
Estimation Metrics for Courseware Maintenance Effort

Christine W. Thackaberry
(Richland, Washington

tberrys@owt.com)

Roy Rada
(Washington State University, Washington

rada@eecs.wsu.edu)

Abstract: Software engineering methods and metrics to estimate development time for
the development and maintenance of computer-based training (CBT) differ from
methods and metrics used to develop large information systems. The estimation
techniques for large information systems employ Lines-Of-Code and Feature/Function
points to calculate project effort in staff-months [Boehm 1981]; techniques that are
difficult to apply to CBT effort estimation. For the development of computer-based
training systems, Development to Delivery Time Ratios have been the usual
estimation metric, but these also have limitations [Marshall et al. 1995]. Metrics to
accurately measure the development effort of Multimedia Information Systems (MIS)
are currently being developed and investigated [Fletcher et al. 1997], but still differ
from computer-based training systems development. This paper presents an
estimation model for effort development of small courseware projects (less than 2
staff-months). By identifying the sub-tasks of the development phase, an individual
estimation technique is suggested for each sub-task. The sum of all sub-tasks
estimations determines the total effort estimation for the development phase of a
particular lesson. Incorporating historical data as a baseline and identifying risk cost
factors, this method is accurate for estimating effort of some sub-tasks and for the
lesson unit as a whole. This method is not meant to be a „silver bullet“ [Brooks 1995]
but a start toward building an accurate estimation tool and a refinement of the
development process.
Categories: Software, Software Engineering

 1 Introduction.

Software estimation metrics and use of historical development data are
important aspects of all types of software development. The capacity to estimate
software costs provides two primary keys for improving software productivity: a
sounder baseline for planning and the control of software projects [Boehm 1981]
[Stark et al. 1994]. The collection of development data provides the basis for
software process adjustment and the avoidance of many development practices that
lead to project failure [Jones 1996] [Brooks 1995]. The software project planner must
estimate three things before a project begins:

• how long it will take,
• how much effort will be required, and
• how many people will be involved.

Journal of Universal Computer Science, vol. 4, no. 3 (1998), 308-325
submitted: 10/12/97, accepted: 28/12/97, appeared: 28/3/98  Springer Pub. Co.

 The measurements of software systems, function/feature points, or Lines-of-Code
(LOC) metrics are designed to be effective for business, control, scientific, and system
software [Pressman 1992] [Johnson 1991] [Symons 1991]. A computer-based
training (CBT) development team does not and cannot measure its final product solely
on the number of Delivered LOC. To meet strict deadline schedules and the need for
a consistent presentation, computer-based training system developers implement time
saving methods, such as use of authoring software, libraries of reusable code, and
creation of reusable presentation sub-modules (or lesson templates) [Pizzini et al.
1997] [Veljkov 1990]. The final courseware product consists not only of a final
software product, but also of lesson plans, and resources (graphics, audio, animations,
and video) created to meet specific training requirements.

 Typically, courseware estimation techniques are based on development to
delivery time ratios. Delivery time refers to the amount of time a learner spends with
the program. These estimations range from 25 to 400 staff-hours of development time
for 1 hour of delivery time. Such estimation methods have significant limitations and
weaknesses [Marshall et al. 1995]. For the courseware system discussed in this paper,
delivery time varied from 45 to 420 minutes for a sample group of 886 learners. With
such a wide range of delivery times one can not expect to reliably predict development
time as a function of delivery time. Instead, in this paper the estimation of
development times for courseware products will be based on analysis of the steps
involved in developing courseware, the number of pages of courseware that are to be
produced, and other aspects of the courseware development cycle. Estimation metrics
will be presented along with supporting historical development data.

 Interactive multimedia is one of the technologies that is most influencing the
educating and training of people [Rada 1997]. To fulfill a company’s training
requirements in a cost-effective manner, company managers are exploring ways to
replace current training with computer-based training. Consistency of presentation,
decreased training time and costs, the ability for self-paced instruction, and student
interactivity have increased the demand for this training.

 After the development of the initial CBT systems, some enter into a constant
evaluation/redesign phase. In systems developed to supply mandated annual safety
training to government agencies, the redesign incorporates not only the need to satisfy
changing regulations, but also the desire to present this information in a new,
instructionally sound format. It is important that estimation methods be developed to
assist in predicting project efforts, not only for the creation of new CBT systems, but
also for the redesign of current systems.

 This paper addresses the amended software engineering development process
used in the redesign of a CBT system. Using historical data, estimation metrics are
suggested that may be employed to estimate development effort for the redesign of
CBT systems. It must be understood that given that the set of data is dependent on the
expertise of individuals, and the type of authoring tools used, these metrics may have a
limited application.

309Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

 2 Framework

 A framework, both definitions and courseware system concepts, is important in
understanding the capabilities and limitations of an estimation technique. For this
reason, the courseware system, its development process, and how it differs from
information systems are presented in this section.

 2.1 Courseware Description

 Courseware is software-supported educational content offered in a pedagogically

sound way to students. Standards for courseware are not widely adopted.
Courseware prepared in one toolset is typically not compatible with courseware
produced from a different toolset. Attempts to analyze the effectiveness of
courseware or courseware development are inhibited by the lack of agreement on a
language for talking about courseware. To address these problems, the aviation
industry, which heavily invests in courseware, has produced some standards [AICC
1997] and increasing effort is being invested in standardization [Rada and Schoening
1997].

 In this paper, courseware is defined as a system of presenting several groups of
lessons using several submenu systems. The system contains entry and exit capability,
along with learner and test data saving capabilities. A lesson is defined specific to the
authoring software used in the development of this courseware. Since the historical
data was gathered during the development using Asymetrix Multimedia Toolbook, a
lesson is defined as a book consisting of pages of presentation material.

 A standard lesson [Figure 1] consists of these components:

• a main page, that contains an introduction to the lesson and all navigation
controls,

• a facts page, that contains the summary of the content of the lesson,

 Figure 1: Standard Lesson.

310 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

• reference page, that contains the reasons the learner must be familiar with the
contents of the lesson,

• several sections of content (each section possibly containing several pages),
and

• an associated set of questions used to evaluate the learner’s comprehension.
 A page consists of a combination of text, graphics, audio files, video, and hypertext to
present information to the learner. In the context of this paper, a lesson is defined as
having 6 pages: main page, facts, references, three sections of one page each, and an
evaluation of the content of the lesson.

 2.2 Software Engineering Principles

 „Metrics analysis begins with insight into the workings of the software

development and maintenance processes“ [Stark et. al. 1994]. The life cycles of
software engineering [Pressman 1992]: the waterfall model, the prototype model, the
spiral model, and the Fourth Generation model, assume an end in the main
development of a system. The life cycle for courseware development, suggested by
Marshall, is an amended waterfall model [Marshall et al. 1995].

 Both models suggest a linear development of the software product whereas many
of the tasks, particularly in the development phase, can be performed concurrently.
Marshall’s model introduces the necessity to define the start and end points that the
estimation metrics measures. The amended life-cycle model [Figure 2] is utilized by
the company that supplied the historical data and reflects its current courseware
development process. The estimation metrics introduced in this paper measure the
effort needed to perform all tasks within the start and end points depicted in this
model. Normal maintenance activities handle minor changes to the courseware due to
error detection, detection of missing or incorrect resources, or minor change requests
from the customer. The evaluation phase is apart from normal maintenance activities.
During this phase the effectiveness of the training is determined from statistics
gathered from questions administered during the course. The results of the evaluation
may create the need to redesign the system as a whole or in part.

311Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

 2.3 Organizational Planning

 An information systems software development team consists of a chief
programmer (systems engineer), technical staff, and a backup engineer [Pressman
1992]. The courseware development team [Figure 3] involves the concurrent efforts of
instructional designers, technical editors, media specialists, programmers, and entry
personnel [Rada 1995].

 Figure 2: Amended courseware Life Cycle
Model with start and finish points for the
estimation model defined.

312 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

 The responsibilities of each team member are:

• instructional designer, who usually leads, plans, develops lesson plans, and
coordinates all the activities of the team and sometimes acts as the technical
editor for another instructional designer;

• technical editor, who verifies the clarity and consistency of the presented
information and correct use of grammar and punctuation;

• resource specialist, who plans and coordinates the production of all
graphics, audio, animation, and video;

• programmer, who plans and converts the requirement specifications into the
courseware system, creates templates and utility programs, and maintains
courseware documentation;

• entry personnel, who combines the lesson plans with the media to create the
resulting lesson presentation; and

• testing personnel, who validates the accuracy of the entered content and
media in an individual lesson.

 Metrics for development effort estimations must be able to support predicting the
effort of each sub-task of the development phase. These sub-tasks estimates are then
incorporated into the main project plan by the project lead to calculate the total
development effort.

 3 Estimation Techniques

 Some software project estimation techniques [Johnson 1990] [Boehm 1997] are

based either on feature points or Lines-Of-Code. One of the computations in the

 Figure 3: Development phase of Amended Life Cycle

model.

313Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

estimation process of feature points is based on the number of user inputs. Unlike a
database retrieval system, a computer-based training course is created to be
interactive, encouraging the learner to guide their own way throughout the course.
Does each mouse click then count as one input (one feature point)? An attempt to
calculate courseware effort with these methods was unsuccessful. A different base
unit must be derived to calculate the effort involved in courseware development.

 To determine effort estimations, a number of options are available [Pressman 1992]:

• delay estimation until late in the project,
• use decomposition techniques to generate project estimates,
• develop an empirical model, or
• acquire automated tools.

By subdividing the development phase and using historical data as a baseline value,
estimation metrics can be developed to predict courseware development effort.

The use of authoring systems to assist in the development of courseware is common
practice [Veljkov 1990], and a variety of authoring systems are readily available. The
unit for information presentation in the authoring system utilized by the company that
supplied the historical data is the page. A page consists of text, hypertext, and all
associated media types. The estimation method presented will determine development
effort by calculating effort associated with creating a single page.

3.1 Decomposition of The Development Phase

The development phase is divided into the following sub-tasks:

• Design(De): Creation of and technical editing of
lesson plans. Total effort for the design (D e) equals the
sum of lesson creation (Le) plus Technical editing (Tee).

• Programming(Pe): Changes to the template as
defined in the lesson plan, preliminary testing, and updates
to all documentation.

• Media(Me): Development of graphics, audio,
video as defined in the lesson plan. Total effort for media
development (Me) equals the sum of graphic effort (Ge)
plus audio effort (Ae) plus video effort (Ve).

• Entry(Ee): Input the lesson content into the template
and coordinated the media presentation.

• Testing(Te): Ensure the accuracy of the lesson
presentation as an individual unit.

Total effort is the composite metric consisting of development effort for each sub-
task:

 Total Effort = De + Pe + Me + Ee + Te.

314 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

3.2 Use of Historical Data

Lack of historical measurement data often leads to setting arbitrary schedules for
future projects, and is often the key to software failure [Jones 1996]. By incorporating
historical data as a baseline in the estimation metrics presented in this paper, a solid
empirical foundation is established.

The historical data collection employed a general reporting system, that is, time
was reporting in the development of media, but was not subdivided by the media type.
Discussions with the media staff and a review of their personal time logs were
necessary to determine effort for each type of media (audio, graphics, and video).
Discussions with the design personnel were also necessary to determine average time
needed by the technical editor, since this time was also reported under the general
heading of design.

The amount of effort reported for these sub-tasks varies from lesson to lesson as
depicted in [Figure 4]. Reasons for these variances range from the experience of
personnel, number and type of media developed, difficulty in the coordination of
media types, and difficulty creating or obtaining media resources.

Lesson
1

Lesson
2

Lesson
3

Lesson
4

0

5

10

15

20

25

Lesson
1

Lesson
2

Lesson
3

Lesson
4

Design

Programming

Media

Entry

Testing

Figure 4: Reported Development Efforts (in staff-hours).

315Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

Although historical data was provided from a number of lessons, some of the data was
discounted for the following reasons:

• inaccurate reporting due to the use of inappropriate reporting codes,
• implementation of a different reporting system in the middle of a lesson’s

development, or
• the lesson consisted of a group of sub-lessons, and therefore, did not conform

to the definition of a standard lesson [Figure 1].

 By averaging the development effort reported, a baseline for calculating effort for
each sub-task is introduced [Table 2]:

 Using these averages as baseline values, estimation metrics for each activity are
developed as it relates to the development of one standard lesson.

 Where N = number of pages in the lesson

 Total Effort = De + Ae + Ge + Ve + Ee + Pe + Te

 For a 6-page lesson with one audio and graphics resource per page and two internal
reviews, the estimation of effort is calculated as follows:
 De + Ae + Ge + Ve + Ee + Pe + Te

 De = [2.25 * 6] + [4.0 * 2] = 13.5 + 8.0 = 21.5
 Ae = 0.25 * 6 = 1.5 Ge = 1.0 * 6 = 6.0 Ve = 4.0 * 0 = 0
 Ee = 1.25 * 6 = 7.5 Pe = 0.5 * 6 = 3.0 Te = 0.25 * 6 = 1.5

 Total Effort = 41.0 unadjusted staff-hours

 Sub-task Average Staff Hours
 Design
 Technical editing

 2.25 / page +
 4.0 * # of reviews

 Audio Resource 0.25 / audio file
 Graphic Resource 1.0 / graphic
 Video Resource 4.0 per 20 seconds of video
 Entry 1.25 / page
 Programming 0.5 / page
 Testing 0.25 / page
 Table 2: Average page development

time based on historical data.

Design + Editing [De] = (2.25*N) + (4.0 * # of reviews)
Audio [Ae] = (0.25 * number of audio files)
Graphics [Ge] = (1.0 * number of graphics files)
Video [Ve] = (4.0 * number of video segments)
Entry [Ee] = (1.25 * N)
Programming [Pe] = (0.5 * N)
Testing [Te] = (0.25 * N)

316 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

 This estimate does not include several tasks performed external to an individual
lesson, such as incorporating this lesson into the course system, installation time,
testing of the course as a whole after the addition of the lesson is complete, and a
variety of other tasks that are not directly related to the development of a single
lesson. It must also be noted that these metrics are also influenced by cost adjustment
factors (discussed in the next section) and therefore, reflect unadjusted staff-hour
estimates.

 3.3 Cost Adjustment Factors

 As with other software systems [Boehm 1981] [Pressman 1992], there are

external constraints that have an influence on the actual effort in creating the final
lesson, such as:

• the experience of each of the team members,
• availability of technical experts, information, and resources, and
• the existence or lack of templates.

Each activity associated with the development phase has its own constraints (cost
adjustment factors) [Hackos 1996] that influence the estimation of development effort
[Table 3].

Table 3: Cost adjustment factors that influence a specific task.

The values [Hackos 1996] assigned to these cost adjustment factors are set within two
ranges with 1.0 as the base value (reflecting no effect on the effort calculation). For
adjustment factors that have a higher influence on actual effort [Table 4], the range is -

Design [Cfd] DE * IA * SME * IR
Programming [Cfp] TA * PE * PC
Audio [Cfa] TE * RA
Graphics [Cfg] TE * RA
Video [Cfv] VE * RA
Entry [Cfe] EE * EC
Testing [Cft] DL

DE: Design Experience
IA: Information Availability
SME: Subject Matter Expert(SME) availability
IR: Impact of Reviews on the design
TA: Template Adjustment
PE: Programming Experience
PC: Programming Complexity
TE: Tool Experience
RA: Resource Availability
VE: Video Experience
EE: Entry Experience
EC: Entry Complexity factor
DL: Detail Level of test

317Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

0.4 to 1.6 in increments of 0.1. For the remainder, the range is -0.5 to 1.5 in
increments of 0.05. For example, an experienced designer would be given a design
experience (DE) adjustment factor of 0.75, since we could expect the design task to
be completed in less time than an average or less experienced designer. The design
task is divided into two steps: lesson design and technical editing. The technical
editing portion of the design task is not effected by the cost adjustment factors
mentioned here.

Calculating these cost factors, as it applies to the example introduced in Section 3.2:

Applying these resulting cost factors to each sub-task effort for the example
calculation:

 Cost factor value Cost Adjustment Factor
 1.0 ± (0.1 to 0.6) Resource Availability

Entry Complexity
Course Complexity
Impact of Reviews on Design
Template Adjustment

 1.0 ± (0.05 to 0.5)Design Experience
Information Availability
Subject Matter Expert(SME) availability
Programming Experience
Tool Experience
Video production Experience
Entry Experience
Detail Level (of testing)

 Table 4: Summary of Cost Factor Values

Sub-task Cost
Factor
Value

Design [Cfd] = DE * IA * SME * IR
1.1 * 1.0 * 1.0 * 1.2

= 1.32

Programming [Cfp] = TA * PE * PC
0.9 * 0.95 * 1.0

= 0.855

Audio [Cfa] = TE * RA
0.95 * 1.0

= 0.95

Graphics [Cfg] = TE * RA
0.95 * 1.1

= 1.045

Entry [Cfe] = EE * EC
1.0 * 1.2

= 1.2

Testing [Cft] = DL
0.9

= 0.9

318 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

Estimated hours: 46.2.

Summary of estimation metrics for CBT development (in staff-hours):

4 Results

The value of a software estimation model can be measured by the following criteria:
• comparison of actual effort hours to calculated hours,
• evaluation of the model against criteria used to measure the goodness of

software cost estimation model [Boehm 1981].
The next two subsections present the results according to these two different criteria.

4.1 Comparison of Actual vs. Calculated Hours

The results of the estimation method presented in this paper are contained in
[Table 5]. The reported hours represent actual production hours from historical data,
while calculated hours represent the result of applying cost factors to initial results of
the estimation metrics (unadjusted hours) introduced in [Table 2]. The numbers in
brackets identifies a development task was performed by more than one individual.

sub-task U
Hrs*

Cost
factor

C
Hrs*

Design (2.25 * 6) = 13.5* 1.32 ≅ 17.8 + 8.0 25.8
Programming (0.5 * 6) = 3.0* 0.855 ≅ 2.5 2.5
Audio (0.5 * 6) = 1.5* 0.95 ≅ 1.4 1.4
Graphics (1.0 * 6) = 6.0* 1.045 ≅ 6.2 6.2
Entry (1.25 * 6) = 7.5* 1.2 ≅ 9.0 9.0
Testing (.25 * 6) = 1.5* 0.9 ≅ 1.3 1.3

33.0 38.2 46.2
* U Hrs=Unadjusted Hours C Hrs=Calculated Hours

Sub-task
Design (2.25 * N) * Cfd + (4.0 * # reviews)
Audio (0.25 * number of audio files) * Cfa

Graphics (1.0 * number of files) * Cfg

Video (4.0 * number of segments) * Cfv

Entry (1.25 * N) * Cfe
Programming (0.5 * N) * Cfp
Testing (0.25 * N) * Cft

 Where N = number of pages

319Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

Table 5: Comparison of reported, calculated and unadjusted staff-hours.

Lesson Sub-
task

R -
Hrs*

C -
Hrs *

Hour
Var.

U -
Hrs *

Hour
Var.

3 D [2] 17.5 20.0 2.5 15.7 - 1.8
(7 pages) E [2] 11.0 10.5 - 0.5 8.7 - 2.3
G-9 A-6 V-1 M 11.0 11.3 0.3 14.5 3.5

P 3.5 3.1 - 0.4 3.5 0.0
T 1.5 1.7 0.2 1.7 0.2

Total 44.5 46.6 2.1 44.1 - 0.4

4 D [1] 24.0 22.2 - 1.8 18.0 - 6.0
(8 pages) E [2] 24.2 13.2 -11.0 10.0 -14.2
G-15 A-7 V-0 M 12.0 13.0 1.0 16.7 4.7

P 0.5 0.0 -0.5 4.0 3.5
T 1.0 2.0 1.0 2.0 1.0

Total 61.7 50.4 -11.3 50.7 -11.0

9 D [2] 56.2 51.9 - 4.3 15.7 -40.5
(7 pages) E [1] 6.7 7.7 1.0 8.7 2.0
G-2 A-5 V-4 M 17.5 18.4 1.0 19.2 1.7

P 0.0 0.0 0.0 3.5 3.5
T 1.5 1.7 0.2 1.7 0.2

Total 81.9 79.7 -2.2 48.8 -33.1

15 D [2] 42.0 39.4 - 2.6 15.7 -26.3
(7 pages) E [1] 7.5 7.7 0.2 8.7 1.2
G-0 A-9 V-0 M 1.5 2.0 0.5 2.2 0.5

P 0.0 0.0 0.0 3.5 3.5
T 1.2 1.7 0.5 1.7 0.5

Total 52.2 50.8 -1.4 31.8 -20.4

17 D [1] 10.0 16.2 6.2 18.0 8.0
(8 pages) E [1] 4.0 8.0 4.0 10.0 6.0
G-2 A-15 V-0 M 3.0 4.7 1.7 5.7 2.7

P 0.0 0.0 0.0 4.0 4.0
T 1.5 2.0 0.5 2.0 0.5

Total 18.5 30.9 12.4 39.2 20.7

320 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

Hour variances are the expected hours minus reported
hours. Negative values indicate an underestimation and
positive values indicate an overestimation compared to

reported hours.
*Reported Hours; Unadjusted Hours; Calculated Hours
 Var. - Variance
Sub-tasks: D [Design]; E [Entry]; M [Media];
 P [Programming]; T [Testing]
[1] [2] - Indicates a specific individual

Predicting effort for small projects (less than 2 staff-months) is a difficult endeavor.
The estimation metrics presented in this paper are an attempt to predict effort for small
courseware projects. The estimation baseline values need to be refined to overcome
the short-comings that are identified in section 4.2. Due to the inaccuracy of the
reported hours from the historical data, the baseline values were limited to data that
could be validated as being reported correctly.

Table 6: Percent Variance of Total Effort Hours

Comparing total calculated hours and unadjusted hours to reported hours [Table
6], calculated hours more accurately predicted actual reported hours than unadjusted
hours for three of the five lessons, particularly in total calculated hours. For these
lessons, the total hour variances (calculated hours - reported hours) ranged from an
underestimation of 11.3 hours (lesson #4) to an overestimation of 12.4 hours (lesson
#17). The greatest error variance can be seen in both the design (lesson #9) and entry
task (lesson #4). In both cases, these tasks were performed by a less experienced staff
member. The cost adjustment factors may need to be adjusted to compensate for lack
of experience on two levels: the actual performance of the task and the processes used
to perform that task. For instance, the entry task involves familiarity with the entry
process and the template used to create the lesson.

4.2 Evaluation of the Estimation Model

The utility of a software cost model for practical estimation purposes can be
evaluated using the following criteria [Boehm 1981]:

1. Definition. Has the model clearly defined the costs it is estimating,

Lesson Reported
Hours

Calculated
Hours

Hour
Variance

Percent
Variance

3 44.5 46.6 2.1 4.7
4 61.7 50.4 -11.3 - 18.3
9 81.9 79.7 - 2.2 - 2.6
15 52.2 50.8 - 1.4 - 2.6
17 18.5 30.9 12.4 67.0

321Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

and the cost it is excluding?
2. Fidelity. Are the estimates close to the actual costs expended on the

projects?
3. Objectivity. Does the model avoid allocating most of the software

cost variance to poorly calibrated subjective factors (such as complexity)?
That is, is it hard to jigger the model to obtain any result you want?

4. Constructiveness. Can a user tell why the model gives the estimates
it does? Does it help the user understand the software job to be done?

5. Detail. Does the model easily accommodate the estimation of a
software system consisting of a number of subsystems and units? Does it
give (accurate) phase and activity breakdowns?

6. Stability. Do small differences in inputs produce small differences
in output cost estimates?

7. Scope. Does the model cover the class of software projects whose
costs you need to estimate?

8. Ease of Use. Are the model inputs and options easy to understand
and specify?

9. Prospectiveness. Does the model avoid the use of information
which will not be well known until the project is complete?

10. Parsimony. Does the model avoid the use of highly redundant
factors, or factors which make no appreciable contribution to the results?

The estimation method presented in this paper meets the criteria for definition,
constructiveness, detail, stability, and scope, but does not completely fulfill the other
criteria. Detailed evaluation of each criteria follows:

1. Definition. The scope has been restricted to estimation of all the
sub-tasks of the development phase.

2. Fidelity. The total calculated hours are close to total actual hours
reported for three of the five lessons created (within 4 staff-hours). For 4 of
the 5 lessons, the estimate is within 20%, which is considered
„reasonable“[Boehm 1981]. For individual sub-tasks, the estimates for
media, programming and testing fulfills this criteria.

3. Objectivity. Unadjusted costs are allocated to the actual
production of each task, but are subject to cost factors whose values are not
well-defined.

4. Constructiveness. The estimation model employs the
decomposition method which conveys the sub-tasks of the development
phase. Understanding the sub-tasks needed to develop a lesson does not
guarantee that the user will understand the details of performing each sub-
task. The model was designed to be used by individuals who are familiar
with the staff members assigned to the project. This criterion is met since
the model explains the steps involved in calculating total effort.

5. Detail. This method relies on the activity breakdown of the
development phase and can be used to estimate any of the sub-task activities
individually.

6. Stability. Small differences in input values produce small
differences in output cost estimations.

7. Scope. Since it was developed specifically for estimating

322 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

multimedia courseware, this model does cover the class of software projects
whose costs need to be estimated.

8. Ease of Use. The unadjusted estimation of each sub-task is
straight-forward, but the cost factor values are not easily determined since
they rely on personal knowledge of the individuals involved in each sub-
task.

9. Prospectiveness. Unless the user is familiar with all members
involved in the development of a lesson, the cost factor values can not be
accurately determined. This is particularly true in the design sub-task, with
external subject matter experts cost factors and number of reviews to be
conducted.

10. Parsimony. The estimation method does avoid the use of factors
that are redundant or do not contribute appreciably to the result. Each sub-
task has cost factors that will only effect estimation of that particular sub-
task.

The effort distribution of courseware development differs from information
systems [Figure 5]. The effort distribution for CBT in Figure 5 is based on the
reported effort supplied for this article and reflects the varied tasks associated with
CBT development.

Figure 5: Development Effort Comparison:
Information Systems and Courseware Development.

5 Conclusion

„The best criterion for the value of a metric is the degree to which it helps us
make decisions“ [Boehm 1996]. Since every courseware house has different needs,
development cycles, and development tools, it would be difficult to suggest one

323Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

specific metric or process to employ.
This paper presents an estimation method for calculating effort in the

development of small multimedia CBT projects. The method is based on
(i) the decomposition of the development phase into sub-tasks and
(ii) using historical data as a baseline.

The use of this method is restricted to courseware projects using a pre-created
template. It is not intended to be used by an individual unfamiliar with the staff
members involved in the creation of the specific multimedia courseware or for
projects that can not be defined by page units. Incorporation of calculated hours into a
project management tool assists in the determination of realistic completion dates.

People tend to underestimate software size for three reasons [Boehm 1981]:
(1) People are basically optimistic and desire to please.
(2) People tend to have incomplete recall of previous experience.
(3) People are generally not familiar with the entire software job.

With baseline values derived from reported effort hours and sub-task estimates
performed by the department or individual responsible for that sub-task, a more
realistic total effort of development time can be calculated.

Refinement of the reporting system, particularly in the separation of the different
types of media, may improve its baseline values. It is also interesting to explore
replacing the experience cost factor with a baseline value of an individual staff
member. This will allow the estimation model to adjust when new project teams are
formed. Another enhancement would be to apply cost factors to each individual page,
but the additional complexity may not justify the additional time required to calculate
total effort.

Acknowledgments

Special thanks to Vivid Concepts for supplying the CBT development time reports that were
essential for the creation of this project.

References

[AICC 1997] AICC: "Computer Managed Instruction Guidelines and Recommendations" from
Aviation Industry CBT Committee Computer Managed Instruction, AGR 006, Version 1.1 by
CMI Subcommittee at http://www.aicc.org/agr006.htm (1997)

[Boehm 1981] Boehm, Barry W.: "Software Engineering Economics", Englewood Cliffs, NJ,
Prentice Hall (1981)

[Boehm 1991] Boehm, Barry: „Software Risk Management: Principles and Practice“, in IEEE
Software, 8, 1 (1991), 32,41.

[Brooks 1995] Brooks, Frederick P., Jr.: "The Mythical Man-Month", Reading, MA, Addison-
Wesley Publishing Company (1995)

[Fletcher et al. 1997] Fletcher, T., MacDonell, S.G., Wong, W.B.L.: „Early Experiences in
Measuring Multimedia Systems Development Effort“ (1997),
http://divcom.otago.ac.nz:800/COM/INFOSCI/SMRL/pub/pubs.htm.

324 Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

[Grady 1994] Grady, R.: „Successfully Applying Software Metrics“, IEEE Computer, 27, 9
(1994), 18-25.

[Hackos 1996] Hackos, JoAnn:, „Estimating Risk in Instructional Design and Documentation
projects“, Interactive Conference workshop (1996)

[Johnson 1990] Johnson, James R.: "The Software Factory: managing software development
and maintenance", Wellesley, MA, QED Information Services, Inc. (1990)

[Jones 1996] Jones, Capers: „Our Worst Current Development Practices“, IEEE Software, 13,
2 (1996), 102-104.

[Marshall et al. 1995] Marshall, I.M., Samson, W.B., Dugard, P.I., Lund, G.R.: „The Mythical
CourseWare Development to Delivery Time Ratio“, Computers Educ., 25, 3 (1995), 113-122.

[McConnell 1996] McConnell Steve: „Avoiding Classic Mistakes“, in IEEE Software, 13, 5
(1996), 112, 111.

[Pizzini et al. 1997] Pizzini, Q., Munro, A., Wogulis, J. Towne, D.: „The Cost Effective
Authoring of Procedural Training“ (1997), http://btl.usc.edu/rides/shortPapers/costeff.html.

[Pressman 1992] Pressman, Roger S.: "Software Engineering, A Practioner’s Approach", New
York, NY, McGraw-Hill, Inc. (1992)

[Rada 1995] Rada, Roy: "Developing Educational Hypermedia: Coordination and Reuse",
Ablex Publishing: Norwood, New Jersey (1995)

[Rada 1997] Rada, Roy: Virtual Education Manifesto, Hypermedia Solutions Limited and
http://hsl.gnacademy.org/gnacademy/hsl/ (1997)

[Rada and Schoening 1997] Rada, Roy and Schoening, James: "Educational Technology
Standards" Communications of the ACM, 40, 9 (1997), 15-18.

[Symons 1990] Symons, Charles R.: "Software Sizing and Estimating MK II FPA (Function
Point Analysis)", Chichester, New York, John Wiley & Sons. (1990)

[Stark et al. 1994] Stark, G., Durst, R.C., Vowell, C.W.: „Using Metrics in Management
Decision Making“, IEEE Computer, 27, 9(1994), 42-48.

[Thackaberry 1997] Thackaberry, Christine W.: „Estimation Metrics for Courseware
Maintenance Effort“, Master’s Degree Project, Washington State University. (1997)

[Veljkov 1990] Veljkov, Mark: „Managing Multimedia“, Byte, 15, 8 (1990), 227-232.

[Wasserman 1996] Wasserman, A. I.: „Toward a Discipline of Software Engineering“, IEEE
Software, 13, 6 (1996), 23-31.

325Thackaberry Ch.W., Rada R.: Estimation Metrics for Courseware Maintenance Effort

