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1 Introduction

We introduce an inference system K for deriving keys of a relation schema R =
hU; F i. The entities which are derived with K are functional dependencies. The
system K is sound in the sense that all functional dependencies which are derived
with K are in F+; K is complete in the sense that for every key K of R a
functional dependency K ! A can be derived, where A 2 U or A = ?. We
use the completeness of K to give the bound bejF j=ec for the cardinality of the
set of keys of R. For another bound of the set of keys of a relation schema cf.
[Thalheim 1992]

We briey collect the basic items concerning relation schemas which will be
needed in this paper. For more details cf. [Maier 1983], [Ullman 1988].

An attribute A is an identi�er for an element of some domain D. We use
capital letters A;B;C;D; : : : for attributes. Let U be a set of attributes. An
attribute set X over U is a subset of U . We use capital letters X;Y; Z; V; : : :
for attribute sets. A functional dependency over U is an expression of the form
X ! Y , where X;Y are attribute sets. Intuitively, a functional dependency
X ! Y means that the attribute set X determines the attribute set Y . If
X;Y are attribute sets, then we write XY for X [ Y . We use capital letters
F;G for sets of functional dependencies over an attribute set U . We denote by
attr(F ) the set of all attributes occurring in F . All attribute sets and all sets of
functional dependencies are �nite. The cardinality of a set X is denoted by jX j.
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A relation schema R = hU; F i is an ordered pair consisting of an attribute set
U and a set F of functional dependencies over U . Let R = hU; F i be a relation
schema. There are distinguished subsets K � U , called superkeys. To de�ne
superkeys we use the algorithm transitive closure below. The algorithm transitive

closure computes for an attribute set X the set X+
� X of all attributes which

are functional determined by X .

Algorithm transitive closure.
Input: A relation schema R = hU; F i and an attribute set X � U .
Output: X+.

[INIT] X+ := X ;
[LOOP] while (9(Y ! Z) 2 F : Y � X+ & Z 6� X+)

X+ := X+
[ Z;

[RESULT] return X+;

Figure 1: Algorithm transitive closure

Now an attribute set K � U is a superkey of R, if K+ = U . A superkey K of R
is a key of R, if K is minimal with respect to set inclusion. Keys are also known
as candidate keys. We denote the set of all keys of a relation schema R with
KR. We use capital letters K;L for keys.

The following simple observation will be used later. The result of a com-
putation of X+ using the algorithm transitive closure does not depend on the
sequence in which the functional dependencies are choosen in the while loop.
Further, when computing the transitive closure of an attribute set X we always
assume that this is done with the algorithm transitive closure. For a computa-
tion of X+ we denote the LOOP{steps with X(0); X(1); X(2); : : : and so on. The
inclusion X � X+ is immediate. If the transitive closure of an attribute set X
is computed with respect to two di�erent sets of functional dependencies F , G,
then we write X+;F , respectively X+;G.

We report some facts about functional dependencies. A functional depen-
dency X ! Y is trivial, if Y � X . Let R = hU; F i be a relation schema. The
set F+ of functional dependencies over U is de�ned as the set of all functional
dependencies which are logically implied by F (for details [Ullman 1988]). For
our concern it is relevant that the set F+ is characterized as the set of all func-
tional dependencies which can be derived from F using the Armstrong Axioms
[Armstrong 1974]. We take the Armstrong Axioms from [Ullman 1988].

(A1) ? `A X ! Y if Y � X

(A2) fX ! Y g `A XZ ! YZ for all Z � U

(A3) fX ! Y; Y ! Zg `A X ! Z
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We write F `A X ! Y , if there exists a formal derivation of the functional
dependency X ! Y from F using the Armstrong Axioms (A1){(A3). For
details about formal derivability cf. [Mendelson 1987], for example.

When the right hand side of a functional dependency is a singleton set, then
we use the notation X ! A, Y ! B, Z ! C or similar. We call such functional
dependencies unit functional dependencies.
Let Y ! B be a unit functional dependency. To indicate that the attribute
A occurs in the left hand side of Y ! B, we write YA ! B. Additionally,
when we use the notation YA ! B, then we assume A 62 Y , that is, the union
YA is disjoint. In this paper we work with unit functional dependencies. It is
no restriction to consider only unit functional dependencies, see [Maier 1983] p.
77 Lemma 5.3. Further, for a relation schema R = hU; F i we always assume
that U = attr(F ). This is no restriction when considering keys, because the
attributes in U � attr(F ) have to be in every key of R. Summing up: For all
relation schema R = hU; F i in this paper we assume that

� F is a set of non{trivial unit functional dependencies and

� U = attr(F ).

2 Transitive Relation Schemas

In this section we introduce the concept of a transitive relation schema, which
is the key tool for proving the completeness of the inference system K in the
next section. The relevant properties of transitive relation schemas are stated
in Lemma 2 and 5.

Consider the inference rule below for infering unit functional dependencies
from unit functional dependencies.

X ! A YA! B

XY ! B
[B 62 X ]

Note, that XY ! B is not trivial, if B 62 X and the premise functional
dependencies X ! A;YA! B are not trivial.

We want to de�ne the transitive closure of a set F of functional dependencies
with respect to the above inference rule. Therefore, we de�ne an operator T :
F 7! T (F ) as

T (F ) := F [ fXY ! B

>
>
>
>
>
9(X ! A)9(YA! B) 2 F :

X ! A YA! B

XY ! B
[B 62 X]g

The iterations of T are de�ned as

T
(1)(F ) := F

T
(n+1)(F ) := T (T (n)(F )):
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Finally, the transitive closure tc(F ) of F is given as

tc(F ) :=
[
n�1

T
(n)(F ):

Let R = hU; F i be a relation schema. We let R+ := hU; tc(F )i. R+ is
uniquely determined through R. We call R+ the transitive form of R. A relation
schema R is transitive, if R = R+.

Example 1

Consider the relation schema R = hfA;B;C;D;Eg; F i, where

F = fAB ! C;

DC ! E;

E ! A g:

The transitive form of R is R+ = hfA;B;C;D;Eg; tc(F )i, where

tc(F ) = f AB ! C; DC ! E; E ! A;

ABD ! E; DC ! A; EB ! C;

DCB ! E; EBD ! A; ABD ! C g:y

We show that the set of keys of a relation schema R coincides with the set
of keys of its transitive form R+. (Note that we work with non-trivial unit
functional dependencies).

Lemma 2

Let R = hU; F i be a relation schema. Then,

KR = KR+ :

Proof. We show that for every attribute set V � U there is

V +;F = V +;tc(F ):

This implies the lemma. We proceed by double induction on the well{founded
set hN � N0 ;�lexi and prove the following statement

8m � 18n � 0 : V (n);T (m)(F )
� V (nm);F :

For the inductive basis (main induction) let m = 1 and n = 0. Then V (0);T (1)(F )

= V = V (0);F . For the inductive step (main induction) let m + 1 > 1. For the

inductive basis (side induction) let n = 0. The relation V (0);T (m+1)(F )
� V (0);F

is immediate. So, let for the inductive step (side induction) n+1 > 0 and assume

as inductive hypothesis V (k);T (`)(F )
� V (k`);F for all hk; `i <lex hm+1; n+1i.

550 Wastl R.: On the Number of Keys of a Relational Database Scheme



Let V (n+1);T (m+1)(F ) = V (n);T (m+1)(F )
[ fBg. Then there exists a functional

dependency (Z ! B) 2 T
(m+1)(F ) such that Z � V (n);T (m+1)(F ). We can

assume that B 62 V (n);T (m+1)(F ) and (Z ! B) 2 T
(m+1)(F ) n T (m)(F ) since

otherwise, the statement follows immediately from the inductive hypothesis.
From m + 1 > 1 we conclude that there exists two functional dependencies
(X ! A); (YA ! B) 2 T

(m)(F ) such that (XY ! B) 2 T
(m+1)(F ) and

Z = XY . Since Z � V (n);T (m+1)(F ) we have XY � V (n);T (m+1)(F ). From the
inductive hypothesis we get XY � V (n(m+1));F . Hence, A;B can be derived with
two loop steps from F and V (n(m+1));F using the algorithm transitive closure.
So, we may assume A;B 2 V (n(m+1)+2);F . From n(m+1)+ 2 � (n+1)(m+1)

we get B 2 V ((n+1)(m+1));F . Hence, V (n+1);T (m+1)(F )
� V (n+1)(m+1);F .

The induction yields V +;tc(F )
� V +;F . From F � tc(F ) we conclude

V +;tc(F ) = V +;F . 2

De�nition 3

Let R = hU; F i be a relation schema and K 2 KR. An attribute A 2 U is direct
from K, if there exists a functional dependency (X ! A) 2 F such that X � K.

We show in the next proposition that if A 2 U is a direct attribute from the
key K, then A does not occur in K.

Proposition 4

Let R = hU; F i be a relation schema and K 2 KR. If A is direct from K, then
A 62 K.

Proof. Let R = hU; F i be given. Note that F contains only non{trivial unit
functional dependencies. Therefore, ifX = K, then we have immediately A 62 K.
Thus, we proceed under the assumption X � K. Let K 2 KR and X ! A be a
functional dependency satisfying X � K. Suppose that the membership A 2 K

holds. We set K 0 := K �A. Then K 0
� K. We claim, that K 0 is a superkey of

R. From A 62 X and X � K we get X � K 0, from which we obtain A 2 K 0+.
This implies K 0+ = K+. Since K is a key we get K 0+ = U . So, K 0 is a superkey.
But then K 0

6� K  . 2

For transitive relation schemas R = hU; F i the computation of the transitive
closureK+ for a keyK of R is extremly simple, because the computation process
has been \incorporated" into the set F of functional dependencies. This is the
statement of the next lemma.

Lemma 5

Let R = hU; F i be a transitive relation schema and K 2 KR. Then,

K+ = K ] fA 2 U
>>>>A is direct from Kg:
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Proof. Let K be a key of R. We consider a computation of K+ using the
algorithm transitive closure. We show that the following statement LI is a loop
invariant:

LI(n) � (Z ! B) 2 F & Z � K
(n)

& B 62 K
(n)

) 9(Z
0

! B) 2 F : Z
0

� K:

Before entering the while loop in transitive closure there is n = 0 and LI(0)
holds. Assume that K(n) has already been computed and that LI(n) holds.
Let K(n+1) = K(n)A and assume that there exists a functional dependency
(Z ! B) 2 F such that Z � K(n+1) and B 62 K(n+1).

We show that LI(n + 1) holds. Therefore we have to �nd a functional de-
pendency (Z 0

! B) 2 F , such that Z 0
� K. In the trivial case A 2 K(n) or

Z � K(n) we have nothing to show. So, we procceed under the assumption
A 62 K(n) and Z 6� K(n). Then A 2 Z and from n + 1 > 0 we conclude that
there exists a functional dependency (X ! A) 2 F such that X � K(n). Ap-
plying LI(n) to X ! A yields a functional dependency (X 0

! A) 2 F such
that X 0

� K. Since Z � K(n+1) = K(n)A and A 2 Z we write Z in the form
Z = TA, where T = Z � A. Now, X 0T � K(n) and since R is transitive we
have (X 0T ! B) 2 F . We apply LI(n) to X 0T ! B and obtain by inductive
hypothesis a functional dependency (Z 0

! B) 2 F such that Z 0
� K. Hence,

LI(n+ 1) holds. 2

The kernel I of a set of functional dependencies over the attribute set U is the
set of all attributes A 2 U which occur only in the left hand side of functional
dependencies of F or in trivial functional dependencies of F . Intuitively, the
attributes in the kernel are in every key of a relation schema.

De�nition 6 (Kernel)

Let F be a set of functional dependencies over the attribute set U . The kernel
I of F is the following attribute set:

I := fA 2 attr(F )
>>>>8(X ! B) 2 F : A 6= B _ (A 2 XB ) B 2 X)g:

Lemma 7

Let R = hU; F i be a relation schema where U = attr(F ). Then

I �
\

K2KR

K:

Proof. Let R = hU; F i be given. Assume A 2 I . Then by De�nition 6, A
occurs only in the left hand side of the functional dependencies in F or in trivial
functional dependencies of F . So, in the �rst case, A cannot be derived from the
functional dependencies in F . Since K+ = U for every K 2 KR, we conclude
A 2

T
K2KR

K. In the second case, we have A 2 K+ if and only if A 2 K.
Again, A 2

T
K2KR

K. 2
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3 An Inference System for Deriving Keys

We introduce an inference system K for deriving keys of a relation schema.
Virtually, the entities which are derived with K are functional dependencies. So,
when we speak of deriving a key K we mean to derive a functional dependency
K ! A.

The system K is sound in the sense that every functional dependency X ! A,
which is derived with K , is in F+. It is complete in the sense that for every key
K of a relation schema R = hU; F i a functional dependency K ! A is derivable,
where A 2 U or A = ?.

The inference system K is a Hilbert style inference system. Let R = hU; F i

be a relation schema. By our convention the functional dependencies in F are
non-trivial, unit functional dependencies. The inference system K depends on
R.

Axioms of K

?! ?

X ! A if (X ! A) 2 F

Rules of inference of K

K1:
X ! A YA! B

XY ! B

K2:
X ! A Y ! B

XY ! B

The axioms of K are essentially the functional dependencies of F . The axiom
of the form ? ! ? is only needed when F = ?. Then ? is the only key of R.
Note that U = attr(F ) and so, F = ? implies U = ?. Note also, that in the
inference rule K2 the two functional dependencies in the premise can be swapped
and thus, one can also derive the functional dependency XY ! A.

The inference rules of K have two premises and one conclusion. A derivation
F `K X ! A is de�ned in the usual way. That is, a derivation F `K X ! A

starts with axioms from K . Then one derives functional dependencies using

axioms from K or functional dependencies which have been derived by previous
steps. The length of a derivation F `K X ! A is de�ned as the number of
inference steps with K1 or K2. The soundness of K is trivial. So, we address the
question of completeness.

Let R = hU; F i be a relation schema and R+ = hU; tc(F )i its transitive form.
By Lemma 2, the set of keys of R and R+ coincide. Therefore, we assume in the
following considerations that R = R+, that is, R is transitive.
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We show how to �nd non{deterministically a derivation F `K K ! A of
length at most 3jF j, where K is a key of R and A 2 U or A = ?. If F = ?,
then U = ?, because by our assumption we have U = attr(F ). Then ? is the
only key of R. We have F `K ? ! ? with length zero, because ? ! ? is an
axiom of K . We proceed under the assumption F 6= ?.

At �rst we derive a functional dependency X1 ! A1 using only the inference
rule K2. Let I � U be the kernel of R, and let fV1 ! C1; : : : ; Vk ! Ckg

be a cardinal minimal subset of F such that V� \ I 6= ? for all 1 � � � k and
I �

Sk
�=1 V�. Then we derive with K2 the functional dependency V1 : : : Vk ! C1.

We set X1 = V1 : : : Vk and A1 = C1. Then we have F `K X1 ! A1 and I � X1.
If X1 = K, then we are done. Clearly, this derivation has length at most jF j.
Otherwise, we make a case analysis.

Case 1: X1 �K 6= ?.
Let D1 2 (X1 �K). Since R is a transitive relation schema, by Lemma 5 there
exists a functional dependency Z1 ! D1 in F such that Z1 � K. Thus, we have
the two functional dependencies

X1 ! A1 and Z1 ! D1

with the properties

(1) Z1 � K, and

(2) jX1 �Kj > j(X1 �D)Z1 �Kj � 0, because Z1 � K.

Using the inference rule K1 we obtain

[K1]
Z1 ! D1 (X1 �D1)D1 ! A1

Z1(X1 �D1)! A1

If Z1(X1 �D1) � K holds, then we are ready with case 1. Otherwise, we can
apply to Z1(X1 �D1) ! A1 the same consideration as to X1 ! A1 above. In
consideration of (2) we derive after �nitely many steps a functional dependency

Zn(: : : (Z2(Z1(X1 �D1)�D2)� � � �)�Dn)! A1

such that Zn(: : : (Z2(Z1(X1�D1)�D2)�� � �)�Dn) � K. If Zn(: : : (Z2(Z1(X1�

D1)�D2)�� � �)�Dn) = K, then we are done. The length of this derivation is at
most jF j. Otherwise, there is Zn(: : : (Z2(Z1(X1 �D1)�D2)� � � �)�Dn) � K,
and we proceed with case 2. Note that the kernel I ful�lls the relation I �

Zn(: : : (Z2(Z1(X1 �D1)�D2)� � � �)�Dn) � K.

Case 2: X1 � K.
Then, X+

1 � U , because K is a �{minimal key. Let A2 2 (U �X+
1 K) 6= ?. By

Lemma 5 there exists a functional dependency X2 ! A2 in F such that X2 � K.
We have

554 Wastl R.: On the Number of Keys of a Relational Database Scheme



(1) X1X2 � K by construction, and

(2) X+
1 � (X1X2)

+
� U , because A2 2 U �X+

1 K.

Using the inference rule K2 we obtain

[K2]
X1 ! A1 X2 ! A2

X1X2 ! A2

From (2) we get jU�X+
1 j > jU�(X1X2)

+
j � 0. Now, if (X1X2)

+ = U , then we
are done. Otherwise, we can apply to X1X2 ! A2 the same consideration as to
X1 ! A1 above, because of (1). Thus, after �nitely many steps we can construct
a functional dependency X1X2 : : : Xn ! An such that jU�(X1X2 : : : Xn)

+
j = 0

and X1X2 : : : Xn � K. Since K is a key we conclude X1X2 : : : Xn = K. By
construction, we need at most jF j inference steps with K2. Thus, we have proved
the following theorem.

Theorem 8

Let R = hU; F i be a transitive relation schema. For every key K of R there
exists a derivation F `K K ! A, where A 2 U or A = ?, of length at most
3jF j. 2

Since the set of keys of a relation schema R coincides with the set of keys of
its transitive form R+ by Lemma 2, we get the following completeness theorem
for the inference system K .

Theorem 9 (Completeness of `K)
Let R = hU; F i be a relation schema. Then, for every key K of R there exists a
derivation F `K K ! A, where A 2 U or A = ?. 2

Example 10

Let R = hU; F i, where U = fA;B;C;D;E; Fg and

F = fAB ! C;

DC ! E;

F ! G g:

The following is a derivation of length 2 of the unique key ABDF .

[K2]
[K1]

AB ! C DC ! E

ABD ! E
F ! G

ABDF ! E
:y

Example 11

Let R = hU; F i, where U = fA;B;Cg and

F = fAB ! C;

C ! B g:
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There are two keys: AB and AC. The derivation of AB has length zero, because
the functional dependency AB ! C is an axiom of K .

AB ! C
:

A derivation of AC is given below:

[K1]
C ! B [K2]

AB ! C C ! B

ABC ! B
AC ! B

:y

Let R = hU; F i be a relation schema. We show that the following deci-
sion problem is NP{complete: Given a functional dependency X ! A; decide
whether there is a derivation F `K X ! A and X is a cardinal minimal key of R.
We show at �rst that this decision problem is in NP. To this end, guess a deriva-
tion F `K X ! A and verify that X is a cardinal minimal key of R. Guessing
a derivation can be done in time O(jF j); note that a (non-deterministic) deriva-
tion F `K K ! A has length � jF j, because each functional dependency in F

must occur at most one time in the derivation. To verify that X is a cardinal
minimal key of R we check X+ = U , and we check the inclusion (X �A)+ � U

for each A 2 X . Computing the closure Z+ of an attribute set Z is polynomial
in the input R (cf. [Ullman 1988]). Hence, the veri�cation whether X is a car-
dinal minimal key of R is polynomial in the input R. Now NP{completeness
follows immediately from the fact that �nding a cardinal minimal key of a rela-
tion schema is NP{complete. See [Lucchesi et al 1978] (or [Garey et al 1979] p.
232, A4.3.1).

Theorem 12

Let R = hU; F i be a relation schema. The problem to �nd a derivation F `K

K ! A such that K is a cardinal minimal key of R is NP{complete.

4 Estimating the Number of Keys

We use the fact that the inference system K is complete with respect to the set
of keys of a relation schema.

Theorem 13

Let R = hU; F i be a relation schema such that F is a set of non-trivial unit
functional dependencies. Then, R has at most bejF j=ec keys.

Proof. Let R = hU; F i be given. We de�ne a graph structure in order to
estimate the number of keys of R. The digraph G = hV;Ei has vertex set

V = F
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and edge set

E = f(X ! A) �! (YA! B)
>>>> (X ! A); (YA! B) 2 Fg:

Let C1; : : : ; Ck � V be the strongly connected components of G . Now in the
most optimistic case every left hand side of a vertex in a strongly connected
component is a key of that component. So, we can estimate the number of keys
of R by

jKRj � jC1j � � � jCkj:

Note that the e�ect of the inference rule K2 is implicit in the product jC1j � � � jCkj.

We show that if every strongly connected component C� has jF j
k

elements, then
the product jC1j � � � jCk j will be maximal.

Claim: 8k � 1 : if every C� (1 � � � k) has jF j
k

elements, then the product
jC1j � � � jCkj is maximal.

Proof. We solve the following extremal problem using the Lagrange multi-
plier method (cf. [Edwards 1973]). Let N = jF j. Determine the maximum of
the function

f :

�
R
k
! R

hx1; x2; : : : ; xki 7! x1x2 � � �xk

subject to x1+x2+� � �+xk = N on the k{dimensional interval I = [1; N ]k � R
k .

Let g(x1; x2; : : : ; xk) = x1 +x2+ � � �+xk �N . We solve the following system of
k + 1 equations in the k + 1 indeterminates x1; x2; : : : ; xk ; �.

g(x1; x2; : : : ; xk) = 0 (1)

rf(x1; x2; : : : ; xk) = �rg(x1; x2; : : : ; xk): (2)

This yields

x1 + x2 + � � �+ xk �N = 0 (3)

x1 � � �xi�1xi+1 � � �xk = � (1 � i � k) (4)

Multiplying (3) with � in consideration with (4) yields

kx1x2 � � �xk = �N;

from which we get � = kx1x2���xk
N

. With (4) we obtain

xi =
N

k
(1 � i � k):

Finally, we verify the uniqueness of this solution. Suppose that r1; r2; : : : ; rk; �
0
2

R is another solution of (3) and (4). Then from (3) and (4) we get kr1r2 � � � rk =
�0N and further, ri =

N
k
for all 1 � i � k. Hence, xi = ri for all 1 � i � k. 2
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From the claim we get

jKRj �

j
jF j

k
� � �

jF j

k

k
| {z }

k factors

:

Let N = jF j. We investigate the real valued function ' : x 7! Nx

xx
on the intervall

[1; N ] � R, where N 2 N and N � 3. We determine the maximum of ' in the
intervall [1; N ]. Therefore we compute the zeros of the derivative '0:

Nxx�x(lnN � lnx� 1) = 0:

Since Nxx�x is always positive on [1; N ], we consider

lnN � lnx� 1 = 0:

This yields the zero x = N
e
which is the only extremal point in [1; N ]. Now if

jF j < 3, then R has at most 2 keys. Hence we get jKRj � bejF j=ec. 2

It is easy to construct an example of a relation schema such that jKRj =
jC1j � � � jCkj.

Example 14

Consider the set F of functional dependencies

F = fA1
1 ! A2

1; A
2
1 ! A3

1; : : : ; A
k1�1
1 ! Ak1

1 ; Ak1
1 ! A1

1;

A1
2 ! A2

2; A
2
2 ! A3

2; : : : ; A
k2�1
2 ! Ak2

2 ; Ak2
2 ! A1

2;
...
A1
n ! A2

n; A
2
n ! A3

n; : : : ; A
kn�1
n ! Akn

n ; Akn
n ! A1

ng:

Then

KR = fA1
1; : : : ; A

k1
1 g � fA1

2; : : : ; A
k2
2 g � � � � � fA1

n; : : : ; A
kn
n g � ejF j=e:

Related Work

In [Thalheim 1992] it is shown that the number of keys of a relation schema is
bounded by

�
n

bn
2
c

�
, where n = jU j. Note that this estimation depends on U ,

whereas our estimation depends on F . This is an essential di�erence. Below,
we estimate the number of keys for small powers of 2. We consider the cases
jF j = 0:75 � jU j, jF j = jU j and jF j = 1:25 � jU j. Notice that the assumption
jF j = 1:25 � jU j is very pessimistic.

n
�

n
bn
2
c

�
be3n=4ec ben=ec be5n=4ec

2 2 1 2 2

4 6 3 4 6

8 70 9 18 39

16 12870 82 359 1568

32 � 6 � 108 6830 129 591 2 458 784
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5 Conclusions

We have introduced an inference system K for deriving (non{deterministically)
all keys of a relation schema. The problem to �nd a derivation F `K X ! A

such that X is a cardinal minimal key is NP{complete. Then we have estimated
the number of keys of a relation schema R = hU; F i by bejF j=ec.
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