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Abstract: This paper presents some numerical simulations of rounding errors pro-
duced during evaluation of Chebyshev series. The simulations are based on perturba-
tion theory and use recent software called Aquarels. They give more precise results
than the theoretical bounds (the di�erence is of some orders of magnitude). The paper
concludes by con�rming theoretical results on the increment of the error at the end of
the interval [�1; 1] and the increased performance achieved by some modi�cations to
Clenshaw's algorithm near those points.
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1 Introduction

Today, numerical simulation is the most widely used method for evaluating phys-
ical systems. In order to obtain descriptive results of a physical phenomenon,
a scienti�c software program must implement a mathematical representation of
an actual problem using numerical resolution methods. To validate the simula-
tion results, one has to evaluate the propagation of roundo� errors dependent
on computer arithmetic units, as well as the impact of erroneous input data on
the �nal result. This process guarantees that results can be trusted.

Chebyshev polynomial series appear in several �elds of scienti�c research and
mathematics, as, for instance, in the resolution of partial di�erential equations
by means of the Chebyshev collocation method [Canuto et al. 1988], in the ap-
proximation of functions [Schonfelder 1978] and in the compression of satellite
ephemerides [Co�ey et al. 1996].

Let pn(x) be one of such series with a �nite number of terms, i.e.,

pn(x) =

nX
i=0

ci Ti(x); with x 2 [�1; 1]; (1)

where Ti(x) are the Chebyshev polynomials of the �rst kind. A typical operation
is the evaluation of (1) at one point x for which several algorithms have been
proposed [Bakhvalov 1971, Clenshaw 1955, Forsythe 1957, Gentleman 1969].
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The numerical stability of those algorithms has been studied [Bakhvalov 1971,
Oliver 1979], giving some theoretical bounds of the rounding errors. Following
these studies Clenshaw's algorithm is recommended except for x near �1 and 1,
where the Reinsch modi�cations to Clenshaw's algorithm [Gentleman 1969] are
preferred.

These theoretical bounds are very conservative, as they are of several orders
of magnitude bigger than the real errors, and consequently, of limited use in prac-
tical situations. For this reason, we chose to study \realistic" rounding errors for
some Chebyshev series by using each of the proposed algorithms in turn in order
to con�rm the theoretical analysis (for more details see [Barrio and Berges 1997]).
These analyses are of practical interest due to the need to choose one or several
algorithms for accurate evaluation of any speci�c series.

2 Perturbation analysis

We thus used modern software called Aquarels [Berges 1995, Erhel et al. 1991,
Francois 1989] to do perturbation analysis in order to obtain estimations of the
rounding errors. This program provides a problem solving environment for con-
trolling and improving the numerical quality of scienti�c software. The simu-
lation is based on random perturbations of the last bit of the result in each
elementary operation. This kind of methods has proven its usefulness in scien-
ti�c computing [Chesneaux 1994].

The algorithms analyzed are those of: Forsythe, Clenshaw, and Bakhvalov
and also the Reinsch modi�cations near x = �1 (Reinsch(�1)) and near x = 1
(Reinsch(1)). In the tests, four kinds of Chebyshev series were used; the �rst (P1)
with 6000 random coe�cients normally distributed with mean 0 and variance
1, the second (P2) with monotonically decreasing coe�cients, ci = 1=i2 (i =
1; : : : ; 6000), and the third (P3) and the fourth (P4) consisted of the 3000 �rst
coe�cients of the development of two functions in Chebyshev polynomials:

f3(x) =
sin 8 (x+ 1) + sin 400 (x+ 1)

(x+ 1:1)3=2
; f4(x) =

sin 8 (x+ 1) + sin 2000 (x+ 1)

(x+ 1:1)3=2
:

2.1 Theoretical bounds

The theoretical bounds [Bakhvalov 1971, Oliver 1979] of the rounding errors are
usually given up to the �rst order on the unit roundo� (u) of the computer used,
i. e.,

jepn(x)� p(x)j < k � u+O(u2);

where epn(x) is the calculated value of pn(x).
Figure 1 shows the theoretical error bounds (factor k). The left-hand side

shows the bounds for x 2 (�1+ "; 1� "), whereas the right-hand side shows the
bounds for x 2 [�1;�1+") (the bounds near x = 1 are symmetric, and changing
Reinsch(�1) by Reinsch(1)). As a result, we can hypothesize that random prob-
lems are more di�cult to evaluate due to the similar size of all the coe�cients,
which gives very pessimistic bounds. For monotonically decreasing coe�cients
(problem P2) the bound of the errors is small. For \real" series (coming from
approximations of functions) the bounds increase with the complexity of the
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function. Also, it may be observed that, a priori, Reinsch's algorithm adapted
for values near x = �1 works better in that interval, while the performance is
worse near x = 1. Something similar occurs with the other algorithm of Reinsch
for the case x = 1. At these values (' �1;' 1) the theoretical bounds increase
by several orders of magnitude, being in some cases of an order of 1010. In the
middle range, Clenshaw's algorithm is preferred. The bounds of Bakhvalov's al-
gorithm show a lower dependence on the problem but as the bound involves an
unknown constant, it is not possible to make any hypotheses.

Taking into account the �gures of the theoretical error bounds leads to the
same recommendations as Oliver, i. e. using the algorithm of Reinsch(�1) for
x 2 [�1;�0:6), Clenshaw for x 2 [�0:6; 0:6] and Reinsch(1) for x 2 (�0:6; 1]
(Oliver only uses very small series in his simulations). Cox (1993) recommends
the intervals [�1;�0:5), [�0:5; 0:5] and (0:5; 1], respectively (the subroutines
E02AEF and E02AKF of NAG (1993) use these intervals, whereas the subroutine
C06DBF uses only Clenshaw's algorithm).
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Figure 1: Theoretical error bounds.
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2.2 Numerical tests

The previous sub-section dealt with the theoretical bounds, but the question
remains as to what happens in a real problem? How accurate are the theoretical
bounds?

In some algorithms the theoretical bounds are quite accurate and yield good
estimations of the rounding errors, but in others there are some \pathologi-
cal" problems with a bound of several orders of magnitude bigger than average.
Therefore, in such algorithms the theoretical bound would be of little use because
it accounts for the worst-case propagation of errors.

Due to the big size of the theoretical bounds of some algorithms, specially
near x = �1 and x = 1, it appeared to be worthwhile to do some numerical
analysis. As mentioned above, Aquarels software with double precision was
used. Aquarels applies a perturbation method in order to estimate \realistic"
error bounds for some problems of interest.

For each evaluation algorithm, each series, and each point of evaluation x 2
[�1; 1], 100 simulations were performed, which was su�cient to obtain statistical
results of the rounding errors. First, by means of Shapiro and Wilk's normality
test [Royston 1982], the distribution of errors was checked to see whether it
followed a normal law. Table 1 shows the results of the test for some simulations
for the P1 problem using the Forsythe algorithm. It may be assumed that, in
general, the normal law can be used except for x = 0:6, where the hypothesis
may be rejected.

Table 1: Results of the normality test of Shapiro and Wilk. The signi�cance level
is � = 0:05. The values of the statistic W of the simulations are bigger than the
corresponding tabulated values of W for � = 0:05 and N = 100 (the p{value � �)
except for the case x = 0:6.

x �1: �0:8 �0:6 �0:4 �0:2 �0:003 0. 0.003 0.2 0.4 0:6� 0.8 1.

W 0.98 0.986 0.975 0.989 0.989 0.972 0.98 0.975 0.986 0.971 0:962� 0.984 0.984
p 0.52 0.82 0.29 0.93 0.94 0.20 0.53 0.29 0.86 0.18 0:03� 0.73 0.77

Let xi 2 [�1; 1] and let fyij j 1 � j � Ng be the N simulations (here N =
100) of the evaluation of the series at the point xi. The following notation will
be used:

yi =
1

N

NX
j=1

yij ;

rAij = yij � yi; rRij =
yij � yi
jyij

;

lAij = � log
10
(jrAij j); lRij = � log

10
(jrRij j):

In order to represent all the perturbation tests we used what we have called
the logarithmic polar representation. In 2D, this representation of the absolute
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rounding errors consists of representing on the plane(
Px = lAij cos �j ; with �j = (j � 1)

�

N
;

Py = lAij sin �j :

For the relative rounding errors we used lRij instead of lAij . In 3D, the represen-
tation is similar, but with x as the third coordinate. Moreover, the data rij was
sorted from bigger to smaller fri1 � ri2 � : : : � riNg in order to smooth the
curve. Also, with the re-ordering, the negative errors are plotted on the lower
part of the graph, while the positive are on the upper part. These representations
of the rounding errors enabled us to better visualize their behavior.

Figures 2, 3, 4 and 5 show the logarithmic polar representation of the simula-
tion errors and Figures 6, 7, 8 and 9 show the standard deviation, in a logarithmic
scale. The increment at the ends of the interval appears in every algorithm and
problem, but without the symmetry of the theoretical bounds. In each problem
(except P2) the worst performance is presented for the Bakhvalov algorithm.

For the P1 problem the behavior of the algorithms is quite similar, except
for the Bakhvalov one. In general, the best performance was achieved using the
Clenshaw algorithm, but near the ends, a slight improvement was found for
the Reinsch algorithms. For P2 the Forsythe algorithm worked \badly", due
to the particular behavior of the coe�cients, monotonically decreasing in size.
Thus, it is better to begin the evaluation from the last coe�cients (the Forsythe
algorithm is the only one that begins from the �rst ones). The \good" behavior
of this analysis is shown in 2D in the joined curves and in 3D in the almost
cylindrical �gure. On P3 and P4 we observed that the rounding errors increase
with the complexity of the function to be approximated.

It has been demonstrated that the theoretical bounds are some orders of
magnitude higher than the simulations. Besides, for the Bakhvalov algorithm
these bounds are of little use, due to the unknown coe�cient in the theoretical
bound. Therefore, our recommendations on the choice of one algorithm, taking
into account only the rounding errors, are similar to those resulting from the
theoretical analysis, i. e.: in general, the Clenshaw algorithm should be used
and near the ends the Reinsch algorithms. Table 2 shows the \best" algorithm
depending on the interval of the variable x.

Table 2: \Recommended" algorithms.

Problem Reinsch(�1) Clenshaw Reinsch(1)

P1 [�1;�0:6) [�0:6; 0:6] (0:6; 1]

P2 [�1;�1 + ") [�1 + "; 0] (0; 1]

P3 [�1;�0:6) [�0:6; 0:7] (0:7; 1]

P4 [�1;�0:7) [�0:7; 0:7] (0:7; 1]
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3 Conclusions

The numerical tests con�rmed the theoretical results on the increment of the
error at the ends of the interval [�1; 1] and the better performance of some
modi�cations of the Clenshaw algorithm at those points.

It should be pointed out that, as the di�erences on the rounding errors ob-
served in the simulations for the di�erent algorithms are in general very small,
it is not worth using other algorithms than that of Clenshaw due to its good
performance in the tests and its cheaper evaluation cost.

It may be concluded that it is worthwhile controlling rounding errors via
perturbation analysis as a complement to theoretical studies of the error bounds
since this control serves as a numerical validation and analysis of the theoretical
bounds. Also, it can be useful in a preliminary study of the stability of new
algorithms, when no bounds are known or when the determination of bounds is
a di�cult task.
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Figure 2: Logarithmic polar representation of the error for the problem P1.
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Figure 3: Logarithmic polar representation of the error for the problem P2.
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Figure 4: Logarithmic polar representation of the error for the problem P3.

570 Barrio R., Berges J.C.: Perturbation Simulations of Rounding Errors ...



-20 0 20

-10

0

10

Px

P
y

-20 0 20

-10

0

10

Px

P
y

-1
0

1

-20
0

20
-20

0

20

xPx

P
y

-20 0 20

-10

0

10

Px

P
y

-20 0 20

-10

0

10

Px

P
y

-1
0

1

-20
0

20
-20

0

20

xPx

P
y

-20 0 20

-10

0

10

Px

P
y

-20 0 20

-10

0

10

Px

P
y

-1
0

1

-20
0

20
-20

0

20

xPx
P

y

-20 0 20

-10

0

10

Px

P
y

-20 0 20

-10

0

10

Px

P
y

-1
0

1

-20
0

20
-20

0

20

xPx

P
y

-20 0 20

-10

0

10

Px

P
y

-20 0 20

-10

0

10

Px

P
y

-1
0

1

-20
0

20
-20

0

20

xPx

P
y

x<0 x>0 3D

F
o

rs
yt

h
e

C
le

n
sh

aw
R

ei
n

sc
h

 (
-1

)
R

ei
n

sc
h

 (
1)

B
ak

h
va

lo
v

Figure 5: Logarithmic polar representation of the error for the problem P4.
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Figure 6: Standard deviation of the rounding errors in the P1 problem.
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Figure 7: Standard deviation of the rounding errors in the P2 problem.
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Figure 8: Standard deviation of the rounding errors in the P3 problem.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

point x

x
+

o Forsythe
Clenshaw

Bakhvalov

Reinsch(-1)
Reinsch(1)

x+

Figure 9: Standard deviation of the rounding errors in the P4 problem.
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