals allow that complicated
interval algebraic equations, multi-incident on the unknown variable, be reduced to
simpler ones. In this paper we give the general type of \pseudo-linear" interval equa-
tions in the extended interval arithmetic. The algebraic solutions to a pseudo-linear
interval equation in one variable are studied. All numeric and parametric algebraic
solutions, as well as the conditions for nonexistence of the algebraic solution to some
basic types pseudo-linear interval equations in one variable are found. Some examples
leading to algebraic solution of the equations under consideration and the extra func-
tionalities for performing true symbolic-algebraic manipulations on interval formulae
in a Mathematica package are discussed.
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1 Introduction

The extended set D of proper and improper intervals together with the cor-
responding extension of the inclusion order relation and the arithmetic opera-
tions presents an algebraic completion of the conventional interval arithmetic
[Alefeld and Herzberger 1974, Moore 1966]. This algebraic completion, studied
in most details by E. Kaucher [Kaucher 1973, Kaucher 1977, Kaucher 1980] and
E. Garde~nes [Garde~nes and Trepat 1980], is more closed in algebraic and set-
theoretic sense resembling to the classical analysis, and retain all properties of
interval analysis. It is of particular theoretical and practical interest to exploit
the abundant algebraic properties of the extended interval arithmetic in �nding
explicit solutions to certain interval problems.

Contrary to conventional interval arithmetic, the equations A +X = 0 and
A� Y = 0 possess unique algebraic solutions which de�ne the inverse additive,
resp. multiplicative elements in D. Due to the existence of inverse elements we
can solve certain interval equations by elementary algebraic transformations, or
to transform some equations into simple \formally" linear interval equations.
For example, the interval equation

[7;�11] + [1; 5]�X

X
= [3; 2]; 0 62 X
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is algebraically equivalent to the \linear" interval equation

[1; 5]�X + [�3;�2]�X = [�7; 11]; 0 62 X: (1)

However in D, like in conventional interval arithmetic, there are only condition-
ally valid distributive relations and therefore the equation

nX
i=1

Ai �X = B; Ai; B 2 D (2)

is not linear. We call such equations, which look like linear, \pseudo-linear".
In Section 3 of this paper, the general normal form of pseudo-linear interval
equations in the algebraic extension D of conventional interval arithmetic is pre-
sented. In Section 4, the algebraic solutions to the general pseudo-linear interval
equation in one variable are studied.

Interval algebraic solution is an interval (interval vector) that substituting it
into the equation(s) and performing all interval operations results in valid equal-
ity(ies). The algebraic solutions have close relations to the solutions of tolerance
and control problems, as well as to the united solution set of a linear inter-
val problem. Therefore a straightforward way for �nding the algebraic solutions
would facilitate the solution of the corresponding tolerance or control problem.
However, the relations between di�erent solution set of a linear interval problem
will not be discussed here.

In [Kaucher 1977], the algebraic solutions to the equation (2) are considered.
The algebraic solutions not involving zero are de�ned there by the solutions of
certain linear systems of equations in R

2. It is proposed, that algebraic solutions
involving zero be found by solving a big number of linear inequalities. However,
no explicit solutions are given in [Kaucher 1977] and the equation (2) is only a
special case of pseudo-linear interval equation in D.

The aim of this paper is to present all numeric and parametric algebraic
solutions, as well as the conditions for nonexistence of the algebraic solution to
some basic types pseudo-linear interval equations in one variable.

2 The Algebraic Completion of IR

The set of conventional (proper) intervals IR = f[a�; a+] j a� � a+; a�; a+ 2 Rg
is extended by the set f[a�; a+] j a� > a+; a�; a+ 2 Rg of improper intervals

obtaining thus the set D = f[a�; a+] j a�; a+ 2 Rg �= R
2 of all ordered couples

of real numbers called extended (or directed) intervals. Directed intervals are
denoted by capital letters and a� 2 R, with � 2 � = f+;�g, is the �rst or
second end-point of A 2 D depending on the value of �. The binary variable �
is sometimes expressed as a "product" of two or more binary variables, � = ��,
�; � 2 �, de�ned by ++ = �� = + and +� = �+ = �. Degenerate (point)
intervals are those for which a� = a+.

The inclusion order relation between normal intervals is extended for A;B 2
D by

A � B () (b� � a�) and (a+ � b+):
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Dual is an important operator that reverses the end-points of the intervals
and expresses an element-to-element symmetry between proper and improper
intervals in D. For A = [a�; a+] 2 D \dual" is de�ned by

Dual[A] = A = [a+; a�]:

Very often the dualization of an extended interval depends on the value of some
binary-valued interval functionals. In order to avoid long branching formulae
and to simplify the proofs, we use also the notation A� with � 2 � and A� =
fA; if � = +; A; if � = �g.

The following interval functionals are useful for describing certain classes of
extended intervals. For an interval A 2 D \direction" � : D ! � is de�ned by

�(A) =

�
+; if a� � a+;
�; otherwise :

An extended interval A is called proper, if �(A) = + and improper otherwise.
With every interval A 2 D we can associate a proper interval pro(A) = A�(A) =

[a��(A); a�(A)] where a��(A) � a�(A). For A 2 D, pro(A) = A�(A) is a projection
of the extended interval A onto the conventional interval space IR.

Denote T = fA 2 D j A = [0; 0] or a�a+ < 0g. For an interval A 2 D n T
\sign" � : D n T ! � is de�ned by

�(A) =

�
+; if a��(A) � 0;
�; otherwise.

In particular, � is well de�ned over R n 0.
The de�nition [Ratschek 1970] of the well-known �-functional is extended in

[Popova 1997] for directed intervals, � : D ! [�1; 1]

�A =

�
�1; if A = [0; 0]

a��(A)=a�(A); otherwise ;

where �(A) = f+; if ja+j = ja�j; �(ja+j � ja�j); otherwiseg. It is obvious that

a�(A) = fa+; if j a+ j�j a� j; a�, otherwiseg. Functional � admits the geomet-
ric interpretation [Ratschek 1970] that A is more symmetric than B i� �A � �B .

The arithmetic operations + and � are extended from the familiar set IR

of normal intervals to D. In [Kaucher 1973], [Garde~nes and Trepat 1980] and
[Kaucher 1980] the de�nition of � is given in a table form, while using the
\�" notations we gain a concise presentation of the interval arithmetic formulae
facilitating their manipulation.

A+B = [a� + b�; a+ + b+]; for A;B 2 D;

A�B =

8>>>><
>>>>:

[a��(B)b��(A); a�(B)b�(A)]; A;B 2 D n T ;

[a�(A)�(B)b��(A); a�(A)�(B)b�(A)]; A 2 D n T ; B 2 T ;

[a��(B)b�(B)�(A); a�(B)b�(B)�(A)]; A 2 T ; B 2 D n T ;
[ minfa�b+; a+b�g;maxfa�b�; a+b+g]�(A); A;B 2 T ; �(A) = �(B);

0; A;B 2 T ; �(A) = ��(B):
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Interval subtraction and division can be expressed as composite operations
A � B = A + (�1) � B and A=B = A � (1=B), where 1=B = [1=b+; 1=b�] if
B 2 D n T . End-pointwise:

A�B = [a� � b+; a+ � b�]; A;B 2 D;

A=B =

�
[a��(B)=b�(A); a�(B)=b��(A)]; A;B 2 D n T ;

[a��(B)=b��(B)�(A); a�(B)=b��(B)�(A)]; A 2 T ; B 2 D n T :

The restrictions of the arithmetic operations to proper intervals produce the
familiar operations in the conventional interval space.

Some basic properties of the extended interval arithmetic [Kaucher 1973] are:

1. The operations + and � are commutative and associative in D.
2. X = [0; 0] = 0 and Y = [1; 1] = 1 are the unique neutral elements with

respect to + and � operations.
3. The substructures (D;+;�) and (D n T ;�;�) are isotone groups. Hence,

there exist unique inverse elements �A and 1=B with respect to the opera-
tions + and � such that

A�A = 0 and B=B = 1: (3)

4. A � B () A � B; A �B = A �B for � 2 f+;�;�; =g.

De�nition of norm and metric, as well as many topological and lattice prop-
erties of (D;+;�;�) are given in [Kaucher 1973], [Kaucher 1980]. Some other
properties and applications of the extended interval arithmetic can be found in
[Garde~nes and Trepat 1980].

The conditionally distributive law for multiplication and addition of extended
intervals is proven in its general form in [Popova 1997]. Next two equivalent
theorems specify how to multiply a sum of extended intervals and how and
when a common multiplier can be taken out of brackets.

For A 2 D de�ne �(A) = f�(A); if A 2 D n T ; �(A); if A 2 T g.

Theorem1. Let Ai; i = 1; : : : ; n and C be extended intervals. DenotePn

i=1Ai = S. The equality 
nX
i=1

Ai

!
� C =

nX
i=1

�
Ai � C�(Ai)�(S)

�

holds true i� exactly one of the assumptions i) to v) holds true.

Theorem2. Let Ai; i = 1; : : : ; n and C be extended intervals. DenotePn

i=1Ai = S. The equality

nX
i=1

�
Ai � C�(Ai)

�
=

 
nX
i=1

Ai

!
� C�(S)

holds true i� exactly one of the assumptions i) to v) holds true.
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i) Ai; S 2 D n T ; i = 1; : : : ; n and C 2 D;

ii) Ai 2 D n T ; i = 1; : : : ; n, S 2 T , and

either C = c 2 R,

or C 2 T ,

8<
:
S = 0 or

�(C) =

�
+; for Th2;
�(S); for Th1;

�C � �S ; �(S) = +;

iii) Ai; S 2 T ; i = 1; : : : ; n and

either C 2 D n T ,
or C 2 T , f�(C) = �, for Th2; �(C) 6= �(S), for Th1g,
or C 2 T , �(C) = f+, for Th2; �(S), for Th1g and

either for all i; j = 1; :::; n �(Ai) = �(Aj),

�
�C � �Ai ; or
�C � �Ai ; �(Ai) = �(Aj);

or there exist indexes p; q such that �(Ap) 6= �(Aq) and
�C � minf�Ai ; �Sg, �(Ai) = �(S) for all i = 1; :::; n;

iv) Ai 2 T ; i = 1; : : : ; n, S 2 D n T and

either C = c 2 R,

or C 2 T ,

�
�(C) = �; for Th2;
�(C) 6= �(S); for Th1;

s� = 0,

or C 2 T , �(C) =

�
+; for Th2;
�(S); for Th1;

�(Ai) = +; �C � �Ai ; i = 1; :::; n;

v) there exist index sets P;Q 6= ;, P [ Q = f1; : : : ; ng, P \ Q = ; such that
Ap 2 D n T for p 2 P , Aq 2 T for q 2 Q, and

either C = c 2 R,

or C 2 T , �(C) =

�
+; for Th2;
�(S); for Th1;

�C � minq2Qf�Aqg, �(Aq) = +,

or C 2 T ,

�
�(C) = �; for Th2;
�(C) 6= �(S); for Th1;

and

�P
q2Q a�q = 0; if S 2 D n T ;P
p2P a�p = 0; if S 2 T :

The above distributive relations are essential for simpli�cation of interval
arithmetic expressions, especially in performing elementary algebraic transfor-
mations.

In [Kaucher 1973] the so-called hyperbolic product is introduced by

A�h B = [a�b�; a+b+]; A;B 2 D:

The inverse elements �A and 1=A generate operations

A�h B = A�B = [a� � b�; a+ � b+]; A;B 2 D;

A =h B = A=B = [a�=b�; a+=b+]; A 2 D; B 2 D n T ;
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called hyperbolic subtraction, resp. hyperbolic division. The interval arithmetic
addition together with the hyperbolic product form a �eld fD;+;�hg
[Kaucher 1977], where a distributive law

A�h C +B �h C = (A+B)�h C

holds true for arbitrary A;B;C 2 D.
In [Kaucher 1973, Kaucher 1977, Kaucher 1980] the result of interval mul-

tiplication is expressed by the hyperbolic product of the arguments, except
for the case of arguments A;B 2 T ; �(A) = �(B) = � , when A � B =
[minfa�b+; a+b�g;maxfa�b�; a+b+g]� . In fact, min =max form of interval mul-
tiplication hampers most of the interval arithmetic investigations and the e�-
cient implementation of this operation. In [Popova 1997] the result of interval
multiplication is presented explicitly by the end-points of the arguments. Thus,
we have the following transition formula between interval multiplication and the
hyperbolic product

A�B =

8>>>><
>>>>:

A�(B) �h B�(A); A;B 2 D n T ;

a�(A)�(B) �h B�(A); A 2 D n T ; B 2 T ;

A�(B) �h b
�(A)�(B); A 2 T ; B 2 D n T ;

a�(A) �h B�(A)� ; A;B 2 T ; � = �(A) = �(B); �B � �A;

A�(B)� �h b
�(B); A;B 2 T ; � = �(A) = �(B); �B � �A:

(4)

Formula (4) will be used for �nding algebraic solutions to a pseudo-linear interval
equation in D. Latter two cases of this formula are essential for the explicit
presentation of zero algebraic solutions.

3 Expressions Having Normal Form in D

Consider the interval expression in one variable

rX
i=1

(Ai �X) +

nX
j=r+1

(Aj �X) (5)

where X;Ai 2 D; i = 1; :::; n. We shall �nd the general form of an expression in
D to which the above expression (5) can be simpli�ed.

De�nition 3. An interval expression in one variable is in normal form if it
cannot be simpli�ed.

Divide D into four disjoint nonempty subsets Si; i = 1; 2; 3; 4

S1 = fA 2 D n T j �(A) = +g, S2 = fA 2 D n T j �(A) = �g,

S3 = fA 2 T j �(A) = +g, S4 = fA 2 T j �(A) = �g.

The expression (5) can be rewritten in the form

4X
k=1

0
@ X
Ai2Sk

(Ai �X) +
X

Aj2Sk

(Aj �X)

1
A :
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Let X 2 D n T . Substituting X = Y last expression is equivalently trans-
formed toX

Ai2S1

(Ai �X) +
X
Ai2S2

(Ai � Y ) +
X
Ai2S3

(Ai �X) +
X

Ai2S4

(Ai � Y )

+
X

Aj2S1

(Aj � Y ) +
X

Aj2S2

(Aj �X) +
X

Aj2S3

(Aj � Y ) +
X

Aj2S4

(Aj �X)

Th2
=

 X
Ai2S1

Ai

!
�X +

 X
Ai2S2

Ai

!
� Y +

 X
Ai2S3

Ai

!
�X +

 X
Ai2S4

Ai

!
� Y

+

0
@ X
Aj2S1

Aj

1
A� Y +

0
@ X
Aj2S2

Aj

1
A�X +

0
@ X
Aj2S3

Aj

1
A� Y +

0
@ X
Aj2S4

Aj

1
A�X

=

4X
k=1

(Bk �X + Ck �X); (6)

where Bk =
P

Ai2Sk
Ai and Ck =

P
Aj2Sk

Aj for k = 1; 2; 3; 4.

If B1 + C2; B2 + C1 2 T and B3 + C4; B4 + C3 2 D n T , then (6)
cannot be further simpli�ed unless X = x 2 R when (6) is equivalent toP4

k=1(Bk + Ck)� x.
If B1+C2; B2+C1 2 DnT and B3+C4; B4+C3 2 T , then (6) is equivalent

to

(B1 + C2)�X�(B1+C2) + (B2 + C1)�X��(B2+C1)

+(B3 + C4)�X�(B3+C4) + (B4 + C3)�X��(B4+C3);

which cannot be further simpli�ed for X 62 R.

For X 2 T the expression (5) is equivalent to

2X
k=1

(Bk �X + Ck �X)

+
X
Ai2S3

(Ai �X) +
X
Ai2S4

(Ai �X) +
X

Aj2S3

(Aj �X) +
X

Aj2S4

(Aj �X);

where Bk; Ck; k = 1; 2 are as above. If �(X) = + we have

2X
k=1

(Bk �X + Ck �X) +
X
Ai2S3

(Ai �X) +
X

Aj2S4

(Aj �X);

and if �(X) = � we have

2X
k=1

(Bk �X + Ck �X) +
X
Ai2S4

(Ai �X) +
X

Aj2S3

(Aj �X):
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It is obvious from the conditions iii){v) of Theorem 2 that a further simpli�cation
of the latter two expressions will depend on the values of the �-functional for X
and the corresponding coe�cients Ai; Aj 2 T .

The above results can be summarized in the following

Theorem4. The normal form of a pseudo-linear interval expression in one
variable X 2 D is

2X
k=1

(Bk �X + Ck �X) +

rX
i=1

Ai �X +

nX
i=r+1

Ai �X;

where Bk; Ck 2 Sk and Ai 2 T .

The normal form of a pseudo-linear interval expression in one variable X 2 DnT
is

4X
k=1

(Bk �X + Ck �X);

where Bk; Ck 2 Sk.

The normal form of a pseudo-linear interval expression in one variable X 2
T is

2X
k=1

(Bk �X + Ck �X) +
X

�(Ai)=�(X)

Ai �X +
X

�(Ai)6=�(X)

Ai �X;

where Bk; Ck 2 Sk and Ai 2 T .

In other words Theorem 4 says that the normal form of a pseudo-linear
interval expression in one variable X 2 D n T cannot contain more than eight
additive terms, while the number of additive terms in a pseudo-linear interval
expression in one variable X 2 T depends on the number of coe�cients from T .
If for some k = 1; 2; 3; 4 there are no coe�cients from Sk in the expression under
consideration, then its normal form contains less additive terms.

Example 1. The normal form of the expression

4X
t=1

([t; a]�X) + [�3;�20]�X + [�1; 2]�X + [4;�3]�X

+

3X
t=1

([t; t2]�X) +

3X
t=1

([�t2; 0]�X) +

3X
t=1

([�1; t]�X) + [5;�2]�X;

where a � 0, is

[10; 4a]�X + [�3;�20]�X + [6; 14]�X + [� 14; 0]�X +

[�1; 2]�X + [4;�3]�X +

3X
t=1

([�1; t]�X) + [5;�2]�X;
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or8>>>>>>>>>><
>>>>>>>>>>:

[10; 4a]�X + [�3;�20]�X + [6; 14]�X + [� 14; 0]�X

[� 1; 2]�X + [4;�3]�X + [� 3; 6]�X + [5;�2]�X; X 2 D n T

[10; 4a]�X + [� 3;�20]�X + [6; 14]�X + [� 14; 0]�X

+[� 1; 2]�X + [5;�2]�X; X 2 T ; �(X) = +

[10; 4a]�X + [� 3;�20]�X + [6; 14]�X + [� 14; 0]�X

+[4;�3]�X +
P3

t=1([� 1; t]�X) X 2 T ; �(X) = �

Example 2. The normal form of the expression

5X
t=1

([t; 1]�X) + [�3;�20]�X +

3X
t=1

([t; t2]�X) +

3X
t=1

([�t2; 0]�X);

where there are no coe�cients from T , is

[1; 5]�X + [3; 12]�X:

Theorem 4 determines the general type of a pseudo-linear interval equation
in one variable

2X
k=1

(Bk �X + Ck �X) +

rX
i=1

Ai �X +

qX
i=r+1

Ai �X = V;

where X;V 2 D, Bk; Ck 2 Sk, k = 1; 2 and Ai 2 T , i = 1; :::; q.

Hence, the general form of one pseudo-linear interval equation in n variables
is

nX
j=1

 
2X

k=1

(B
(k)
j �Xj + C

(k)
j �Xj) +

rX
k=1

A
(k)
j �Xj +

qX
k=r+1

A
(k)
j �Xj

!
= V;

where Xj ; V 2 D; B
(k)
j ; C

(k)
j 2 Sk; k = 1; 2 and A

(k)
j 2 T for j = 1; :::; n.

In vector form latter equation can be written as

2X
k=1

(B(k) �X + C(k) �X ) +

rX
k=1

A(k) �X +

qX
k=r+1

A(k) �X = V;

with interval vectors B(k) =
�
B
(k)
1 ; : : : ; B

(k)
n

�
; C(k) =

�
C
(k)
1 ; : : : ; C

(k)
n

�
2 Snk ,

A(k) =
�
A
(k)
1 ; : : : ; A

(k)
n

�
2 T n, X = (X1; : : : ; Xn)

> 2 Dn and V 2 D.
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A general system of m pseudo-linear interval equations in n variables is

nX
j=1

 
2X

k=1

(B
(k)
ij �Xj + C

(k)
ij �Xj) +

rX
k=1

A
(k)
ij �Xj +

qX
k=r+1

A
(k)
ij �Xj

!
= Vi;

i = 1; :::;m;

where Xj ; V 2 D, B
(k)
ij ; C

(k)
ij 2 Sk, and A

(k)
ij 2 T for i = 1; :::;m, j = 1; :::; n.

The corresponding pseudo-linear interval equation system in Dm�n is:

2X
k=1

(B(k) �X + C(k) �X ) +

rX
k=1

A(k) �X +

qX
k=r+1

A(k) �X = V ;

with B(k) =
�
B
(k)
ij

�
; C(k) =

�
C
(k)
ij

�
2 Sm�nk , A(k) =

�
A
(k)
ij

�
2 T m�n and

V = (V1; : : : ; Vm)
> 2 Dm, X = (X1; : : : ; Xn)

>;X = (X1; : : : ; Xn)
> 2 Dn.

4 Algebraic Solutions to a Pseudo-Linear Interval Equation

Consider the interval equation in DP2
k=1(B

0
k �X + C 0

k �X) +
Pr1

i=1 A
0
i �X +

Pq1
i=r1+1

A0i �X + V 0P2

k=1(B
00
k �X + C 00

k �X) +
Pr2

i=1A
00
i �X +

Pq2
i=r2+1

A00i �X + V 00
= V;

where the nominator and denominator in the left-hand side of the equation are
pseudo-linear interval expressions in normal form and the denominator is from
DnT . We shall transform this equation into a pseudo-linear interval equation in
normal form by applying to the equation successive algebraic transformations,
based on the equalities (3). We call that a pseudo-linear interval equation in
one variable is in normal form if its left-hand side is a pseudo-linear interval
expression in normal form. Multiplying both sides of the equation by dual of the
denominator, we obtain the following equivalent equation:

2X
k=1

(B0
k �X + C 0

k �X) +

r1X
i=1

A0i �X +

q1X
i=r1+1

A0i �X + V 0 =

V �

 
2X

k=1

(B00
k �X + C 00

k �X) +

r2X
i=1

A00i �X +

q2X
i=r2+1

A00i �X + V 00

!

Subtracting dual of the right-hand side of latter equation from its both sides we
obtain next equivalent equation:

2X
k=1

(B0
k �X + C 0

k �X) +

r1X
i=1

A0i �X +

q1X
i=r1+1

A0i �X + V 0 �

V �

 
2X

k=1

(B00
k �X + C 00

k �X) +

r2X
i=1

A00i �X +

q2X
i=r2+1

A00i �X + V 00

!
= 0:
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To transform latter equation into normal form we need to disclose brackets in the
left-hand side of the equation by applying Theorem 1. Since we do not know to
which class Sk; k = 1; 2; 3; 4 belongs X in the general case, we have to consider
eight cases varying X 2 Sk and � 2 Sl for k = 1; 2; 3; 4; l = 1; 2, where � is the
expression in brackets. For every one of the eight cases, according to Theorem 4
latter equation is equivalent to a pseudo-linear interval equation in normal form
which algebraic solutions will be found below.

For example, if X 2 S1 and � 2 S2 latter equation is equivalent to the
equation

2X
k=1

(B0
k �X + C 0

k �X) +

r1X
i=1

A0i �X +

q1X
i=r1+1

A0i �X �

2X
k=1

(B00
k � V�(B00

k
) �X + C 00

k � V�(C00
k
) �X) � (7)

r2X
i=1

A00i � V�(A00
i
) �X �

q2X
i=r2+1

A00i � V�(A00
i
) �X = V 00 � V�(V 00) � V 0;

which according to Theorem 4 is equivalent to a pseudo-linear interval equation
in normal form

4X
k=1

(Pk �X +Qk �X) = V 00 � V�(V 00) � V 0;

where the particular values of Pk; Qk 2 Sk depend on the characteristic � of
V 2 D.

Consider the general pseudo-linear interval equation

2X
k=1

(Bk �X + Ck �X) +

rX
i=1

Ai �X +

qX
i=r+1

Ai �X = V; (8)

where V 2 D, Bk; Ck 2 Sk; k = 1; 2 and Ai 2 T ; i = 1; :::; q.
The general scheme we shall follow in �nding the algebraic solutions to (8)

is:

1. Transform the initial equation into a �nite number of linear systems of equa-
tions in R

2 by using the transition formula (4);
2. Find all solutions to the corresponding linear systems of equations using the

well-known methods for solving linear systems of equations over R;
3. Restrict (project) the solutions we have found in step 2 to the extended

interval subspace corresponding to the class interval algebraic solutions we
are looking for.

It is obvious from Theorem 4 that the three classes interval algebraic solutions
to the equation (8) (X 2 D n T ; X 2 T and �(X) = +; X 2 T and �(X) = �)
generate three di�erent special cases of this equation. That is why we split the
initial general problem into two subproblems which we shall solve following the
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above general scheme. First, �nd all nonzero algebraic solutions to the equation
(8) and second, �nd all zero algebraic solutions to the same equation.

Algebraic solutions X 2 D n T to equation (8).
According to Theorem 4, forX 2 DnT this equation is equivalent to the equation

4X
k=1

(Bk �X + Ck �X) = V; (9)

where Bk; Ck 2 Sk; k = 1; 2; 3; 4; Bk =
Pr

i = 1

Ai 2 Sk

Ai, Ck =
Pq

i = r + 1

Ai 2 Sk

Ai for

k = 3; 4. Applying transition formula (4) we obtain the following equivalent
equation

(B1)�(X) �h X + (C1)�(X) �h X +

(B2)�(X) �h X + (C2)�(X) �h X +

(B3)�(X) �h x
�(X) + (C3)�(X) �h x

��(X) +

(B4)�(X) �h x
��(X) + (C4)�(X) �h x

�(X) = V;

which, due to the distributivity of the hyperbolic product, is equivalent to

(B1 + C2)�(X) �h X + (B2 + C1)�(X) �h X +

(B3 + C4)�(X) �h x
�(X) + (B4 + C3)�(X) �h x

��(X) = V:

Last equation is equivalent to a couple systems of linear equations in R
2

UX = V ; with X = (x�; x+)>; V = (v�; v+)>: (10)

Matrices of both systems di�er

U = U(�(X)) =

8>><
>>:

�
u11; u21
u12; u22

�
; if �(X) = +;�

u22; u12
u21; u11

�
; if �(X) = �;

where

u11 = b�1 + c�2 + c�3 + b�4 ; u21 = c�1 + b�2 + b�3 + c�4 ;

u12 = c+1 + b+2 + c+3 + b+4 ; u22 = b+1 + c+2 + b+3 + c+4 :

It is obvious that both matrices U(�(X)) have one and the same determinant.
Denote

d = u11u22 � u12u21

d1 = det

�
u11; v

�

u12; v
+

�
; d2 = det

�
u21; v

�

u22; v
+

�
;

~d1 = det

�
u22; v

�

u21; v
+

�
; ~d2 = det

�
u12; v

�

u11; v
+

�
:

(11)

Apply the standard rules of algebra for �nding the solutions to the systems (10)

in R
2:
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1. If d 6= 0 both systems (10) have unique solutions X1 = (�d2=d; d1=d)
> and

X2 = (� ~d2=d; ~d1=d)
>. The solutions X1 and X2 generate numeric algebraic

solutions to the equation (9), resp. (8)

X1 = [�d2=d; d1=d]; if X1 2 S1;

X2 = [� ~d2=d; ~d1=d]; if X2 2 S2:

X1 2 S1 if �d2=d � 0 and d1=d � 0 and (d1 6= 0 or d2 6= 0). The conditions
�d2=d � 0 and d1=d � 0 are equivalent to dd2 � 0 � dd1.

Analogously, X2 2 S2, if d ~d1 � 0 � d ~d2 and ( ~d1 6= 0 or ~d2 6= 0).

2. If d = 0 and d1 = d2 = 0, then the system U(�(X) = +)X = V has
parametric solutions depending on one real parameter. Since the parameter
may occur either in the �rst or in the second component of the solution
vector, we have two types parametric solutions: X 0

1 = ((v��u21�)=u11; �)
>

and X 00
1 = (�; (v� � u11�)=u21)

>, where �; � 2 R. The solution vectors
X 0
1 and X 00

1 generate positive parametric algebraic solutions X 0
1 = [(v� �

u21�)=u11; �] 2 S1, X
00
1 = [�; (v� � u11�)=u21] 2 S1 to the equation

(9), resp. (8) if both their components are non negative. Last requirement
imposes the following restrictions on the parameters:
{ if (u21; u11 � 0; v� � 0) or (u21; u11 � 0; v� � 0), then
there is no positive parametric solution;

{ if (u21; v
� � 0; u11 � 0) or (u21; v

� � 0; u11 � 0), then
0 � v�=u21 � �, 0 � �;

{ if (u21 � 0; u11; v
� � 0) or (u21 � 0; u11; v

� � 0), then
0 � �, 0 � v�=u11 � �;

{ if (u21; u11; v
� � 0) or (u21; u11; v

� � 0), then
0 � � � v�=u21, 0 � � � v�=u11

If d = 0 and ~d1 = ~d2 = 0, then the system U(�(X) = �)X = V has two
types parametric solutions X 0

2 = ((v+ � u11�)=u21; �)
> and X 00

2 = (
; (v+ �
u21
)=u11)

>, where 
; � 2 R. The solution vectors X 0
2 and X 00

2 generate
negative parametric algebraic solutions X 0

2 = [(v+ � u11�)=u21; �] 2 S2,
X 00
2 = [
; (v+ � u21
)=u11] 2 S2 to the equation (9), resp. (8) if both their

components are non positive. Last requirement imposes the following restric-
tions on the parameters 
 and �:
{ if (u21; u11 � 0; v+ � 0) or (u21; u11 � 0; v+ � 0), then
v+=u11 � � � 0, v+=u21 � 
 � 0;

{ if (u21; v
+ � 0; u11 � 0) or (u21; v

+ � 0; u11 � 0), then
� � v+=u11 � 0, 
 � 0;

{ if (u21 � 0; u11; v
+ � 0) or (u21 � 0; u11; v

+ � 0), then
� � 0, 
 � v+=u21 � 0;

{ if (u21; u11; v
+ � 0) or (u21; u11; v

+ � 0), then
there is no negative parametric solution.

3. If d = 0 and (d1 6= 0 or d2 6= 0), then the system U(�(X) = +)X = V has
no solution and in this case the equation (9), resp. (8), possesses no positive
solutions.
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If d = 0 and ( ~d1 6= 0 or ~d2 6= 0), then the system U(�(X) = �)X = V has
no solution and in this case the equation (9), resp. (8), possesses no negative
solutions.
In general, equation (8) has no nonzero algebraic solution if

either d 6= 0 and (dd1 < 0 or 0 < dd2 or d1 = d2 = 0) and

(d ~d2 < 0 or 0 < d ~d1 or ~d1 = ~d2 = 0);

or d = 0 and (d1 6= 0 or d2 6= 0) and ( ~d1 6= 0 or ~d2 6= 0).

Algebraic solutions X 2 T to equation (8).

According to Theorem 4, for X 2 T this equation is equivalent to the equation

2X
k=1

(Bk �X + Ck �X) +

rX
i = 1

�(Ai) = �(X)

Ai �X +

qX
i = r + 1

�(Ai) 6= �(X)

Ai �X = V; (12)

where Bk; Ck 2 Sk and Ai 2 T .
An obvious criterion for nonexistence of zero algebraic solutions to the last

equation is V 2 D n T . Thus for V 2 T we transform the equation (12) into
a number systems of linear equations (10) by using transition formula (4). To
facilitate this process we de�ne several classes of zero algebraic solutions. The
direction �(X) 2 f+;�g of the algebraic solution generates two such classes. Let
us reorder the coe�cients Ai 2 T ; i = 1; :::; q according to their �-values and
�nd the corresponding sequence

Ai1 ; :::; Aim such that �(Ai1) < �(Ai2) < ::: < �(Aim)

where m � q. To the above sequence of m coe�cients, having distinct �-values,
we correspond a sequence of m+ 1 disjoint intervals

(�1; �(Ai1)) ; [�(Ai1); �(Ai2)) ; : : : [�(Aim);1) :

Last sequence of intervals determines m + 1 classes of zero algebraic solutions
with a �xed direction �(X) = � . To every one of these m + 1 classes of zero
algebraic solutions with �xed direction �(X) = � and �xed �-characteristic
�(X) 2

�
�(Aik ); �(Aik+1 )

�
, k = 1; :::;m � 1 correspond two subclasses of alge-

braic solutions with di�erent �-values �(X) = � 2 f+;�g. This way we de�ned
2(2m+ 1) disjoint classes of zero algebraic solutions to the equation (12)

X(�; �; �) = fX 2 T j �(X) = � 2 f+;�g;
�(X) 2

�
�(Aik�1); �(Aik )

�
; k = 1; :::;m;

�(X) = � 2 f+;�gg:

For everyX 2 X(�; �; �) there exists a unique system of linear equations (10)
which is determined by the transition formula (4). Due to the representation (4)
we can �nd the corresponding matrix U in an explicit form:

U =

8>>>>>>>>><
>>>>>>>>>:

�
�; �
�; �

�
; if X 2 X(�; � 2 (�1; �(Ai1)); �);

0
BBB@
�+

�
��; if � = �;
0; if � = +

; � +

�
0; if � = �;
��; if � = +

� +

�
�+; if � = �;
0; if � = +

; �+

�
0; if � = �;
�+; if � = +

1
CCCA ; otherwise;

(13)
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where

� = b�1 + c�2 +
X

�(Ai) � �

�(Ai) = �(Ai) = �

a�i +
X

�(Ai) � �

�(Ai) = � 6= �(Ai)

a�i

� = b��2 + c��1 +
X

�(Ai) � �

�(Ai) = � 6= �(Ai)

a��i +
X

�(Ai) � �

�(Ai) 6= � = �(Ai)

a��i

[�] =
X

�(Ai) = �

�(Ai) < �

(Ai)�� +
X

�(Ai) 6= �

�(Ai) < �

(Ai)�� :

All solutions X = (x�; x+)> to the above 2(2m+1) systems, such that [x�; x+] 2
X(�; �; �), de�ne algebraic solutions X 2 T to the equation (12), resp. (8).

The above results can be summarized in the following

Theorem5. All algebraic solutions X 2 DnT to a pseudo-linear interval equa-
tion (8) are

X1 = [�d2=d; d1=d] 2 S1, if d 6= 0, dd2 � 0 � dd1, (d1 6= 0 or d2 6= 0);

X2 = [� ~d2=d; ~d1=d] 2 S2, if d 6= 0, d ~d1 � 0 � d ~d2, ( ~d1 6= 0 or ~d2 6= 0);

where d; di; ~di, i = 1; 2 are de�ned by (11);

X 0
1 = [(v� � u21�)=u11; �], X 00

1 = [�; (v� � u11�)=u21], X 0
1; X

00
1 2 S1,

if d = 0, d1 = d2 = 0;

X 0
2 = [(v+ � u11�)=u21; �], X 00

2 = [
; (v+ � u21
)=u11], X 0
2; X

00
2 2 S2,

if d = 0, ~d1 = ~d2 = 0;

where the parameters �; �; 
; � are de�ned as follows:

{ if (u21; u11 � 0; v�; v+ � 0) or (u21; u11 � 0; v�; v+ � 0), then
there is no positive parametric solution;
v+=u11 � � � 0, v+=u21 � 
 � 0;

{ if (u21; v
�; v+ � 0; u11 � 0) or (u21; v

�; v+ � 0; u11 � 0), then
0 � v�=u21 � �, 0 � �, � � v+=u11 � 0, 
 � 0;

{ if (u21 � 0; u11; v
�; v+ � 0) or (u21 � 0; u11; v

�; v+ � 0), then
0 � �, 0 � v�=u11 � �, � � 0, 
 � v+=u21 � 0;

{ if u21; u11; v
�; v+ � 0 or u21; u11; v

�; v+ � 0, then
0 � � � v�=u21, 0 � � � v�=u11,
there is no negative parametric solution.

All solutions X = (x�; x+)> to 2(2m + 1) linear systems (10), determined
by (13), such that [x�; x+] 2 X(�; �; �), de�ne algebraic solutions X 2 T to a
general pseudo-linear interval equation (8) in D.
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Next we give explicitly all algebraic solutions to two special types pseudo-
linear interval equations in one variable, which solutions are most frequently
sought.

4.1 Pseudo-linear equation involving nonzero coe�cients

Consider the general pseudo-linear interval equation (8), where there are no
coe�cients from T . The equation

2X
k=1

(Bk �X + Ck �X) = V; (14)

where Bk; Ck 2 Sk, V 2 D and B1 + C2; B2 + C1 2 T is the general type of
a pseudo-linear equation involving nonzero coe�cients. Equations (14), where
B1 + C2 2 T and/or B2 + C1 2 T , are reducible to have less than four additive
terms and therefore are special cases of equation (14). Denote P = [p�; p+] =
B1 +C2, Q = [q�; q+] = B2 +C1. As a corollary from Theorem 5 we obtain all
algebraic solutions to the equation (14).

The numeric algebraic solutions to this equation are:

X1;2 = [
p�(X)v� � q��(X)v+

p�p+ � q�q+
;
p��(X)v+ � q�(X)v�

p�p+ � q�q+
];

if p�p+ 6= q�q+; x�; x+ ��(X) 0; (x� 6= 0 or x+ 6= 0);

X3;4 = [
p�(X)v� � q��(X)v+

(p�(X))2 � (q��(X))2
;
p�(X)v+ � q��(X)v�

(p�(X))2 � (q��(X))2
];

if V 2 T ; jp�(X)j 6= jq��(X)j; (x��(X) < 0 < x�(X) or x� = x+ = 0):

X1 and X2 above are nonzero algebraic solutions, positive and negative respec-
tively, while X3; X4 2 T , �(X3) 6= �(X4).

For � 2 �, ��= f�; if � = +; �; if � = �g.

All parametric algebraic solutions to the equation (14) are:

X 0
1;2 = [

v� � q��(X)�

p��(X)
; �]; X 00

1;2 = [�;
v� � p��(X)�

q��(X)
];

if p�p+ = q�q+ and q��(X)v+ = p�(X)v� = p��(X)v+ = q�(X)v�

wherein the parameters � and � are subjected to the following constrains:

{ if p��(X)q��(X) � 0, then

0 ��(X) � ��(X) v�

q��(X)
; 0 ��(X) � ��(X) v�

p��(X)
;
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{ if p��(X)q��(X) � 0, then

(0 ��(X) � and
v�

q��(X)
��(X) �); (0 ��(X) � and

v�

p��(X)
��(X) �);

X 0
3;4 = [

v� � q��(X)�

p�(X)
; �]; X 00

3;4 = [
;
v� � p�(X)


q��(X)
];

if V 2 T ; jp�(X)j = jq��(X)j 6= 0; q��(X)v+ = p�(X)v� = p�(X)v+ = q��(X)v�

wherein the parameters � and 
 are subjected to the following constrains:

{ if p�(X)q��(X) > 0, then

(0 <�(X) � and
v�

q��(X)
<�(X) �); (
 <�(X) 0 and 
 <�(X) v�

p�(X)
);

{ if p�(X)q��(X) < 0, then

0 <�(X) � <�(X) v�

q��(X)
;

v�

p�(X)
<�(X) 
 <�(X) 0;

The parametric solutions above have the following characterization:X 0
k; X

00
k 2

Sk, �(X
0
k) = �(X 00

k ), k = 1; 2; 3; 4.

Example 3. The algebraic solutions X 2 D n T to equation (1) are

X1 = [2; 3]; and X2 = [�15;�43]:

4.2 Solutions to equation A�X = B

The equation A�X = B, where A;B 2 D, A 6= 0 has the following solutions:

� B=A, if A 2 D n T , B 6= 0;
� 0, if A 2 D n T , B = 0, a�a+ 6= 0;

� [b��(A)�(A)=a�(A); b�(A)�(A)=a�(A)], if A;B 2 T , �(A) = �(B),
�(B) � �(A);

� [�; ��]�(A), if A 2 D n T , B = 0, a�a+ = 0;

� [�; ��]�(A) and 0, if A 2 T , B = 0;

� [�(A)�(B)�; b��(B)=a��(A)]�(A)�(A)�(B) and

[��(A)�(B)�; b��(B)=a��(A)]�(A)�(A)�(B),

if A;B 2 T , �(A) = �(B), �(B) = �(A);

wherein �; � > 0, �; � � 0 and 0 < � �
��b��(B)=a��(A)��

� no algebraic solution, if either A 2 T , B 2 D n T ,
or A;B 2 T , �(A) 6= �(B),
or A;B 2 T , �(A) = �(B), �(B) > �(A).
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The �rst three cases specify an unique numeric algebraic solution to the
equation A � X = B and the conditions for its existence. Next three cases
specify all parametric algebraic solutions to the equation under consideration.
Note, that for A;B 2 T , there exist only zero involving algebraic solutions, while
for A 2 DnT , the parametric solutions are positive, negative and involving zero.

If the equation A � X = B has no algebraic solution in D, latter can be
sought in the space of inner and outer extended intervals, obtained by division
of intervals containing/contained in zero [Kaucher 1973], [Popova 1994]. In this
case, the united solution set X99 of the equation A�X = B is

X99 = fx 2 R j (9a 2 A)(9b 2 B)(a:x = b)g

= pro(B=A)

where the division operation is well de�ned [Kaucher 1973], [Popova 1994] as:

B=A =

8>>><
>>>:

[t�; ��(T )1]; [�(T )1; t+]; if B 2 D n T

[�1; 1]�(B); if B 2 T ; �(A) = +

[b+=a�; b�=a+]; [b�=a�; b+=a+]; if B 2 T ; �(A) = �;

where A 2 T and T = [t�; t+] = [b�(A)=a�(B); b�(A)=a��(B)].

5 Concluding Remarks

The extended interval arithmetic over D possesses better algebraic properties
than conventional interval arithmetic and allows explicit algebraic solution of
certain interval problems embedded there. We have demonstrated at the be-
ginning of Section 4 how, by applying successive algebraic transformations, an
interval equation can be transformed into a number of pseudo-linear interval
equations in one variable, which algebraic solutions were presented explicitly in
the paper.

Theorem 4, specifying the general normal form of a pseudo-linear interval
expression, is of basic importance for all theoretical investigations based on ele-
mentary algebraic transformations. Applying this theorem to the left-hand side
of the equation (7) we proved, without knowing the exact values of the coe�-
cients, that left-hand side of this equation involves not more than eight additive
terms.

We have demonstrated a technique for �nding all algebraic solutions to a
general pseudo-linear interval equation in one variable by solving corresponding
number of linear equation systems in R

2. All numeric and parametric algebraic
solutions to some basic types pseudo-linear interval equations in one variable
are presented explicitly. The way we have presented the algebraic solutions to a
pseudo-linear interval equation in one variable | by classes of extended inter-
vals having particular characteristic and the corresponding conditions for their
existence | facilitates the solution of problems subjected to constrains. For ex-
ample, many practical problems are interested in positive algebraic solutions
and Theorem 5 speci�es exactly which conditions have to be checked in this
case. When solving tolerance problems by algebraic solution of a pseudo-linear
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interval equation we need only proper algebraic solutions and Theorem 5 says
exactly which conditions have to be checked, or which systems in R

2 have to be
solved.

The applicability of all theoretical results, presented here, will be extremely
facilitated if implemented in a computer algebra system supporting extended
interval arithmetic. We think that computer algebra systems provide the best
environment for exploiting the algebraic properties of the arithmetic over D. A
Mathematica package [Popova and Ullrich 1996] for extended interval arithmetic
provides some functionalities that cannot be obtained by conventional interval
arithmetic. By now this package contains facilities for:

{ inwardly and outwardly rounded numerical computations with extended in-
tervals providing that interval operations handle mathematical constants,
exact singletons, integer (or rational) numbers exactly, when combined with
inexact numbers;

{ obtaining inner inclusions only by outwardly rounded operations and the cor-
responding dual of the input interval expression [Garde~nes and Trepat 1980];

{ tight range computation for monotone rational interval functions reduc-
ing the dependency problem by an extended interval-arithmetic technique
[Garde~nes and Trepat 1980];

{ elementary algebraic transformations based on algebraic identities (3);
{ numerical solution to certain interval equations in one variable;
{ automatic simpli�cation, based on Theorem 2, of symbolic-numerical interval
expressions [Popova and Ullrich 1997].

A single function delivering all numerical and/or parametric algebraic solutions
to a pseudo-linear interval equation in one variable is designed and its implemen-
tation is forthcoming. We believe that utilizing this function together with the
other facilities of the package will increase the e�ciency of interval applications.
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