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Abstract: A perturbation matrix A = A &+ A is considered, where A € IR™" and
0 < A € IR™™. The matrix A is singular iff A contains a real singular matrix. A
problem is to decide if A is singular or nonsingular, a NP-hard problem. The decision
can be made by the computation of the componentwise distance to the nearest singu-
lar matrix defined on the basis of the real spectral radius, and by the solution of 4™
eigenvalue problems.

Theorem 6 gives a new computation basis, a natural way to the “componentwise dis-
tance ...” definition, and a motivation to rename this in radius of singularity denoted
by sir(A, A).

This new way shows: (i) - sir results from a real nonnegative eigensolution of a non-
linear mapping, (ii) - sir has a norm representation, (iii) - sir can be computed by
2"~ nonnegative eigensolutions of the nonlinear mapping, (iv) - for the special case
A = pgT,0 < p,q € IR" a formula for a computation of sir is given, also a trivial
algorithm for the computation, and some examples as demonstration.

Key Words: perturbation matrix, interval matrix, componentwise distance to the
nearest singular matrix, radius of singularity, NP-hard

1 Introduction

In this paper a perturbation matrix
A=A+ A
with A € IR™" and 0 < A € IR™" or equivalent to this an interval matrix
A=[AcA, A+ A]
is considered.
The following two problems are the subject of this paper:
e to decide where is the nearest singular matrix with regard to the matrix A;
e to decide if A is singular or regular.

A matrix of the type above is called singular iff a real singular matrix is included
in A, and a matrix is said to be regular iff it is nonsingular.

It is well-known that the given decision problems can be solved by the compu-
tation of d(A, A) denoted as “radius of regularity” [ see Poljak , Rohn (93) ] or
as “componentwise distance to the nearest singular matrix” [ see Demmel (92)]
and [ Rump (97) ].

On the other hand it has been shown by [ Poljak , Rohn (93) ] that the
computation of d(A,A) is a NP-hard problem; there are 4™ linear eigenvalue
problems to solve (see [ Demmel |, [ Higham |, [ Chaitin-Chatelin , Frayssé ]).
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Theorem 6 in | Section 2 ] gives a new computation basis and “a natural
way” to the definition of d(A,A), and a motivation to rename this in redius
of singularity denoted by sir(A, A), also to make a distinction between both
computation formulae.

In [ Section 4 ] it is shown that d(A, A) = sir(A, A), but for a computation
of sir are “only” 2"~! nonnegative eigensolutions to compute.

In the following it should be explained what is to be understood by “ a
natural way”: At first in [ Section 1.1 ] it is shown by using of interval mathe-
matics that the representation of A as perturbation matrix is equivalent to the
midpoint-radius representation of an interval matrix. Theorem & gives equivalent
formulations for the singularity of an interval matrix. The assumption that the
midpoint matrix A of A is regular allowed the study of a nonlinear mapping
Fs : IR} — IR} with Fs(z) := A|A 'Sz| where IR} := {z € IR" | 0 <
z;, 1 < i < n} denotes the cone of the IR"™, and S a signature matriz | see
Section 1.1.1 ]. Note there are 2"~! signature matrices, and this set is denoted
by O™.

The basis statement of this paper is (see Theorem 6):

A\ 2) € IRy X IR} ( Fs(z) = Az, ||zl =1) .

The proof based on Brouwers fized point theorem given in [ Section 1.1.2 ].
Note || - || stands for any vector norm.
On the set of the nonnegative eigensolutions is

A= max max{ A(S) = |AJA1S2l| | Fs(:) = A(S) 2, |l=ll =1}

defined, see (17).

Let now, for a S, z and A the equation Fs(z) = A z be fulfiled, then it can
be shown that this is equivalent to A(A) := A + (1/A4)A is singular if A # 0
[ see Section 3 ]|. Furthermore in [ Section 3 | A(t) := A + t A is discussed
dependent of A. This way is new and leads also to the well-known definition
min{t > 0| A(t) singular} =: sir(A, A), here denoted by sir(A, A) to make a
distinction to d(A, A) and between both ways. That the ways are really different
is shown in [ Section 3 ] and [ Section 4 ].

The term radius of singularity for sir(A, A) is motivated by the following:
for t = sir(A,A) is A(t) the closure of A(t) regular for t € [0, sir(A4,A4)) ; a
singular matrix s € 9.A exists, where A is the set of boundary matrices of A,
and last but not least sir(A, A) has with A a || - || - representation.

The special case A = pq? is in [ Section 5 ] considered. The application of theorem
6 gives here a new representation formula for sir and leads to an algorithm for the
computation; examples are given. Especially it is shown that p is an eigenvector
of the mapping Fs and

1

mazgcon—1 {qT|A"1Sp|}

sir(A,pg") =

This formula contains also the special case where all elements A; ; = 1 consid-
ered by [ Rohn (96) | , [ Demmel (92) ], [ Rump (97) ]. A representation of sir
in a subordinate matrix norm is also given by (32).
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1.1 Definitions, notations, and preliminaries

In this first section brief survey connections between interval and perturbated
matrices are given, since the interval analysis gives an easy access to the subject
of this paper. o .
The symbol IR := {X | X = [X,X]; X, X € IR} denotes the set of all
closed real intervals. The following equivalent notations for an X € I'IR are used
X = [va]

= [mid(X) erad(X),mid(X) + rad(X)]

= mid(X) £ rad(X) (1)
with the definitions: mid(X) := (X + X)/2 for the midpoint of X and
rad(X) = (X ©X)/2 for the radius of X. It is obvious to see that rad(X)
is always nonnegativ. The representation (1) is called the midpoint-radius rep-
resentation of an interval X. In this context rad(X) can be interpreted as a

perturbation of mid(X).
For the following some rules for intervals are used.

Lemmal. Let x € IR and Y € [IR, then
Yz = midY)z £ rad(Y)|z| (2)
0€Y & |mid(Y)| < rad(Y) (3)
Proof. To (2): The application of the multiplication for intervals [ see Moore
(79) ], and (1) gives
Yz = [min{(mid(Y) ©rad(Y)) z, (mid(Y') + rad(Y)) z},
max{(mid(Y) erad(Y)) z, (mid(Y') + rad(Y")) x} ]
=mid(Y)z £ rad(Y) |z|.
To (3):
0eY &emidlY)eradY) <0< mid(Y) +rad(Y) & |mid(Y)| < rad(Y).
An extension of intervals to interval matrices, interpreted as a perturbation
matrix, is useful in this context. A n-by-n interval matrix (A; ;) can be generated

by a componentwise perturbation (4; ;) of a real matrix (A4, ;). The componen-
twise representation is given by using (1) with

AiJ‘ - Ai’j + Ai7j, 0 S Ai,j
where A; ; is the midpoint, and A4; ; is the radius of A; ; or
A=A+ A, AeIR™,0< AeIR™™ (4)

a well-known notation for a perturbation matrix. This shows that because of (1)
the representation (4) is equivalent to the following interval matrix

A=[AeA, A+ Al (5)

For the following the absolute value | - |, and the relations <, €, C, D are to
be used element- or componentwise, respectively.

As next a definition and some equivalent formulations for the singularity of an
interval matrix (5) are given.
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Definition 2.
A singular <= Js € IR""Jx € IR" (s € A, sz =0, x #0) (6)
Theorem 3.

A singular <= Jx € IR"(0€ Az, 2 #0) (7)
< Jx € IR"(|Az| < Alz|, z#0) (8)

Proof. The elementewise application of (2) to Az with an € IR™ and A from
(5) gives

Az ={az|ae A} (9)
=Ax £ Alzx|. (10)

To (6) & (7): With (9) it is obvious that (6) < (7), then
dse€IR™dx € IR"(s€ A, sz =0, 2#0) < (0€ Ax).

To (7) & (8): Consider 0 € Az from (7), use (10), and apply (3) with Az =
mid(Azx), Al|z| =rad(Az) then

0e Az =Ax+ Alz| < |Ax| < A|z]
proves the equivalence.

For the examinations in this paper it is important to note that the equivalence
relation (8) can be specified with the midpoint matrix A = mid(A); there are
two cases in

Theorem 4.
A singular & Jz € IR" (|Az] =0 < Alz|, 2 #0) (11)

(A singular, A regular) < Jy € IR™ (|y| < A|A™ y|, y #0) (12)
Proof. To (11): This is obvious with (8), and A = mid(.A) is singular. To (12):
This is equivalent to (8) because of the regularity of A and y := Az & z =
A7y
1.1.1 Signature matrices
Let z € IR", then x = S|z| with

S := diag(sign(zy),...,sign(z,))

where S is called the signature matriz of the vector .
The following properties are obvious with the definition of S:

S=8T"=571,82=17; |S| =1, I denotes the n-by-n identity matrix.

The set of all these signature matrices is denoted with O™ . Note the cardinality
of O™ is 2™.
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1.1.2 Brouwer’s fixed point theorem
In this context we use the following version of Brouwers fized point theorem

Theorem 5. Let OB be the sphere of a closed unit ball B := {z € IR™ | ||z|| <
1} of IR™, and let T : B — IR"™ be a continuous mapping on B with T(0B) C B,
then

JzeB(Te=ua).

Proof. See [ Riedrich (76) ] .

2 Basic theorem

On the basis of (12) a nonlinear mapping is defined and studied in
Theorem 6. Let S € O™ and Fs : IR} — IR} with Fs(z) :== A|A™'Sz|, then
I(A\;2) € IRy x IR ( Fs(z) =Xz, ||z||=1) (13)
and
A=|lATATES | (14)
Such a pair (X\;z) is called a nonnegative eigensolution of Fs.
Proof. For the nonlinear mapping Fl it is useful to define the kernel of Fs by
ker(Fs):={z€ IR} | Fs(z) =0, z # 0}.

The proof of this theorem is divided in two parts:

Part 1: Assume 0 < A € IR™" | then it is obvious to see that ker(Fs) = (
(where () denotes the empty set). The intersection of a closed unit ball with IR
is defined by

By :={z€IR} | ||z]| £ 1}.
Now, a nonlinear functional fs: By — IR} can be defined by
fs = [1A|AT" S 2 ]|
and since ker(Fs) = () fs has the property
0 < fs(z) Vze€By.

This property allows the definition of a nonlinear mapping
Gs : By — IR! with
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Properties of Gg are
(i): GseC°By) and (ii): Gs(@By) COBy C By

where C° denotes the set of all continuous functions. (ii) is clearly by construc-
tion.
Put now B := B; and T := Gg, and apply theorem 5 then

Jz € By (Gs(z) = z)
(Gs has a fixed point) and furthermore for the mapping Fs is
Fs(z) = Az
with
A= (AL S ], (2] = 1

satisfied.
This means the nonlinear mapping F's has at least a real nonnegative eigen-
solution (A; 2).

Part 2 (general case): Let 0 < A. Then define with an arbitrary 0 < C' € IR™"
A(t)=A+tC,t € IR, .
Since 0 < A(t) for t > 0 part 1 of this proof can be applied, and
(A(t);2(t)) € IR x IR} exists with || z(¢t)]] =1

for

with
A(t) :=]lA) AT S 2(8)]]] -

Since OBy is compact, there is an accumulation point z € 9B, for each zero
sequence { ¢y } — 40 . Because of the convergence of the sequences

{Fs(2({tx}) } = Fs(z) and  {A({tx})} = A

for each {t; } — 40, any such accumulation point satisfied Fs(z) = Az with
Ai=||A[AtSz|]| and ||z =1 .

The statement of this theorem is, that for Fig exists at least a real nonnegative
eigensolution. This statement is very important for the following definition of the
radius of singularity.
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3 Radius of singularity - sir(A, A)

Theorem 6 gives the basis for the definition of the radius of singularity.
Consider

Fs(z) = Az = A|A' Sz (15)
and (15) can be transformed with x := A=! Sz and \ # 0 into
1
|Az| = S Alz]; (16)
A
on the other hand use (8):

Asingular <= Jr € IR" (|Az| < Alz|, 2 #0) .

Equation (16) shows that | Az | < A| x| is sharp for the “smallest pair” (1/A; z).
That leads with (16), and (14) under the consideration that A = A(S) to the
following definition

A= max max{ \(S) = |AJA 1Sz | | Fs(z) = A(S) =, [lsl] =1} (17)

Remark 1: This definition depends on the eigensolutions of Fs. Note that also z
depends on S, z = z(S).

Put A in (16) then is because of (8) the perturbation matrix A(%) singular.
That is for

regular if t € [0, &)
At) = At tA (18)
singular if ¢ € [ %, oc]

where A(t) be closed by A(oo) this will be convenient in this context, see also
below.

Furthermore there are two special cases to be considered:

(a):

A singular <= Jo € IR™ (|Az| =0 = %Am, v #0)
That is for A(t): set & = 0 then A(t) is singular V¢ € [0, c0].
(b): Define

ker(F) := Uscon{ker(Fs)} = {x € IR"(AJA 2| =0, x #0}.

Let ker(F) # 0 and

A\ x) € IR, x IR"\ker(F) (Mz| = A|A 2|, 2 #£0) (19)
then

Mz|=0=A|A 2| V€ ker(F) (20)
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is solvable only for A = 0, that is 4 = 0.

It can be seen immediately that (19) and (20) are also true if A is replaced by
tA. That means

Vt € [0,00)(Ar € IR™(|z| < tA|A™ x|, o # 0) <= A(t) regular). (21)

The equivalence (21) follows from the negation of (12).

The statement of (b) for A(t) is: A(t) is singular for t = oo (A =0).

In consideration of these three cases (18), (a), and (b) it is evident to define
min{ ¢ € [0,00] | A(t) singular } =: sir(A4, A) (22)

here denoted as radius of singularity of a matriz A with

0 if A is singular (see (a))
sir(A, A) = { oo if A=0 (see (b)) (23)
& otherwise (see (18))

For the following is sir as abbreviation of sir(A4, A) to be understood.

The way to sir has shown:

str results from a real nonnegative eigensolution of F;
— sir has with (17) a normrepresentation for any vectornorm on IR";

~ because of |A71Sz| =|A71(S)z] VS € O™ are “only” 277! eigensolu-
tions of Fs to compute;

— a singular matrix s € d.A(sir) exists where 0.A(sir) denotes the boundary
set of A(sir) (see section 5 examples) and further

A(sir) = int{ A(sir) } U 0.A(sir)
with int{ A(sir) } ={a € IR™" | a € A(t) t € [0,sir)},

Remark 2: From (b) follows

ker(F) # 0 is a necessary condition for A = 0 or sir = oo, respectively.

An example is given in the next section.
For a better understanding of sir some examples are given in [ Section 5 |.
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3.1 A nontrivial example for sir = oo

Let
A=D £+ A (24)
with D is a regular real diagonal matrix, and
0 - *
00 * *
A= 0 -0=xx
0---0x
00---0

where x stands for arbitrary nonnegative real elements.

With (24) is Fs(z) = A| D! Sz and the application of the Perron/Frobenius
theorem, see e.g. [ Riedrich (76) |, gives

Fs(z) =A|D|™ 2=p(A|D|™*)z2=0z VSecO"!

where p(-) denotes the spectral radius. It is obviously to see that A = 0, and
therefore is sir(A4,A) = oo .

Remark 3: Tt is easy to see that ker(F) # () then e! := (1,0,...,0)7 € ker(F).

4 sir(A, A) is equivalent to d(A, A)

J.Rohn defined in [ Rohn (89) ], and [ Poljak , Rohn (93) | the radius of regularity
by

d(A,A) == inf{t>0]| [A<tA, A+ tA] singular} . (25)
With (22) is shown that the inf is achieved.

The computation formula given by J. Rohn [ see Rohn (89) | for d(A, A) is
equivalent to sir(A, A).

Then an equivalent transformation of

Fs(z) = A|A Sz = Az (26)
with
r=A1'Sz
gives
AMAz| = Az,
and with

TWAzx = |Az|, Tex = |z|, Ty, T, € O™
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is (26) transformed into
AilTlATQl‘:)\l‘, (27)
a real eigenvalue problem.

The definition of the real spectral radius for a B € IR™"™

B) = max{ ||} if B has real eigenvalues
po(B) = 0 otherwise

applied to (27) gives

—1 _
Tl%fg(()n{ po( A T1 A T2 ) } =A (28)

The left hand side of (28) was given by J. Rohn in [Rohn (89)], and is because
of (27) equivalent to A from (17). Therefore is d(A4, A) = sir(A, A) as given in
(23).

For a computation of A are 2"~ ! eigensolutions of Fis to compute instead of 4™
linear eigenvalue problems for po( A™1 Ty ATy).

The computation of sir is also a NP-hard problem since in [Poljak and Rohn
(93)] was shown that the computation of d(A, A) is a NP-hard problem.

In the following section applications of theorem 6 are given.

5 A dyad as a special perturbation matrix
Let
A:=pq", p,qeIR",

A is called dyad and A be the regular midpoint matrix of the perturbation matrix
A=A+ A.

Then on the basis of the proof of theorem 6 for a S € O™

T 4—1

pq |AT Sz 1

Gs(z) = = D .
llpg" |ATLS (||  lIpl|
This means

1

z=—=0p, ||2]|=1 (29)
Il

is a fixed point of Gg. On the other hand is (29) also an eigenvector for

1 1 1

F, p)=q¢ |AT'Sp|——p=A—p
s =7 | e 2= A e
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with the eigenvalue
A=MS)=¢"|A"Sp].
Finally there is the following representation for sir

1

) = o T AT S ATT 2
In the following there are some other representations for (30) given:
Define e := (1,...,1)? € IR", the diagonal matrices

D, :=diag(p), D, :=diag(q) then p=Dpe, @=Dgye,
and
H:=D,A'D,.
With these definitions and ||z ||, := e | x| is
sir(A,pg") = - (31)

maxgeon-—1 || HSe ||1

equivalent to (30).

sir can be represented also by a subordinate norm [ see Golub , Van Loan (89)]
on a finite set, especially the corners of the unit cube on IR"™, then

1

sir(A,pg") = ——— (32)
I H [|oo,1
where
| H ||oq = max {||HSel|i}= max |[[HSell.
Seon—1 |Sel|so=1

Because S € O™ ! is the cardinality 27!, furthermore it was shown in [ Rohn
(96) ] that the computing of (30) is NP-hard.

It is worthy to stress, that the formulae (30) — (32) are suitable for a computa-
tion of a parallel computer [ Rex |.

The following examples are given for a demonstration of the statements of this
paper. The basis for the computation gives the following algorithm.
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51 ALGORITHM 1
given: A,p,q

set: A:=0

k=1
repeat:
Seont formal notation
Aw = Sp solve a linear system of equations (exactly)
A= qT|w|
Test: IfA>A then A:=A

k=k+1

until k>2rn-l

5.1.1 Example 1
Let A = A + pg¢”T with

() -0 ()

then  sir := sir(A,pg’) = 2/15 computed with Algorithm 1.

The matrix

A(p) := A + psirpq’ isregularfor 0 < p < 1. (33)

1&1 2 (3 4
A(:“’): (1 1) :*:/1/1_5 (6 8)
Furthermore

1 /19,21] [23,-7]
“4(1):_<[3,27] [-1,31]) cA:

I
7N
1 1
ot
.t
1 1
-1 ot
L X
—

There is only one singular matrix s on 0.4

1 (e 1 ({9,21} {23, -7}
5"?5(3@1> EaA"E<{3,27}{-1,31}>'
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5.1.2 Example 2
Let A=A+ pq?’ with

1 0«4 1 0.5
A= <0 2 6> , pi= <1> , q = <0.25> ,
12 0 1 2

then  sir := sir(A,pg’) = 40/38 computed with Algorithm 1.

And analogous to (33) is

1 0ad 40 (05 025 2
A(m:(o 2 6> + jigg (0.5 0.25 2).

12 0 05 025 2
Furthermore
o (1 9.29][ -5, 5][116, 36]
Al = = ([-10,10][33 ,43] [ 74,154]> o A
38 \ [ 9,29] [-43 -33] [ -40, 40]
o /[95,285][ 475, 4.75][-114, 38
A=2 ([-9.57 9.5] [ 33.25, 42.75][ 76 , 152]).
38 \ [9.5, 28.5] [-42.75 -33.25] [ -38, 38]

There is a singular matrix s on 0.4

) 9 5 o116 o /1 9,28} {-5, 5}{116, 36}
s::—<<:>10 33 74> e&A::—({-10710}{33743}{ 747154}>.
38\ 9ed3 «d0 38 \{ 9,20} {-43 -33} { 40, 40}
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