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Abstract: Nonperfect secret sharing schemes (NSSs) have an advantage such that the
size of shares can be shorter than that of perfect secret sharing schemes. This paper
shows some basic properties of general NSS. First, we present a necessary and su�cient
condition on the existence of an NSS. Next, we show two bounds of the size of shares,
a combinatorial type bound and an entropy type bound. Further, we de�ne a compact
NSS as an NSS which meets the equalities of both our bounds. Then we show that a
compact NSS has some special access hierarchy and it is closely related to a matroid.
Veri�able nonperfect secret sharing schemes are also presented.
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1 Introduction

Secret sharing schemes permit a secret to be shared by participants in such a
way that only quali�ed subsets of participants (access subset) can recover the
secret. Secret sharing schemes are useful in the management of cryptographic
keys, in multiparty protocols, and etc.

\Perfect"secret sharing schemes (PSS) have been studied extensively so far.
In a perfect secret sharing scheme, any subset of participants is an access subset
or a non-access subset that has absolutely no information on the secret. No
subsets are allowed in between.

Blakley [Blakley 79] and Shamir [Shamir 79] introduced (k; n)-threshold se-
cret sharing schemes independently. In such a scheme, the access subsets are
all the subsets whose cardinality is more than k � 1. A family of all the access
subsets is called an access structure. A family � is said to be monotone if

A 2 �;A � A0 ) A0 2 � :

Then it was shown [Itoh et al. 87] that a perfect secret sharing scheme exists if
and only if the access structure is monotone. Subsequently, Benaloh and Leichter
[Benaloh, Leichter 90] gave a simpler and more e�cient way to realize monotone
access structures.

The most important issue of secret sharing schemes is the size of shares
owned by the participants. The size of shares should be as small as possible to
save resources, say, memory. In secure multi-party computations, small size of
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shares can reduce the communication complexity, too (see [Franklin, Yung 92]).
However, for any PSS, it is known that

jVij � jSj; (1)

where jSj denotes the size of the secret and jVij denotes the size of the share of
participant Pi [Karnin et al. 82][Capocelli at el. 93][Kurosawa, Okada 96]. More
tight lower bounds of jVij such that

jVij > jSj

which depend on the access structure have also been presented [Capocelli at el. 93]
[Blundo at el. 92b][Brickell, Stinson 92][Blundo at el. 92a][Stinson 92]. This re-
sult means that every participants must hold very large information keeping
secret. It will cost them much. If share size can be reduced then each participant
save costs or obtains higher security with same cost. So, it is desired jVij is as
small as possible.

We emphasize here that jVij � jSj in any PSS. Therefore, schemes which can
achieve

jVij < jSj

must be \nonperfect", where semi-access subsets should be allowed. A semi-
access subset is a set of participants who can have some information on the
secret but cannot recover the secret completely. An example of nonperfect secret
sharing schemes is (d; k; n)-ramp schemes [Blakley, Meadows 84] which are an
extension of (k; n)-threshold schemes such as follows. In a (d; k; n)-ramp scheme,

B is

�
an access subset if jBj � k;
an non-access subset if jBj � k � d:

If k � d < jBj < k, then B has some information about the secret, but cannot
recover it.

As a practical example, let us consider the following situation. For a bank, the
list of clients is an important secret. Usually, it is stored in the main computer
of the headquarters of the bank. At the same time, it should be stored in the
computers of the branches of the bank in case the main computer is damaged by
some disaster like Kobe earthquake of 1995. However, it is dangerous to make
each branch have the complete list because the security of the branches is not
so high as that of the headquarters. Now assume that

1. there are 10 branches,
2. attackers can break the security of at most 5 branches,
3. any 8 branches should be able to reconstruct the list at a crucial moment.

For that purpose, we can use a (8; 10)-threshold scheme or a (3; 8; 10)-ramp
scheme. Let

{ S denote the list of clients and
{ Vi denote the share of the i-th branch.
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In the �rst case, the size of the share of each branch must be as large as the size
of the list itself. That is,

log
2
jVij = log

2
jSj:

On the other hand, in the second case, we can have

log
2
jV j = log

2
jSj=3:

Thus, Vi can be smaller than that of the threshold scheme.
This paper characterizes general nonperfect secret sharing schemes. A non-

perfect secret sharing scheme can be de�ned as (�1; �2; �3), where �1 is a family
of access subsets, �2 is a family of semi-access subsets and �3 is a family of
non-access subsets.
(1) First, we show a necessary and su�cient condition on the existence of NSSs.
(2) Next, we show two lower bounds on jVij, a combinatorial type bound such
that

max
i

log
2
jVij � H(S)= min

A2�1;B2�3
jA n Cj;

and an entropy type bound such that

log
2
jVij � min

B 62�1
H(SjB):

The combinatorial type bound is a generalization of [Blundo at el. 93, Theorem
3.3] which holds only for linear ramp schemes. The entropy type bound shows
that there exists a tradeo� between jVij and amount of information leakage to
semi-access set.
(3) Further, we de�ne a compact NSS as an NSS which meets the equalities of
both our bounds. Then we show that a compact NSS has some special access
hierarchy and it is closely related to a matroid.
(4) Veri�able nonperfect secret sharing schemes are also presented.

The rest of this paper is organized as follows. Section 2 states de�nitions and
related works. In section 3, we show a necessary and su�cient condition on the
existence of NSSs. Section 4 presents two lower bounds of the jVij. In section 5, we
de�ne a compact NSS and characterize it. Section 6 shows veri�able nonperfect
secret sharing schemes. Section 7 gives some lemmas on entropy which will be
used to prove the above results (Lemma 22, Lemma 23).

2 Preliminaries

jAj denotes the cardinality of a set A. AnB = fxjx 2 A but x =2 Bg. 2A denotes
the family of all subsets of A.

2.1 Entropy

For random variables X and Y , the entropy and its variants are de�ned as
follows. (For example, see [Gallager 68].)
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H(X)
4
=
X
a

�Pr(X = a) logPr(X = a);

H(X j Y = b)
4
=
X
a

�Pr(X = a) logPr(X = a j Y = b);

H(X j Y )
4
=
X
b

Pr(Y = b)H(X j Y = b);

I(X ;Y )
4
= H(X)�H(X j Y ):

Then they have the following properties.

H(X jY ) = H(XY )�H(Y );

I(X ;Y ) = H(X)�H(X j Y )

= H(Y )�H(Y j X)

= H(X) +H(Y )�H(XY );

I(X ;Y j Z) = H(X j Z)�H(X j Y Z):

2.2 De�nition of secret sharing schemes

P = fP1; : : : ; Png denotes a set of participants. s is a secret distributed over a
�nite set. S is a random variable induced by s. vi is a share of Pi distributed
over a �nite set. Vi is a random variable induced by vi.

Given a distribution over the secrets represented by the random variable S
and a distribution over �nite set of random bit-strings with random variable R,
suppose that there is a mapping � which maps a secret s and a random string
r to a vector of n shares (v1; :::; vn). That is,

� : (s; r)! (v1; : : : ; vn):

The distributions over the set of secrets and the set of random strings induce a
distribution over these vectors of shares. Let V be the random variable over the
vectors and Vi be the random variable for the i-th component induced by the
construction. That is,

V = (V1; : : : ; Vn):

De�nition 1. We say that (�;S; V ) is a secret sharing scheme (SS).

The selection of shares (v1; :::; vn) guarantees that the secret can be recon-
structed given a quali�ed subset of shares.

De�nition 2. Let � � 2V . We say that (�;S; V; � ) is a perfect secret sharing
scheme (PSS) if (�;S; V ) is a secret sharing scheme and

1. H(SjA) = 0 for 8A 2 �
(A can recover S),

2. H(SjC) = H(S) for 8C =2 �
(C has no information on S).
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A 2 � is called an access set. C 62 � is called a non-access set. � is called the
access structure of the PSS.

De�nition 3. Let (�1; �2; �3) be a partition of 2V . That is, �1 [ �2 [ �3 =
2V ; �1 \ �2 = �2 \ �3 = �3 \ �1 = �. We say that (�;S; V; (�1; �2; �3)) is a
nonperfect secret sharing scheme (NSS) if (�;S; V ) is a secret sharing scheme,
�1 6= � and

1. H(SjA) = 0 for 8A 2 �1
(A can recover S),

2. 0 < H(SjB) < H(S) for 8B 2 �2
(B has some information on S, but cannot recover S),

3. H(SjC) = H(S) for 8C 2 �3
(C has no information on S).

We say that (�1; �2; �3) is the access structure of the NSS.

2.3 Related works

A (k; n)-threshold secret sharing scheme is a PSS such that

� = fA � V j jAj � kg:

Karnin et al. proved that [Karnin et al. 82]

log
2
jVij � H(S) (2)

for any (k; n)-threshold secret sharing schemes. Capocelli et al. showed that the
above bound holds for any PSS [Capocelli at el. 93]. Kurosawa et al. proved that
[Kurosawa, Okada 96]

jVij � jSj (3)

for any PSS. This is a more tight bound than eq.(2) because log
2
jSj � H(S).

For PSSs with certain � s, more tight lower bounds on jVij than eq.(3) is
known [Capocelli at el. 93] [Blundo at el. 92b] [Brickell, Stinson 92]
[Blundo at el. 92a] [Stinson 92].

McEliece and Sarwate [McEliece, Sarwate 81] showed that Shamir's (k; n)-
threshold secret sharing scheme [Shamir 79] is closely related to Reed Solomon
codes.

A (d; k; n)-ramp scheme is an NSS such that

�1 = fA � V j jAj � kg;

�
2
= fB � V j k � d < jBj < kg;

�3 = fC � V j jCj � k � dg:

Blakley and Meadows [Blakley, Meadows 84] showed a (d; k; n)-ramp scheme
such as follows. Let jSj = pd for some prime p, and express each secret s =
(s0; : : : ; sd�1) where si is an element ofGF (p). To share a secret s = (s0; : : : ; sd�1),
the dealer chooses a random polynomial over GF (p) such that

f(x) = s0 + s1x+ � � �+ sd�1x
d�1 + adx

d + � � �+ ak�1x
k�1:
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He computes a share
vi = f(i)

and gives vi to Pi for 1 � i � n. Then it is easy to see that k or more participants
can recover s and k � d or less participants have no information on s.

Blundo at el. showed lower bounds on jVij for ramp schemes such as follows
[Blundo at el. 93].

Proposition4. [Blundo at el. 93, Theorem 3.2]
In any (d; k; n)-ramp scheme, the sum of the sizes of the shares given to any
group of d participants is at least log jSj.

De�nition 5. A (d; k; n)-linear ramp scheme is a (d; k; n)-ramp scheme which
meets the following additional property: Any set of more than k � d and less
that k participants might have \some" information on the secret s. Formally, for
all A � V with k � d < jAj < k, it holds that

H(SjA) = H(S)(k � jAj)=d:

Proposition6. [Blundo at el. 93, Theorem 3.3]
In any (d; k; n)-linear ramp scheme,

H(Vi) � H(S)=d:

Shamir's (k; n)-threshold secret sharing scheme is used in multi-party proto-
cols to cope with faulty players. Franklin and Yung used a (d; k; n)-ramp scheme
to parallelize a multi-party protocol d times [Franklin, Yung 92]. Their method
can reduce the communication complexity although only k�d+1 faulty players
can be allowed.

Brickell and Davenport [Brickell, Davenport 91] characterized ideal PSS in
terms of a matroid. Kurosawa et al. generalized this result to NSSs as follows
[Kurosawa et al. 93].

De�nition 7. [Kurosawa et al. 93] Suppose that S = S1 � S2 � � � � � Sd and

jSij = jSj=d for all i (� means concatenation). Let W
4
= fS1; : : : ; Sd; V1; : : : ; Vng.

We say that an SS (�;S; V ) has a level d mixed access hierarchy (�̂0; �̂1; : : : ; �̂d)
if

d[
i=0

�̂i = 2W ; �̂i \ �̂j = � (i 6= j) and

H(SjA) = (k=d)H(S) for 8A 2 �̂k :

De�nition 8. [Kurosawa et al. 93] We say that an SS of a level d mixed access
hierarchy is ideal if

jaj = H(a) = H(S)=d; 8a 2 W :

A matroid M = (W; I) is a �nite set W and a collection I of subsets of W
such that (I1) � (I3) are satis�ed

(I1) � 2 I.
(I2) If X 2 I and Y � X , then Y 2 I.
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(I3) If X and Y are members of I with jX j = jY j+1, then there exists x 2 XnY
such that Y [ fxg 2 I.

Proposition9. [Kurosawa et al. 93] Suppose that

1. An SS has a level d mixed access hierarchy (�̂0; �̂1; : : : ; �̂d) and the SS is
ideal.

2. For 8a 2 V such that fag 2 �̂d, there exists B 2 �̂�
d�1 such that a 2 B.

Then, there exists a matroid on W 4

= fS1; : : : ; Sd; V1; : : : ; Vng with a rank
function � such that

(N1) �(S1 � � �Sd) = d.

(N2) �(S1 � � �SdX)� �(X) = k if X 2 �̂k \ 2V .

(After an early version of this paper [Ogata et al. 92], Okada and Kurosawa
showed a more tight lower bound on jVij than Theorem 14 of this paper for NSSs
with certain (�1; �2; �3) [Okada, Kurosawa 94].)

3 Monotone Property

De�nition 10. A family � is said to be monotone if

A 2 �;A � A0 ) A0 2 �:

It is known that there exists a perfect secret sharing scheme (PSS), (�;S; V; � )
if and only if � is monotone [Itoh et al. 87][Benaloh, Leichter 90]. For NSSs, we
show the following theorem.

Theorem11. Suppose that jSj � 2. Let (�1; �2; �3) be a partition of 2V . Then,
there exists an NSS whose access structure is (�1; �2; �3) if and only if both �1
and �1 [ �2 are monotone.

Proof. First, we will prove that if there exists an NSS (�;S; V; (�1; �2; �3)) then
�1 and �1 [ �2 are monotone. For all A 2 �1,

H(SjA) = 0

from de�nition of NSS. Therefore, for all A0 � A,

H(SjA0) � H(SjA) = 0;

H(SjA0) = 0;

A0 2 �
1
:

This mean that �1 is monotone. Similarly, �1 [ �2 is monotone.
Next, we will prove if part. Suppose that �1 and �1 [ �2 are monotone.

(Case 1) Suppose that jSj > 2. Without loss of generality, we assume S is
distributed over f0; : : : ; jSj � 1g. Express s 2 S as

s = 2s1 + s2;
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where s2 = 0 or 1 and 0 � s1 � b(jSj � 1)=2c. Let S1; S2 be random variables
induced by s1; s2 respectively. S1 is distributed over f0; : : : ; b(jSj � 1)=2cg and
S2 is distributed over f0; 1g.

Since �1 is monotone, there exists a PSS (�1; S1; V
0; �1) for s1, where V

0 =
fV 0

1
; : : : ; V 0

ng and V
0
i is the random variable induced by Pi's share, v

0
i. Similarly,

there exists a PSS (�2; S2; V
00; �1 [ �2) for s2 because �1 [ �2 is monotone,

where V 00 = fV 00
1
; : : : ; V 00

n g and V
00
i is the random variable induced by Pi's share,

v00i . Now we consider a SS (�;S; V ) in which Pi's share is vi = (v0i; v
00
i ), Vi is the

random variable induced by Vi and V = (V1; : : : ; Vn).

1. 8A 2 �1, H(S1jA) = H(S2jA) = 0.
So,

H(SjA) = 0:

2. 8B 2 �2, H(S1jB) = H(S1); H(S2jB) = 0.
So, B gets partial information for S, that is,

0 < H(SjB) < H(S):

3. 8C 2 �1, H(S1jC) = H(S1); H(S2jC) = H(S2).
So,

H(SjC) = H(S):

Consequently, (�;S; V ) is a nonperfect secret sharing scheme whose access struc-
ture is (�1; �2; �3).
(Case 2) Suppose that jSj = 2. Consider a distribution rule such as follows.

s 0 0 0 1 1 1
s1 0 0 0 1 1 1
s2 0 0 1 1 1 0

That is, S1 = S and

Pr(S2 = 0jS = 0) =
2

3
;

Pr(S2 = 1jS = 0) =
1

3
;

Pr(S
2
= 1jS = 1) =

2

3
;

Pr(S
2
= 0jS = 1) =

1

3
:

The rest of the proof is the same as (Case 1). ut
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4 Lower Bounds on the Size of the Shares

In a PSS, it is known that
log

2
jVij � H(S) (4)

if Vi belongs to some minimal access set [Karnin et al. 82][Capocelli at el. 93]
[Kurosawa, Okada 96]. If S is uniformly distributed, it is well known that

H(S) = log
2
jSj:

Therefore, jVij � jSj for uniformly distributed S. (Recently, it was proved that
jVij � jSj even for nonuniformly distributed S [Kurosawa, Okada 96].)

An NSS has a possibility of shorter length of shares such as

log
2
jVij < H(S):

In this section, we derive two types of lower bounds on log
2
jVij of NSSs, a

combinatorial type bound and an entropy type bound.

De�nition 12. We say that the NSS is connected if for all i,

9A 2 ��
1
: Vi 2 A

where ��
1

is a family of minimum sets of �1.

If there exists Vi which is not included in all minimum access sets, we can
consider that Pi does not participate the scheme.

4.1 Combinatorial type bound

Lemma13. In any NSS, if A 2 �1; C 2 �3 and C � A, then

X
Vi2AnC

H(Vi) � H(S) :

Proof. From Lemma 23 (see Section 7),

H(SjA) � H(SjC)�
X

Vi2AnC

H(Vi):

Note that Lemma 23 requires that C � A. From De�nition 3 (1) and (3),

X
Vi2AnC

H(Vi) � H(SjC)�H(SjA) = H(S):

ut

Theorem14. In any NSS,

max
i

log
2
jVij � H(S)=min jA n Cj; (5)

where the minimum is taken over 8A 2 �1 and 8C 2 �3.
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(Note that �1 6= � from De�nition 3.)

Proof. First we assume C � A. Then, from lemma 13,

X
Vi2AnC

H(Vi) � H(S) : (6)

On the other hand,

X
Vi2AnC

H(Vi) � jA n Cjmax
i

log
2
jVij (7)

because H(Vi) � log
2
jVij. From eq.(6) and eq.(7), we obtain

H(S) � jA n Cjmax
i

log
2
jVij : (8)

Next, we assume C 6� A. Let A0
4
= C [A. Since �1 is monotone (from Theorem

11), A0 2 �1. Then, from eq.(8), we have

H(S) � jA0 n Cjmax
i

log
2
jVij : (9)

It is clear that
jA n Cj = jA0 n Cj : (10)

From eq.(9) and eq.(10), we obtain

H(S) � jA n Cjmax
i

log
2
jVij :

Therefore, we have eq.(5). ut

Corollary 15. If S is uniformly distributed, then

max
i

log
2
jVij � log

2
jSj=min jA n Cj; (11)

where the minimum is taken over 8A 2 �1 and 8C 2 �3.

Proof. If S is uniformly distributed, then

H(S) = log
2
jSj:

Therefore, we have eq.(11). ut

Remark. Lemma 13 is a generalization of Proposition 4. Theorem 14 is a gener-
alization of Proposition 6.
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4.2 Entropy type bound

Lemma16. For all B 62 �
1
and for all D such that B [D 2 �

1
,

H(SjB) �
X
Vi2D

log
2
jVij:

Proof. Let D = fVi1 ; : : : ; Vikg.

0 = H(SjB [D) � H(SjB)�

kX
j=1

H(Vij ) (lemma 23)

H(SjB) �

kX
j=1

H(Vij )

�

kX
j=1

log
2
jVij j =

X
Vi2D

log
2
jVi

ut

Theorem17. In any connected NSS, for all i,

log
2
jVij � minH(SjB): (12)

The minimum is taken over all B 62 �1.

Proof. In a connected NSS, for all Vi there exists A 2 ��
1

such that Vi 2 A. Let

B
4
= A n fVig:

Then B 62 �1 and B [ fVig 2 �1. So, from lemma 16,

log
2
jVij � H(SjB) � min

B 62�1
H(SjB):

ut

Theorem 17 is a generalization of Eq. (4) because in a PSS, H(SjB) = H(S)
if B 62 �

1
.

5 Compact NSS and Matroid

In this section, we de�ne a compact NSS as an NSS which meets all the equalities
of our bounds, Theorem 14, Theorem 17 and lemma 16. Then we show that a
compact NSS has some special access hierarchy and it is closely related to a
matroid.

De�nition 18. Let
d = min

A2�1;C2�3
jA n Cj:

We say that a connected NSS is compact if
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{ for all i,

log
2
jVij = min

B 62�1
H(SjB) = H(S)=d

{ and any B 62 �1 satis�es

H(SjB) = min
B[D2�1

X
Vi2D

log
2
jVij: (13)

Theorem19. In a compact NSSs, for all set B � V , there exists an integer k
such that

H(SjB) = (k=d)H(S);

where d = minA2�1;C2�3 jA n Cj.

Proof. From the de�nition of compact,

H(SjB) = min
B[D2�1

X
Vi2D

log
2
jVij = H(S) min

B[D2�1
jDj=d (14)

for any B 62 �1. ut

De�nition 20. [Kurosawa et al. 93] Let d be a positive integer. We say that an
SS (�;S; V ) has a level d access hierarchy (�0; �1; : : : ; �d) if

d[
i=0

�i = 2V ; �i \�j = � (i 6= j) and

H(SjA) = (k=d)H(S) for 8A 2 �k :

A level d access hierarchy is a partition of V while a mixed access hierarchy of
Def.7 is a partition of W = fS1; : : : ; Sd; V1; : : : ; Vng.

Corollary 21. A compact NSS has a level d access hierarchy.

From Proposition 9, there exists a matroid if an NSS has a level d mixed
access hierarchy and each jVij is the minimum in the NSS. This suggests that a
compact NSS is closely related to a matroid. In particular, suppose that a level
d access hierarchy implies a level d mixed access hierarchy. (A (d; k; n)-ramp
scheme has a level d mixed access hierarchy as well as a level d access hierarchy.)
Then there exists a matroid if there exists a compact NSS.
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6 Veri�able Nonperfect Secret Sharing Scheme

A veri�able secrets sharing scheme is a secrets sharing scheme such that each par-
ticipant can verify the validity of his share. In other words, a dealer cannot dis-
tribute incorrect shares. Feldman showed a veri�able (k; n)-threshold secret shar-
ing scheme in which participants are polynomially time bounded [Feldman 87].
Pedersen showed a veri�able (k; n)-threshold secret sharing scheme in which the
dealer is polynomially time bounded [Pedersen 91]. Benaloh showed an inter-
active veri�able (k; n)-threshold secret sharing scheme which is zero knowledge
[Benaloh 86].

These schemes can be easily generalized to (d; k; n)-ramp schemes. For ex-
ample, we can obtain a Feldman type veri�able (d; k; n)-ramp scheme such as
follows. As we noted in Sec.2.3, each secret is expressed s = (s0; : : : ; sd�1) and
vi = f(i) for a random polynomial

f(x) = s0 + � � �+ sd�1x
d�1 + adx

d + � � �+ ak�1x
k�1:

Let g be a p-th root of unity of GF (q), where p j q� 1. To verify the shares, the
dealer publicizes

ti = gsi for 0 � i � d� 1;
ui = gai for d � i � k � 1:

Each participant Pi is convinced that vi is a correct share if

gvi = t0(t1)
i � � � (td�1)

id�1(ud)
id � � � (uk�1)

ik�1 :

7 Some Lemmas on Entropy

In this section, we derive some useful lemmas on entropy which are used in this
paper.

Lemma22. H(SjXW ) � H(SjX)�H(W ) :

Proof.

I(S;W jX) = H(SjX)�H(SjXW )

= H(W jX)�H(W jSX)

� H(W jX) � H(W )

ut

Lemma23. If Y = X [ Vi1 [ � � � [ Vik ; then

H(SjY ) � H(SjX)�

kX
j=1

H(Vij ):

Proof. From Lemma 22,

H(SjY ) = H(SjXVi1 � � �Vik )

� H(SjX)�H(Vi1 � � �Vik ):

So,

H(SjX)�H(Vi1Vik ) � H(SjX)�

kX
j=1

H(Vij ):

ut
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