
Building Hypermedia with Objects and Sets

Erik Duval, Koen Hendrikx, Henk Olivi�e

Departement Computerwetenschappen, K.U.Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium

fErik.Duval,Koenh,Olivieg@cs.kuleuven.ac.be

Abstract

In this paper, we present a data model for hypermedia structuring and

navigation. The three fundamental building blocks are values, objects and

sets, for modeling atomic and aggregate content, as well as navigational

structure. In order to formally de�ne operators that enable an end user

to access elements of a set, zoom in on or out of a set, we introduce the

concepts of user state, topology of a set and anchors.

1 Introduction

This paper deals with a new hypermedia data model. Generally speaking, a

data model de�nes the constructs available to structure data. These constructs

should make it possible to capture as much as possible the meaning or semantics

of the real world - or at least of the part being modeled [?].

A hypermedia data model then, is a set of constructs that can be used to structure

data in a hypermedia fashion. Such a model de�nes static structural aspects,

as well as dynamic operators for creation, access to and deletion of the objects

involved.

The most simple hypermedia data model is the basic node-link paradigm: in-

formation is organized in chunks, called 'nodes', and interrelated by 'links' [?].

The simplicity of the basic node-link paradigm can result in poor navigation

structures that cause disorientation to exploring users.

The basic challenge in any attempt to enrich the basic node-link paradigm is to

propose additional or alternative data structuring facilities, while retaining as

much as possible the simplicity and 
exibility of the original approach.

In earlier publications, we presented previous versions of our data model [?, ?],

as well as a distributed hypermedia data management system based on our data

model [?].

This text is structured as follows: sections 2, 3 and 4 de�ne the fundamental

building blocks of our model (values, objects and sets). Sections 5, 6 and 7

explain how the concepts of user state, topology operator and anchor provide the

1

Journal of Universal Computer Science, vol. 4, no. 4 (1998), 501-521
submitted: 10/1/98, accepted: 23/1/98, appeared: 28/5/98  Springer Pub. Co.



framework for de�ning navigational facilities. Section 8 covers the navigational

operators themselves. The current status of our implementation e�orts, as well

as our plans for the future are presented in section 9. We conclude by comparing

our work with related research in section 10.

2 Values

Values are atomic in our model, i.e. they have no (accessible) internal structure.

A class D groups all values:

D = fx j x is a valueg

D is further divided in nd subclasses Di. These classes de�ne subsets of D with

similar values over which the same operations are de�ned:

8i 2 [1::nd] : Di � D

These subclasses can be divided in subclasses in turn, and so on. The end

result is an object-oriented class hierarchy. (We don't elaborate on issues such

as shared subclasses with multiple inheritance here. These are treated in any

book on object-oriented data modeling.) Figure 1 illustrates such a hierarchy

for common domains, based on [?]. In this class hierarchy, a distinction is made

value: discrete value: identi�er

date

year

month

text

still image: GIF

JPEG

graphics

continuous value: audio: WAVE

AU

video: MPEG

QuickTime

animation

Figure 1: Value Class Hierarchy

between discrete and continuous values, i.e. between values whose visualization

takes place immediately (at least conceptually, although in practice it may take

some time to render for instance a JPEG image) and values whose visualization

is a process that takes place in a time span (like for instance a six seconds video

clip).

2

502 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



The class of identi�ers in �gure 1 is somewhat peculiar as these values are

intended for reference to particular objects only, and have no further meaning

for end users. They will be used internally by a hypermedia system.

3 Objects

Objects aggregate values: we model their internal structure with the attribute

concept. Each object is modeled as a tuple of attribute values. An object class

Oi is de�ned as a tuple of ni attribute de�nitions, each de�ning the name ai
and domain Di of the attributes. A domain Di is a value class from which the

appropriate values for an attribute ai must be drawn.

Thus, the de�nition of an object class Oi can be formalized as follows:

Oi =<< a1; D1 >;< a2; D2 >; : : : ; < ani
; Dni

>>

An object o from class Oi can then be modeled as a tuple of attribute values:

8o 2 Oi : o =< v1; v2; : : : ; vni
>

These attribute values must belong to the appropriate domain:

8i 2 [1; ni] : vi 2 Di

Further on, we will denote the value of attribute ai for an object o as follows:

ai(o) = vi 2 Di

(In many object-oriented languages, this is also denoted as o:ai.) We also de�ne

a set O that groups all objects:

D = fx j x is an objectg

= O1 [ O2 [ : : : [ Ono

where no is the number of object classes.

Just as for values, an object-oriented class hierarchy can be de�ned for objects,

as illustrated by �gure 2, which represents a (very) limited class hierarchy for

objects on people, publications, courses, organisations and projects. Generally

speaking, the class hierarchy for values is more general and will often be �xed

for a particular hypermedia system. The object class hierarchy is more appli-

cation speci�c and will typically be de�ned by the developers of a hypermedia

application.

As an example, the class de�nition for a class Article is illustrated in �gure 3.

Like all objects, articles are identi�ed by a unique identi�er and have a name,

which doesn't need to be unique but is more meaningful to end users. (For

articles, the title can typically act as name.) The other attributes are speci�c

to the class of article objects. All attributes are de�ned over a domain of �gure

1.

3

503Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



object: publication: article in a journal

book

paper in proceedings

technical report

person

course

organisation

project

journal

Figure 2: An object class hierarchy

Attribute Domain Refers to Attribute Domain Refers to

identi�er identi�er nr text

name text beginpage text

author1 identi�er Person endpage text

author2 identi�er Person content text

. . . . . . . . . note text

journal identi�er Journal creator identi�er Person

year year created date

month month last modi�er identi�er Person

volume text last modi�ed date

Figure 3: De�nition of the class article

4

504 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



Note that a referential constraint must hold for all attributes (de�ned over

the domain identi�er) that refer to other objects, as de�ned by the 'Refers to'

column in �gure 3. As an example, the identi�er of the �rst author must refer

to an object from class Person:

8a 2 Article : (9p 2 Person : author1(a) = identifier(p))

Operations must be supported by all object classes to create, delete, edit, etc.

objects. We will not consider authoring aspects in this paper, so that only the

operation to visualize objects is relevant in the present context. For some ob-

jects, visualization may be a process that proceeds over time. This will typically

be the case if a continuous value (see �gure 1) is involved.

The attentive reader will have noticed that we make abstraction of the possibly

distributed nature of a hypermedia system, where the visualize operation would

typically involve a client request to obtain the relevant values from a server, the

transmission of these values from server to client and their rendering by a client.

4 Sets

Sets model structure superimposed over objects. In this way, sets can be used

to de�ne context. This will become clearer in the following sections, when we

explain how sets de�ne the navigational functionality.

The elements of a set are either objects or other sets, that in turn contain either

objects or other sets, etc. More formally, we de�ne a set S that includes all sets:

S = fx j x is a setg

All elements in a set are either sets or objects:

8x 2 S : x � (S [O)

This set concept should not be confused with the domain concept introduced in

section 3. A domain is a set (or rather a class) of values that are appropriate

for an attribute of an object. The sets we discuss in this section contain objects

and other sets; they are used to de�ne navigational contexts.

There are two ways to de�ne which elements belong to a particular set:

� An intensional de�nition is based on search criteria that identify the rel-

evant elements. As an example, a set i can include all publications whose

�rst author is 'T. H. Nelson'.

i = fa j a 2 Article

^(9p 2 Person : Identifier(p) = author1(a)

^Name(p) =0 T: H: Nelson0)g

5

505Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



� In an extensionally de�ned set e, objects are 'manually' added to a set by

an explicit request. As an example, one can de�ne a set that models a

research unit and then manually add:

{ a text t that describes the work of this group,

{ an intensional set i with all publications by members of the research

unit,

{ an MPEG video clip v introducing the projects the group participates

in.

The result is a set

e = ft; i; vg

Generally speaking, the intensional mechanism is more suited for systematic

modeling of large-scale hypermedia applications, because its de�nition will au-

tomatically identify all relevant elements. Moreover, the set will always be up

to date: when new relevant objects are de�ned, they automatically belong to

the set, without any 'manual' user intervention.

In fact, intensional and extensional de�nitions can be combined: search criteria

can be de�ned for a particular set so that all objects that satisfy these criteria

are included in the set, as well as some manually added objects that do not

satisfy the prescript. As an example, publications about 'digital libraries' can

be grouped in a set by de�ning a prescript that identi�es all publications with

this string in their title. Relevant publications whose title doesn't include this

string can be added manually.

Operations over S enable users to create, delete and edit sets. For (partially)

extensional sets, operations to manually insert and remove elements are also

supported. As we already mentioned, authoring aspects are not covered by this

paper, so that we don't detail these operations here. The interested reader is

referred to [?]

Set membership does not need to be hierarchical: elements can be shared when

they belong to members of di�erent containers. In fact, this is a very important

point, as it allows a re-use approach to hypermedia application development

[?]. Loops, representing recursive memberships, are also allowed, although these

should be used with caution, as they can lead to user disorientation.

5 User State

In this section, we introduce the user state concept u. The user state consists

of two components:

u =< h; c >

6

506 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



� The navigational history h of the user is de�ned as follows:

h =< s0; s1; : : : ; sn > with s0; s1; :::; sn 2 S

The intended meaning is that this component is a sequence of sets si, that

have been current sets in a particular session (see below). This will be

clari�ed below when we explain that si can be made current by zooming

in on one of the elements of si�1. At the beginning of a session, h is empty.

� The current situation is modeled by a component c in u, de�ned as follows:

c =< s; e; t > with s 2 S; e 2 (S [ O); t 2 R+

where s models the current set, e models the current element and t models

the current time. The current time is the time that has elapsed since the

visalization of e started (see also section 8). This is only relevant if e

involves a continuous value and can be used to adapt the list of accessible

elements while the current element is displayed, as is elaborated in section

6.

We impose the constraint that only elements of the current set can be

current. This means that:

e 2 s

The main point is that all relevant contextual information is modeled by the

user state u, and that the navigational operators are de�ned in terms of the

e�ect they have on the user state (see section 8).

Note that the above de�nition of the user state u can be modi�ed for speci�c

needs. In the case of educational hypermedia applications for instance, the

history component h can also include the results of the student on self assessment

tests. Or h can also include the sequence of elements that have been accessed

(see section 8) for each of the sets si that belong to h. The current situation c

can also include the user identity, for instance in order to log the actions of a

particular user.

In the remainder of this paper, we will stick to the de�nition of user state given

above, which contains all information needed to formally de�ne navigational

operations.

6 Topology

6.1 De�nition

The topology operator � de�nes which elements are accessible in a particular

situation, i.e. to which elements the access operator can be applied (see below).

More formally, � can be de�ned as follows:

7

507Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



�(< s; e; t >) =< e1; e2; : : : ; em > where e; e1; e2; : : : ; em 2 s

Note that the result of � for a particular situation < s; e; t > is a sequence of

elements, all belonging to the set s. We impose this constraint because the

set s models a navigational context. As will be explained in section 8, the

access operator, applicable to the elements of �(< s; e; t >), should not leave

this context. (Switching contexts is achieved with the zoom in, out and up

operators.)

Intuitively, the meaning of � is as follows: in a particular situation c =< s; e; t >,

the user can navigate from the current element e (in the current set s) to the

elements e1; e2; : : : ; em (that also belong to s).

In essence, the topology operator replaces the (much) more conventional link

concept that is often seen as the essence of hypermedia data modeling [?]. In

conventional, graph based hypermedia data models, a link connects source nodes

with target nodes. (In most cases, only one source and target node is allowed

per link.) This can easily be modeled by our topology operator as well: the

source node corresponds to the element e, and the target nodes correspond to

the elements e1; e2; : : : ; em.

6.2 Example

As an example, consider �gure 4, which illustrates a simple conventional graph

based hypermedia structure with three unidirectional links (from e1 to e3, from

e1 to e4 and from e4 to e5), two bidirectional links (between e1 and e2 and

between e3 and e4) and a multi-target link (from e5 to e2 and e4).

This navigational structure can be modeled as a set

s = fe1; e2; e3; e4; e5g

with the topology operator de�ned as follows:

8t 2 [0;1[: �(< s; e1; t >) =< e2; e3; e4 >

�(< s; e2; t >) =< e1 >

�(< s; e3; t >) =< e4 >

�(< s; e4; t >) =< e3; e5 >

�(< s; e5; t >) =< e2; e4 >

In this example, the topology operator is de�ned in an extensional way, i.e. by

explicitly indicating the identities of the objects that constitute its result. Used

in this way, the topology operator adds to the conventional link concept:

� the idea of context, modeled by the current set s: This is equivalent with

the web concept in Intermedia [?], which allows the de�nition of di�erent

link structures over a set of nodes. In other words: the context (i.e. the

current web in Intermedia, or the current set in our model) de�nes the

8

508 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



e1 e2

e4

e5

e3

Figure 4: A Conventional Hypermedia Example

navigational structure (i.e. the links in Intermedia or the result of the

toplogy operator in our model).

In hypermedia systems based on more limited data models (with the

World-Wide Web as the most noteworthy representant [?]), there is only

one context, which basically means that the result of the topology operator

depends on the current element e only.

� the notion of time that has elapsed since the visualization of the current

element e started: This concept can be used to make elements accessible

only for a particular time span during the visualization of the element e.

As an example, if the topology operator is de�ned as follows:

8t 2 [2; 6] : �(< s; e; t >) =< e1 >

then, during play-out of e (this can be a video clip), the element e1 (for

instance a biography of an actor) is only accessible from two until six sec-

onds after the clip started (maybe because that is when the actor appears

in the clip).

6.3 Intensional De�nition

The topology operator is an especially powerful concept when it is de�ned in

an intensional way.

As a simple example, we can de�ne a set Pubs that holds all articles, persons

and journals. For this set, we can de�ne the topology operator intensionally in

the following way:

8t 2 [0;1[;8a 2 Articles : �(< Pubs; a; t >) =< p1; p2; : : : ; pk; j >

where p1; p2; : : : ; pk 2 Persons

and j 2 Journals

and author1(a) = p1
and author2(a) = p2

9

509Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



and : : :

and authork(a) = pk
and journal(a) = j

This means that, if Pubs is the current set, and the current element is an article,

then elements that correspond with all persons that contributed to the article as

an author, as well as the journal it was published in are accessible. In a similar

way, all articles a person contributed to can be made accessible automatically

when the current element corresponds to this person.

It is important to note that the topology operator thus completely removes the

need for manual linking of elements. This is very important because it greatly

alleviates the maintenance problem:

� When an element is deleted, it simply no longer satis�es the search criteria

that the intensional de�nition of the topology operator is based on. If the

topology operator is de�ned in an extensional way, then the element will

automatically be removed from its result. This is not further detailed

here, because authoring aspects are outside the scope of this paper. The

interested reader is referred to [?]. The net result is that no dangling links

can arise.

� Moreover, when a new element is inserted, it will automatically be iden-

ti�ed by the topology operator if it is relevant. Referring to the example

mentioned above, when a new article is created, it is automatically linked

to available information about the authors and journal, and it will itself

automatically be accessible from elements that correspond to the authors

and journal.

7 Anchors

7.1 De�nition

The topology operator de�ned in the previous section corresponds to the notion

of links in conventional hypermedia data models. Also needed is a concept that

de�nes 'active spots', i.e. a construct that enables an end user to access one of

the accessible elements. For this purpose, we generalize the conventional anchor

concept.

� If the current element e is an object from class Oi, then the anchor oper-

ator � de�nes the anchors that can be activated to access the accessible

elements < e1; e2; : : : ; em >, as de�ned by the topology operator � for a

particular situation (see section 6).

Formally, � can be de�ned as follows:

10

510 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



if e 2 Oi =<< a1; D1 >;< a2; D2 >; : : : ; < ani
; Dni

>>

and �(< s; e; t >) =< e1; e2; : : : ; em >

then �(< s; e; t >) =< y1; y2; : : : ; ym >

where y1; y2; : : : ; yn 2 fa1; a2; : : : ; ani
g

This means that, for every accessible element ei (as de�ned by the topology

operator �), the anchor operator � de�nes an attribute yi from the class

Oi that the current element e belongs to.

� If the current element e is a set, then there are no attributes that can be

used to de�ne the anchors. In that case:

if e 2 S

and �(< s; e; t >) =< e1; e2; : : : ; em >

then �(< s; e; t >) =< name(e1); name(e2); : : : ; name(em) >

This means that, in this case, the names of the accessible elements act as

anchors.

Intuitively, the meaning of � is as follows: if the the current element e is an

object from class Oi, then the user can navigate to the elements e1; e2; : : : ; em.

This is de�ned by the topology operator �(s; e; t). The values of e for the

attributes y1; y2; : : : ; ym act as anchors: in other words, these attribute values

are displayed in such a way that they can be activated by the end user to access

the corresponding elements e1; e2; : : : ; em. If the relevant attribute values are

object identi�ers, then the names of the corresponding object will be displayed,

rather than the value of the identi�er itself.

If the current element e is a set, i.e. if e 2 S, then the names of the accessible

objects are displayed in such a way that they can be activated by the end user

in order to access them.

7.2 Example

As an example, an article (see �gure 3) can be de�ned as in �gure 5 (see also

[?]).

Suppose that this article is the current element e, and that the topology operator

� and the anchor operator � are de�ned as follows for a set s that e belongs to:

�(s; e; t) =< 2345; 3456>

�(s; e; t) =< author1; journal >

In this case, when the article e is visualized, the name of object 2345 will be

shown as the value of the attribute author1, and this name will be active, i.e.

when a user activates it (for instance by clicking on it), then object 2345 will

be accessed (see below). A similar situation exists with respect to object 3456

and the attribute journal.

11

511Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



Attribute Value

identi�er 1234

name 'Hypertext: An introduction and survey'

author1 2345

journal 3456

year 1987

month September

volume '2'

nr '9'

beginpage '17'

endpage '41'

. . . . . .

Figure 5: De�nition of an article instance

Note that the value of one attribute ai can act as anchor for several objects. In

that case, ai appears several times in the yi of �(s) =< y1; y2; : : : ; yn >. This

corresponds to a multi-target link in conventional hypermedia models.

Note also that not all attributes that refer to other objects must be made active.

For the example just mentioned, the topology and anchor operators can also be

de�ned as follows:

�(s; e; t) =< 2345 >

�(s; e; t) =< author1 >

In this case, when e is visualized, the name of object 3456 is still shown as value

for the attribute journal, but it is no longer active, and the corresponding object

is no longer accessible.

8 Navigation

8.1 Introduction

In this section, we de�ne operators that enable an end user to navigate the struc-

ture de�ned over objects and sets using the concepts of the previous sections.

The access operator (section 8.2) can be used to change the current element

e within the current situation c =< s; e; t >, leaving the history component

h =< s0; s1; : : : ; sn > of the user state s =< h; c > una�ected. The zoom in,

out and up operators (sections 8.3, 8.4 and 8.5) enable an end user to change

the current context s as well as the history component h.

12

512 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



8.2 Access

The access operator A can only be applied to an accessible element of the

current set. The result is that that element becomes the current one, and that

it is visualized. This can be formalized as follows:

A : e0; u! u0 where u =< h; c >

u0 =< h; c0 >

c =< s; e; t >

c0 =< s; e0; 0 >

e0 2 �(c)

Note that the history component h of the user state u remains una�ected. In

other words: we do not record the navigation of a user within a given context

(modeled by the set s of the situation c) in the history component h. As

mentioned in section 5, the de�nition of the history component can be modi�ed

in order to record this information, leading to more complex as well as more

generalized de�nitions of the navigational operations.

Also note that e0 not only becomes the new current element, but that, as a side

e�ect, the visualization of element e0 is started. This implies that the current

time is initialized as zero and will start 'running' from the moment that A is

applied.

The role of the access operatorA is similar to that of following a link in the basic

node link paradigm: it enables an end user to navigate between information

items (elements rather than nodes).

It is important to note that very few assumptions are made about the content of

e0 in the de�nition of A. The sole requirement is that, in response to the access

operator A, it must be possible to visualize e0. What such a visualization should

entail (rendering a graphic, displaying a video clip, etc.) is completely open.

This can also be a more complicated series of events (like an interactive question

and answer application). In this way, our model adheres to an open hypermedia

approach, as content created with external applications can be incorporated in

hypermedia structures [?].

8.3 Zoom In

Applying the zoom in operator I is only possible if the current element e is a

non-empty set. The e�ect is that e becomes the current set, and that the access

operator A is applied to the head 
(e) of e. For all non-empty sets s, the head

is a particular element of s:

8s 2 S : s 6= �) 
(s) 2 s

This concept is introduced to de�ne what should be visualized when s is zoomed

in upon. The head thus functions as a sort of 'entry point' for sets.

More formally, the zoom in operator can be de�ned as follows:

13

513Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



I : u! u0 where u =< h; c >

u0 =< h; c0 >

h =< s0; s1; : : : ; sn >

c =< s; e; t >

e 2 S

e 6= �

h0 =< s0; s1; : : : ; sn; s >

c0 =< e; 
(e); 0 >

This means that the history component is extended by appending the previously

current set s to it. The previously current element e must be a non-empty set

and now becomes the new current set. Its head is accessed and thus becomes

the current element, while, as a side e�ect, its visualization is started and the

current time is initialized.

8.4 Zoom Out

The opposite e�ect can be achieved by applying the zoom out operator O:

basically, the situation before the last zoom in becomes the current situation

again. In a formal way, the zoom out operator O can be de�ned as follows:

O : u! u0 where u =< h; c >

u0 =< h0; c0 >

h =< s0; s1; : : : ; sn >

c =< s; e; t >

h0 =< s0; s1; : : : ; sn�1 >

c0 =< sn; s; 0 >

The new current element s is the set that was current before the zoom out

operator O was applied. This element is accessed, and, as a side e�ect, it is

visualized and the current time is re-initialized. The new current set sn is the

set that was previously added to the history h by zooming in on sn�1. This

set is now removed from the history h0. (Note that, in this respect, the history

doesn't model a complete navigational path, but only the part of it that lead to

the current situation. If the user backtracks by zooming out, then information

about the retraced steps is discarded.)

If h is empty (h =<>), then the zoom out operator O is inapplicable.

8.5 Zoom Up

In order to enable an end user to discover to which sets an element belongs, we

de�ne an additional operator. The zoom up operator U enables a user to make

current a set s0 that contains the current element e. More formally:

U : u! u0 where u =< h; c >

14

514 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



u0 =< h0; c0 >

h =< s0; s1; : : : ; sn >

c =< s; e; t >

h0 =<>

c0 =< s0; e; t >

e 2 s0

This means that the current element remains the same (i.e. e) in the new

situation c0. The current time t also remains the same. This menas that,

at least conceptually, the zoom up operator takes e�ect instantaneously. The

current set changes from s to a set s0 that the current element e belongs to.

Finally, the history component h0 is emptied. (More on that in a note below.)

The zoom up operator U thus enables a user to explore all contexts that a

particular element belongs to. The rationale for this operator is that, if a par-

ticular element is relevant, then it often makes sense for the user to explore

other contexts it appears in as well. Note that the operator is indeterministic if

the current element e belongs to more than one set. (If it belongs to only one

set, then the e�ect of the zoom up operator is identical with that of the zoom

out operator, except with respect to the history component h.) In a practical

implementation, the user can be presented a list of candidates for s0, i.e. a list of

all sets that contain the current element e. By choosing one of these elements,

the result of U can be determined.

Note: One could question whether it is appropriate to start a new sequence

h0 =<>, when U is applied. An alternative would be to add the previously cur-

rent set s to the sequence, thus obtaining< s0; s1; : : : ; sn; s >. This option is not

adopted in our model, because the semantics of the sequence < s0; s1; : : : ; sn >

is meant to imply that one can navigate from sn to the current set s by applying

the zoom in operator I. If s is added to the sequence, this property no longer

holds: one cannot zoom in on s to make s0 current. Another alternative would

be to create a new sequence (s01; :::; s
0

m
) that would satisfy this semantics. In

other words: one could de�ne a new sequence from the root set to the current

set. There are two reasons why we don't follow this approach:

� such a sequence is not necessarily unique,

� a user would be able to zoom out and make current a set s0
m

he hasn't

visited yet. This would be rather confusing.

Hence the choice in our model to start a new sequence altogether when the zoom

up operator is applied.

8.6 Example

In order to clarify the meaning of these operators, consider the following exam-

ple:

15

515Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



group = members; projects; publications; courses; intro


(group) = intro

A set group is de�ned that contains information about a research unit. Four

elements of this set are sets themselves with information about the di�erent

members, projects the research unit participates in, publications by members

of the unit and courses that are taught by these members. A �fth element is

an object with a general introduction about the group and its activities. (This

can include a video or text value.) The last element is the head of the group.

Suppose that a user starts his session by zooming in on this group. In that case,

the user state u contains an empty history component h =<> and a current

situation c =< group; intro; 0 >. If the topology operator is de�ned as follows:

�(< group; intro; t >) =< members; projects; publications; courses >

then the user can access an arbitrary other member. Suppose he accesses mem-

bers, then the current situation changes to < group;members; 0 >. If the user

now zooms in, then the user state u contains a modi�ed history component

h =< group > and the current situation becomes c =< members;HO; 0 > if

the set members and its head are de�ned as follows:

members = HO;KC;ED;KH;RV D;BV


(members) = HO

where the elements of members are indicated by their initials. If among the

elements of HO is a set on his publications, then the user can zoom in on

this set and access one of his articles. This article can belong to sets with

publications of all the members that contributed to it. The user will �nd this

out if he applies the zoom up operator when this article is the current element.

8.7 Important Features

There are two important features to navigation in our model:

� First of all, two orthogonal dimensions of navigation are supported over

sets that group elements:

{ users can zoom in on and out of sets, in order to navigate over the

'belongs to' relationship between sets;

{ by accessing di�erent elements of the same set, users navigate over

the 'belongs to the same set' relationship between elements.

Generally speaking, the �rst dimension is more concerned with macro-

structure: each time an end user zooms in on or out of a set, the naviga-

tional micro-context (i.e. the elements of the current set) changes.

This two-level structure can help to prevent the users from becoming dis-

oriented, as it enables an author to make a distinction between locally

16

516 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



related units of information and more global relationships between one

context and other, related contexts.

� All operators are addressed to one particular element and do not a�ect

the internal structure of other elements. (This also holds for authoring

operators [?].) This leads to self-containment of sets: a set is a self-

containing module that can be edited and navigated independently of

others. When a set s is deleted, all interrelationships between members of

s cease to exist as well. However, the members of s survive as independent

entities; only their interrelationships in the context of s are destroyed.

This self-containment is particularly important with regards to re-use, i.e.

when an element is shared by several sets [?].

9 Current Status and Plans for the Future

9.1 Current Status

We have developed an environment that supports the data model just presented

[?]. This environment is called HOME (Hypermedia Object Management En-

vironment). Technologically, it is based on a commercially available DataBase

Management System (in casu Oracle). All information stored in HOME is ac-

cessible through the World-Wide Web, using a gateway mechanism.

Storage of objects and values is strictly separated from the storage of data to

represent the topology operator � and the anchor operator �. In this way,

di�erent data models can be supported over the same set of basic values and

objects.

As an illustration, �gure 6 demonstrates how the data needed for � and � can be

modeled in a relational database. A tuple < s; i; c; a; i0; c0; tb; te > in this relation

represents the fact that if the current element is the element with identi�er i

from object class c, and the current set is identi�ed by s, then the element

identi�ed by i0, from class c0 is accessible when the current time belongs to the

interval [tb; te]. The anchor is the value of the current element for the attribute

a of class c.

Set Identi�er

Current Element Identi�er

Current Element Class

Current Element Attribute

Accessible Element Identi�er

Accessible Element Class

Begin Time

End Time

Figure 6: An implementation of the topology operator

17

517Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



9.2 Plans for the Future

We are currently working on a number of further developments and applications

of the data model presented above:

� In order to further validate the model, we are developing a number of

applications, especially in the �eld of educational hypermedia, including

support material for courses on multimedia modeling and programming,

as well as an introductory course on computer science concepts.

� We are investigating further extensions to the anchor concept presented

above, so that we can for instance apply search operations on the value

of an attribute to de�ne the anchor. As an example, this approach would

make it possible to identify all occurrences of a search pattern in a text

value as anchors.

� Especially with respect to consistent authoring of large-scale hypermedia

applications, the development of a suitable design method becomes very

important. The model presented above provides a good fundament for

such a method, because the operators can be de�ned intensionally. Our

�rst results in this area can be found in [?],

10 Related Research

The model just presented is mainly in
uenced by early work in this area [?] and

the HM data model [?] [?] [?].

10.1 Node-Link Paradigm

An object in our model corresponds to a conventional hypermedia node. Just

like some systems support an elaborate taxonomy of node types, our model

includes an object-oriented class hierarchy for objects and values. The function

of a set in our model is somewhat similar to that of a composite node in more

advanced node-link models [?].

In the Dexter model, an attempt to formalize the common features of node-link

hypermedia models, data structuring is modeled by the storage layer [?]. (The

run-time layer is more concerned with end user interaction, and the within-

component layer deals with the internal structure of objects.) Atomic compo-

nents in Dexter correspond to objects in our model. Composite components

loosely correspond to our notion of sets. However, in Dexter, the 'is part of'

hierarchy must be a directed acyclic graph, whereas our model allows loops.

The Dexter model can be extended with set-based data structuring [?]. A slot

in this extended model corresponds with an object in our model. Nodes and

sets both correspond with our notion of sets.

18

518 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



10.2 Gopher

In Gopher, information is structured in collections (visualized by most Gopher

clients as menu's) [?]. Gopher collections contain either subcollections or docu-

ments; this is equivalent to sets that contain other sets or objects. In Gopher,

searches can be launched when a collection item is activated, in order to iden-

tify the collection elements. This facility corresponds to intensional sets in our

model.

All collection items in the current Gopher collection are always accessible. In

other words, the topology operator always delivers all elements (but the current

one) from the current set. Selecting an item in a Gopher collection corresponds

to accessing an element in our model if the item is an object. If it is a subset,

then activating the item corresponds with the zoom in operator of our model.

Zooming out corresponds with going up one level in the collection hierarchy.

There is no Gopher equivalent for accessing a set or the up operator.

10.3 Hyper-G

In Hyper-G (now commercialized as Hyper-Wave), documents can be grouped in

collections, that can in turn belong to other collections [?]. Hyper-G documents

can be described by attribute-value pairs, just as attributes can be de�ned for

speci�c object classes in �gure 3. A Hyper-G collection is similar to our set con-

cept, but hyperlinks can refer to documents across collection boundaries, which

is not allowed for the topology operator in our model. Only extensional sets are

supported in Hyper-G: although it is possible to carry out a search (which, as

mentioned above, correspond to prescripts for intensional sets), searches cannot

have persistent status.

In Hyper-G, all elements of a collection are always accessible. Hence, the result

of the topology operator always includes all elements from the current set but the

current element. An exception is a speci�c kind of collection, called a sequence,

where only the next and previous element of an ordered set are accessible. The

access, zoom in and zoom out operators, as well as the head concept, have

straightforward equivalents in Hyper-G. However, when an object is the head

of one collection in Hyper-G, then it is head in all collections it belongs to.

Our model is more 
exible, as head status is speci�c to an object's membership

of a set. The up operator is not supported as such in Hyper-G, but it can

be simulated, using the facility to generate 'overview maps' of the collection

structure.

Time-dependent behaviour of objects is de�ned in Hyper-G using SyncScript

[?]. This is a more procedural approach than our topology operator, which

is more declarative in nature. SyncScript is also concerned with other issues

besides time-dependent link structures, like for instance display parameters.

19

519Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



10.4 HM Model

Sets in our model correspond to so-called S-collections in the HM model [?].

Objects correspond to void S-collections.

In the HM model, topology operators are prede�ned. In an envelope, all ele-

ments are always accessible, whatever the current element is. In a folder, ele-

ments are ordered, for instance as e1; e2; : : : ; en. At each moment, the elements

immediately 'previous' and 'next' to the current element are accessible. In a

menu, if the head is current, then all other elements are accessible. If not, then

only the head is accessible. This list of prede�ned, generic topology operators

is summarized below:

envelope(s) ) �(e; s) = s n feg

folder(s) ) �(ei; s) = fei�1; ei+1g (1 < i < n)

�(e1; s) = fe2g

�(en; s) = fen�1g

menu(s) ) �(
(s); s) = s n f
(s)g

�(x; s) = 
(s) where x 6= 
(s) ^ x 2 s

The head concept and the navigational operators in the HM model are similar

to the equivalent notions in our model.

Conclusion

In this paper, we have proposed a hypermedia model that relies on values, ob-

jects and sets as basic building blocks. Structure can be de�ned over these

elements with a topology operator. An anchor operator de�nes which compo-

nents of the current element can be activated to access the currently accessible

elements. Navigation proceeds by accessing elements, zooming in on sets, or,

conversely, zooming up or out from them. These operators are all de�ned in a

formal way, using the concept of user state. An important point is that both

set membership, as well as the topology and anchor operators can be de�ned

intensionally, which greatly simpli�es maintenance of large-scale hypermedia

applications.

Biographies

Erik Duval graduated as an engineer in computer science at the Katholieke Uni-

versiteit Leuven in 1989. He obtained his PhD at the same university in 1995.

Currently, he is a post-doctoral scienti�c cooperator in the research unit on hy-

permedia and databases at the computer science department of the K.U.Leuven.

Professor Henk Olivi�e holds 'licentiaat' degrees in mathematics from the Rijk-

sUniversiteit Gent and in computer science from the K.U.Leuven. He obtained

20

520 Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets



his PhD from the University of Antwerpen. Since 1989, he heads the research

unit on hypermedia and databases at the same university.

Koen Hendrikx obtained his degree as engineer in computer science at the K.U.-

Leuven in 1993. He then joined the research unit where he is preparing a PhD.

on the subject of design methods for hypermedia applications.

The research interest of the unit on hypermedia and databases focuses on dis-

tributed hypermedia systems, hypermedia data models and development meth-

ods, and the application of hypermedia technology for open and 
exible learning.

21

521Duval E., Hendrikx K., Olivie H.: Building Hypermedia with Objects and Sets


