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Abstract: A perturbation matrix A = A � � is considered, where A 2 IRn;n and
0 � � 2 IRn;n. The matrix A is singular i� A contains a real singular matrix. A
problem is to decide if A is singular or nonsingular, a NP-hard problem. The decision
can be made by the computation of the componentwise distance to the nearest singu-
lar matrix de�ned on the basis of the real spectral radius, and by the solution of 4n

eigenvalue problems.
Theorem 6 gives a new computation basis, a natural way to the \componentwise dis-
tance ..." de�nition, and a motivation to rename this in radius of singularity denoted
by sir(A;�).
This new way shows: (i) - sir results from a real nonnegative eigensolution of a non-
linear mapping, (ii) - sir has a norm representation, (iii) - sir can be computed by

2n�1 nonnegative eigensolutions of the nonlinear mapping, (iv) - for the special case

� = pqT ; 0 � p; q 2 IRn a formula for a computation of sir is given, also a trivial
algorithm for the computation, and some examples as demonstration.

Key Words: perturbation matrix, interval matrix, componentwise distance to the
nearest singular matrix, radius of singularity, NP-hard

1 Introduction

In this paper a perturbation matrix

A = A��

with A 2 IRn;n and 0 � � 2 IRn;n or equivalent to this an interval matrix

A = [A�� ; A+�]

is considered.
The following two problems are the subject of this paper:

� to decide where is the nearest singular matrix with regard to the matrix A;

� to decide if A is singular or regular.

A matrix of the type above is called singular i� a real singular matrix is included
in A, and a matrix is said to be regular i� it is nonsingular.

It is well-known that the given decision problems can be solved by the compu-
tation of d(A;�) denoted as \radius of regularity" [ see Poljak , Rohn (93) ] or
as \componentwise distance to the nearest singular matrix" [ see Demmel (92)]
and [ Rump (97) ].

On the other hand it has been shown by [ Poljak , Rohn (93) ] that the
computation of d(A;�) is a NP-hard problem; there are 4n linear eigenvalue
problems to solve (see [ Demmel ], [ Higham ], [ Chaitin-Chatelin , Frayss�e ]).
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Theorem 6 in [ Section 2 ] gives a new computation basis and \a natural
way" to the de�nition of d(A;�), and a motivation to rename this in radius
of singularity denoted by sir(A;�), also to make a distinction between both
computation formulae.

In [ Section 4 ] it is shown that d(A;�) = sir(A;�), but for a computation
of sir are \only" 2n�1 nonnegative eigensolutions to compute.

In the following it should be explained what is to be understood by \ a
natural way": At �rst in [ Section 1.1 ] it is shown by using of interval mathe-
matics that the representation of A as perturbation matrix is equivalent to the
midpoint-radius representation of an interval matrix. Theorem 3 gives equivalent
formulations for the singularity of an interval matrix. The assumption that the
midpoint matrix A of A is regular allowed the study of a nonlinear mapping
FS : IRn

+
! IRn

+
with FS(z) := �jA�1Szj where IRn

+
:= fx 2 IRn j 0 �

xi ; 1 � i � ng denotes the cone of the IRn, and S a signature matrix [ see
Section 1.1.1 ]. Note there are 2n�1 signature matrices, and this set is denoted
by On.

The basis statement of this paper is (see Theorem 6):

9(�; z) 2 IR+ � IRn
+
( FS(z) = � z ; jjzjj = 1 ) :

The proof based on Brouwers �xed point theorem given in [ Section 1.1.2 ].
Note jj � jj stands for any vector norm.

On the set of the nonnegative eigensolutions is

� := max
S2On

maxf �(S) = jj�jA�1Szjjj j FS(z) = �(S) z ; jjzjj = 1 g

de�ned, see (17).
Let now, for a S, z and � the equation FS(z) = � z be ful�led, then it can

be shown that this is equivalent to A(�) := A � (1=�)� is singular if � 6= 0
[ see Section 3 ]. Furthermore in [ Section 3 ] A(t) := A � t� is discussed
dependent of �. This way is new and leads also to the well-known de�nition
minf t � 0 j A(t) singularg =: sir(A;�), here denoted by sir(A;�) to make a
distinction to d(A;�) and between both ways. That the ways are really di�erent
is shown in [ Section 3 ] and [ Section 4 ].

The term radius of singularity for sir(A;�) is motivated by the following:
for t = sir(A;�) is A(t) the closure of A(t) regular for t 2 [0; sir(A;�)) ; a
singular matrix s 2 @A exists, where @A is the set of boundary matrices of A,
and last but not least sir(A;�) has with � a jj � jj - representation.

The special case� = pqT is in [ Section 5 ] considered. The application of theorem
6 gives here a new representation formula for sir and leads to an algorithm for the
computation; examples are given. Especially it is shown that p is an eigenvector
of the mapping FS and

sir(A; pqT ) =
1

maxS2On�1 fq
T jA�1Spjg

:

This formula contains also the special case where all elements �i;j = 1 consid-
ered by [ Rohn (96) ] , [ Demmel (92) ] , [ Rump (97) ]. A representation of sir
in a subordinate matrix norm is also given by (32).
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1.1 De�nitions, notations, and preliminaries

In this �rst section brief survey connections between interval and perturbated
matrices are given, since the interval analysis gives an easy access to the subject
of this paper.

The symbol IIR := fX j X = [X;X] ; X ; X 2 IR g denotes the set of all
closed real intervals. The following equivalent notations for an X 2 IIR are used

X = [X;X]

= [mid(X)� rad(X);mid(X) + rad(X)]

= mid(X)� rad(X) (1)

with the de�nitions: mid(X) := (X +X)=2 for the midpoint of X and

rad(X) := (X �X)=2 for the radius of X . It is obvious to see that rad(X)
is always nonnegativ. The representation (1) is called the midpoint-radius rep-
resentation of an interval X . In this context rad(X) can be interpreted as a
perturbation of mid(X).

For the following some rules for intervals are used.

Lemma 1. Let x 2 IR and Y 2 IIR, then

Y x = mid(Y )x � rad(Y ) jxj (2)

0 2 Y , jmid(Y )j � rad(Y ) (3)

Proof. To (2): The application of the multiplication for intervals [ see Moore
(79) ], and (1) gives

Y x = [minf(mid(Y )� rad(Y ))x; (mid(Y ) + rad(Y ))xg;

maxf(mid(Y )� rad(Y ))x; (mid(Y ) + rad(Y ))xg ]

= mid(Y )x � rad(Y ) jxj:

To (3):

0 2 Y , mid(Y )� rad(Y ) � 0 � mid(Y ) + rad(Y ), jmid(Y )j � rad(Y ):

An extension of intervals to interval matrices, interpreted as a perturbation
matrix, is useful in this context. A n-by-n interval matrix (Ai;j) can be generated
by a componentwise perturbation (�i;j) of a real matrix (Ai;j). The componen-
twise representation is given by using (1) with

Ai;j = Ai;j ��i;j ; 0 � �i;j

where Ai;j is the midpoint, and �i;j is the radius of Ai;j or

A = A�� ; A 2 IRn;n ; 0 � � 2 IRn;n (4)

a well-known notation for a perturbation matrix. This shows that because of (1)
the representation (4) is equivalent to the following interval matrix

A = [A�� ; A + � ]: (5)

For the following the absolute value j � j, and the relations �; 2; �; � are to
be used element- or componentwise, respectively.

As next a de�nition and some equivalent formulations for the singularity of an
interval matrix (5) are given.
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De�nition 2.

A singular () 9s 2 IRn;n 9x 2 IRn ( s 2 A; s x = 0; x 6= 0 ) (6)

Theorem3.

A singular () 9x 2 IRn ( 0 2 Ax ; x 6= 0 ) (7)

() 9x 2 IRn ( jAxj � � jxj ; x 6= 0 ) (8)

Proof. The elementewise application of (2) to Ax with an x 2 IRn and A from
(5) gives

Ax = f a x j a 2 Ag (9)

= Ax � � jxj: (10)

To (6), (7): With (9) it is obvious that (6), (7), then

9s 2 IRn;n 9x 2 IRn ( s 2 A; s x = 0; x 6= 0 ) () ( 0 2 Ax ):

To (7) , (8): Consider 0 2 Ax from (7), use (10), and apply (3) with Ax =
mid(Ax); � jxj = rad(Ax) then

0 2 Ax = Ax��jxj () jAxj � �jxj

proves the equivalence.

For the examinations in this paper it is important to note that the equivalence
relation (8) can be speci�ed with the midpoint matrix A = mid(A); there are
two cases in

Theorem4.

A singular , 9x 2 IRn ( jAxj = 0 � � jxj; x 6= 0 ) (11)

(A singular; A regular) , 9 y 2 IRn ( jyj � �jA�1yj; y 6= 0 ) (12)

Proof. To (11): This is obvious with (8), and A = mid(A) is singular. To (12):
This is equivalent to (8) because of the regularity of A and y := Ax , x =
A�1y.

1.1.1 Signature matrices

Let x 2 IRn, then x = Sjxj with

S := diag(sign(x1); : : : ; sign(xn))

where S is called the signature matrix of the vector x.
The following properties are obvious with the de�nition of S:

S = ST = S�1 ; S2 = I ; jSj = I ; I denotes the n-by-n identity matrix.

The set of all these signature matrices is denoted with On . Note the cardinality
of On is 2n.
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1.1.2 Brouwer's �xed point theorem

In this context we use the following version of Brouwers �xed point theorem

Theorem5. Let @B be the sphere of a closed unit ball B := fx 2 IRn j jjxjj �
1 g of IRn, and let T : B ! IRn be a continuous mapping on B with T (@B) � B,
then

9x 2 B ( Tx = x ):

Proof. See [ Riedrich (76) ] :

2 Basic theorem

On the basis of (12) a nonlinear mapping is de�ned and studied in

Theorem6. Let S 2 On and FS : IRn
+
! IRn

+
with FS(z) := �jA�1Szj, then

9(�; z) 2 IR+ � IRn
+
( FS(z) = � z ; jjzjj = 1 ) (13)

and

� = jj� jA�1 S z j jj (14)

Such a pair (�; z) is called a nonnegative eigensolution of FS.

Proof. For the nonlinear mapping FS it is useful to de�ne the kernel of FS by

ker(FS) := f z 2 IRn
+
j FS(z) = 0 ; z 6= 0 g:

The proof of this theorem is divided in two parts:

Part 1: Assume 0 < � 2 IRn;n , then it is obvious to see that ker(FS) = ;
(where ; denotes the empty set). The intersection of a closed unit ball with IRn

+

is de�ned by

B+ := f z 2 IRn
+
j jj z jj � 1 g:

Now, a nonlinear functional fS : B+ ! IRn
+

can be de�ned by

fS := jj�jA�1 S z j jj

and since ker(FS) = ; fS has the property

0 < fS( z ) 8z 2 B+:

This property allows the de�nition of a nonlinear mapping
GS : B+ ! IRn

+
with

GS(z) :=
1

fS(z)
FS(z):
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Properties of GS are

(i): GS 2 C0(B+) and (ii): GS(@B+) � @B+ � B+

where C0 denotes the set of all continuous functions. (ii) is clearly by construc-
tion.

Put now B := B+ and T := GS , and apply theorem 5 then

9z 2 B+ (GS(z) = z )

(GS has a �xed point) and furthermore for the mapping FS is

FS(z) = � z

with

� := jj�jA�1 S z j jj ; jj z jj = 1

satis�ed.
This means the nonlinear mapping FS has at least a real nonnegative eigen-

solution (� ; z ).

Part 2 (general case): Let 0 � �. Then de�ne with an arbitrary 0 < C 2 IRn;n

�( t ) := � + t C ; t 2 IR+ :

Since 0 < �( t ) for t > 0 part 1 of this proof can be applied, and

(�( t ) ; z( t ) ) 2 IR+ � IRn
+

exists with jj z( t ) jj = 1

for

FS( z( t ) ) = �( t ) z( t )

with

�( t ) := jj�( t ) jA�1 S z( t ) j jj :

Since @B+ is compact, there is an accumulation point z 2 @B+ for each zero
sequence f tk g ! +0 . Because of the convergence of the sequences

fFS( z(f tk g) g ! FS( z ) and f�( f tk g ) g ! �

for each f tk g ! +0, any such accumulation point satis�ed FS( z ) = � z with
� := jj� jA�1 S z j jj and jj z jj = 1 .

The statement of this theorem is, that for FS exists at least a real nonnegative
eigensolution. This statement is very important for the following de�nition of the
radius of singularity.
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3 Radius of singularity - sir(A;�)

Theorem 6 gives the basis for the de�nition of the radius of singularity.
Consider

FS(z) = � z = � jA�1 S z j (15)

and (15) can be transformed with x := A�1 S z and � 6= 0 into

jAx j =
1

�
� jx j ; (16)

on the other hand use (8):

A singular () 9x 2 IRn ( jAxj � � jxj ; x 6= 0 ) :

Equation (16) shows that jAx j � � jx j is sharp for the \smallest pair" (1=�;x).
That leads with (16), and (14) under the consideration that � = �(S) to the
following de�nition

� := max
S2On

maxf�(S) = jj�jA�1Szjjj j FS(z) = �(S) z ; jjzjj = 1 g (17)

Remark 1: This de�nition depends on the eigensolutions of FS . Note that also z
depends on S, z = z(S).

Put � in (16) then is because of (8) the perturbation matrix A( 1
�
) singular.

That is for

A(t) := A � t�

8<
:

regular if t 2 [ 0 ; 1

�
)

singular if t 2 [ 1
�
; 1]

(18)

where A(t) be closed by A(1) this will be convenient in this context, see also
below.

Furthermore there are two special cases to be considered:
(a):

A singular () 9x 2 IRn ( jAxj = 0 =
1

�
� jxj; x 6= 0 )

That is for A(t): set 1

�
= 0 then A(t) is singular 8t 2 [0;1].

(b): De�ne

ker(F ) := [S2Onfker(FS)g = fx 2 IRn(�jA�1 xj = 0 ; x 6= 0g:

Let ker(F ) 6= ; and

6 9(�; x) 2 IR+ � IRnnker(F ) (�jxj = � jA�1 x j ; x 6= 0 ) (19)

then

�jxj = 0 = �jA�1xj 8x 2 ker(F ) (20)
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is solvable only for � = 0, that is � = 0.

It can be seen immediately that (19) and (20) are also true if � is replaced by
t�. That means

8t 2 [0;1)(6 9x 2 IRn(jxj � t�jA�1xj ; x 6= 0)() A(t) regular ) : (21)

The equivalence (21) follows from the negation of (12).

The statement of (b) for A(t) is: A(t) is singular for t =1 (� = 0).

In consideration of these three cases (18), (a), and (b) it is evident to de�ne

minf t 2 [0;1] j A(t) singular g =: sir(A;�) (22)

here denoted as radius of singularity of a matrix A with

sir(A;�) =

8<
:

0 if A is singular (see (a))
1 if � = 0 (see (b))
1

�
otherwise (see (18))

(23)

For the following is sir as abbreviation of sir(A;�) to be understood.

The way to sir has shown:

{ sir results from a real nonnegative eigensolution of FS ;

{ sir has with (17) a normrepresentation for any vectornorm on IRn;

{ because of jA�1Szj = jA�1(�S)zj 8S 2 On are \only" 2n�1 eigensolu-
tions of FS to compute;

{ a singular matrix s 2 @A(sir) exists where @A(sir) denotes the boundary
set of A(sir) (see section 5 examples) and further

A(sir) = intfA(sir) g [ @A(sir)

with intfA(sir) g = f a 2 IRn;n j a 2 A(t) t 2 [0; sir)g;

Remark 2: From (b) follows

ker(F ) 6= ; is a necessary condition for � = 0 or sir =1, respectively.

An example is given in the next section.
For a better understanding of sir some examples are given in [ Section 5 ].
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3.1 A nontrivial example for sir =1

Let

A := D � � (24)

with D is a regular real diagonal matrix, and

� :=

0
BBBBB@

0 � � � � �
0 0 � � � �
� � � � � �
0 � � 0 � �
0 � � � 0 �
0 0 � � � 0

1
CCCCCA

where � stands for arbitrary nonnegative real elements.

With (24) is FS(z) = � jD�1 S z j and the application of the Perron/Frobenius
theorem, see e.g. [ Riedrich (76) ], gives

FS(z) = � jD j�1 z = �(� jD j�1 ) z = 0 z 8S 2 On�1

where �(�) denotes the spectral radius. It is obviously to see that � = 0, and
therefore is sir(A;�) =1 .

Remark 3: It is easy to see that ker(F ) 6= ; then e1 := (1; 0; : : : ; 0)T 2 ker(F ).

4 sir(A;�) is equivalent to d(A;�)

J.Rohn de�ned in [ Rohn (89) ], and [ Poljak , Rohn (93) ] the radius of regularity
by

d(A;�) := inff t � 0 j [A � t� ; A + t� ] singular g : (25)

With (22) is shown that the inf is achieved.

The computation formula given by J. Rohn [ see Rohn (89) ] for d(A;�) is
equivalent to sir(A;�).

Then an equivalent transformation of

FS(z) = � jA�1 S z j = � z (26)

with

x = A�1 S z

gives

� jAx j = � jx j ;

and with

T1Ax = jAx j ; T2 x = jx j ; T1 ; T2 2 On
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is (26) transformed into

A�1 T1�T2 x = �x ; (27)

a real eigenvalue problem.

The de�nition of the real spectral radius for a B 2 IRn;n

�0(B) :=

�
maxf j� j g if B has real eigenvalues

0 otherwise

applied to (27) gives

max
T1;T22On

f �0(A
�1 T1�T2 ) g = � (28)

The left hand side of (28) was given by J. Rohn in [Rohn (89)], and is because
of (27) equivalent to � from (17). Therefore is d(A;�) = sir(A;�) as given in
(23).

For a computation of � are 2n�1 eigensolutions of FS to compute instead of 4n

linear eigenvalue problems for �0(A
�1 T1�T2 ).

The computation of sir is also a NP-hard problem since in [Poljak and Rohn
(93)] was shown that the computation of d(A;�) is a NP-hard problem.

In the following section applications of theorem 6 are given.

5 A dyad as a special perturbation matrix

Let

� := p qT ; p; q 2 IRn ;

� is called dyad and A be the regular midpoint matrix of the perturbation matrix
A = A��.

Then on the basis of the proof of theorem 6 for a S 2 On

Gs(z) =
p qT jA�1 S z j

jj p qT jA�1 S z j jj
=

1

jj p jj
p :

This means

z =
1

jj p jj
p ; jj z jj = 1 (29)

is a �xed point of GS . On the other hand is (29) also an eigenvector for

FS(
1

jj p jj
p) = qT jA�1 S p j

1

jj p jj
p = �

1

jj p jj
p

77Rex G.: Componentwise Distance to Singularity



with the eigenvalue

� = �(S) = qT jA�1 S p j :

Finally there is the following representation for sir

sir(A; pqT ) =
1

maxS2On�1fqT jA�1 S p j g
: (30)

In the following there are some other representations for (30) given:

De�ne e := (1; : : : ; 1)T 2 IRn, the diagonal matrices

Dp := diag(p) ; Dq := diag(q) then p = Dp e ; Q = Dq e ;

and

H := Dq A
�1Dp :

With these de�nitions and jjx jj1 := eT jx j is

sir(A; pqT ) =
1

maxS2On�1 jjH S e jj1
(31)

equivalent to (30).

sir can be represented also by a subordinate norm [ see Golub , Van Loan (89)]
on a �nite set, especially the corners of the unit cube on IRn, then

sir(A; pqT ) =
1

jjH jj1;1

(32)

where

jjH jj1;1 = max
S2On�1

fjjH S e jj1g = max
jjSejj1=1

jjH S e jj1 :

Because S 2 On�1 is the cardinality 2n�1, furthermore it was shown in [ Rohn
(96) ] that the computing of (30) is NP-hard.

It is worthy to stress, that the formulae (30) { (32) are suitable for a computa-
tion of a parallel computer [ Rex ].

The following examples are given for a demonstration of the statements of this
paper. The basis for the computation gives the following algorithm.
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5.1 ALGORITHM 1

given: A; p; q

set: � := 0

k := 1

repeat:

S 2 On�1 formal notation

Aw = Sp solve a linear system of equations (exactly)

� := qT jwj

Test: If � > � then � := �

k := k + 1

until k > 2n�1

5.1.1 Example 1

Let A = A � p qT with

A :=

�
1 �1
1 1

�
; p :=

�
1
2

�
; q :=

�
3
4

�
;

then sir := sir(A; pqT ) = 2=15 computed with Algorithm 1.

The matrix

A(�) := A � � sir p qT is regular for 0 � � < 1 : (33)

A(�) =

�
1 �1
1 1

�
� �

2

15

�
3 4
6 8

�
:

Furthermore

A(1) =
1

15

�
[ 9 , 21] [-23 , -7]

[ 3 , 27] [ -1 , 31]

�
� A :=

�
[ -2 , 4] [ -5 , 3]

[ -5 , 7] [ -7 , 9]

�
:

There is only one singular matrix s on @A

s :=
1

15

�
21 �7

3 �1

�
2 @A :=

1

15

�
f 9 , 21g f-23 , -7g

f 3 , 27g f -1 , 31g

�
:
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5.1.2 Example 2

Let A = A� p qT with

A :=

 
1 0 �4
0 2 6
1 �2 0

!
; p :=

 
1
1
1

!
; q :=

 
0:5
0:25
2

!
;

then sir := sir(A; pqT ) = 40=38 computed with Algorithm 1.

And analogous to (33) is

A(�) =

 
1 0 �4
0 2 6
1 �2 0

!
� �

40

38

 
0:5 0:25 2
0:5 0:25 2
0:5 0:25 2

!
:

Furthermore

A(1) =
2

38

 
[ 9,29] [ -5 , 5] [-116, 36]
[-10,10] [ 33 , 43] [ 74,154]
[ 9,29] [-43 ,-33] [ -40, 40]

!
� A

A =
2

38

 
[ 9.5 , 28.5] [ -4.75 , 4.75] [-114 , 38]
[-9.5 , 9.5] [ 33.25 , 42.75] [ 76 , 152]
[-9.5 , 28.5] [-42.75 ,-33.25] [ -38 , 38]

!
:

There is a singular matrix s on @A

s :=
2

38

 
9 �5 �116

�10 33 74
9 �43 �40

!
2 @A :=

2

38

 
f 9 , 28g f -5 , 5g f-116 , 36g
f-10 , 10g f 33 , 43g f 74 , 154g
f 9 , 29g f-43 ,-33g f -40 , 40g

!
:
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