
Building Flexible and Extensible Web Applications with

Lua1

Anna Hester
(Catholic University of Rio de Janeiro - PUC-Rio, Brazil

anna@tecgraf.puc-rio.br)

Renato Borges
(Catholic University of Rio de Janeiro - PUC-Rio, Brazil

rborges@tecgraf.puc-rio.br)

Roberto Ierusalimschy
(Catholic University of Rio de Janeiro - PUC-Rio, Brazil

roberto@inf.puc-rio.br)

Abstract: The World Wide Web is in constant renovation, with new technologies
emerging every day. Most of these technologies are still incipient, and there are few de
facto standards for this \new Web". There is a need for tools that can run with cur-
rent standard support, but which are exible and extensible enough to be eventually
ported to new APIs and to incorporate new technologies. On the other hand, many
Web developers cannot keep pace with the fast track of Web technologies. Therefore,
it is important for new tools to be simple enough to be mastered quickly by the aver-
age programmer. This paper presents CGILua, a Web development tool that matches
these requirements. The paper also discusses why this tool is being adopted in many
commercial and academic projects, focusing on issues such as exibility, extensibility,
simplicity, and portability.

Key Words: scripting languages, CGI, Web dynamic pages

Category: D.2, H.5

1 Introduction

The World Wide Web has gone through a big change from its initial goal. The
electronic publication of static, read-only and �le-based documents is being re-
placed by a more complex environment, where dynamic and interactive pages
are produced by components of a distributed system. In this setting, some of its
adopted technologies cannot satisfy the new requirements, driving the search for
many alternative technologies.

Unfortunately, embracing any new technology at this time may be premature,
since there are no de facto standards for this \new Web". It is well recognized
that the Web standards are key factors in its success [Hadjiefthymiades and
Martakos 97]. Currently, many new proposals are tied to a speci�c vendor or
operating system, compromising the openness that allowed the Web to grow ex-
plosively. Another problem is the lack of robustness, since many of the technolo-
gies are quite new, and they often have incompatibilities with di�erent versions

1 This is an extended version of a paper presented at the WebNet'98 conference in
Orlando, Florida. The paper has received a \Top Full Paper Award".

Journal of Universal Computer Science, vol. 4, no. 9 (1998), 748-762
submitted: 1/9/98, accepted: 14/9/98, appeared: 28/9/98 Springer Pub. Co.

of hardware, operating systems, HTTP servers and browsers [Hadjiefthymiades
and Martakos 97][Everitt 96][Duan 96].

Finally, as noticed by [Everitt 96] and [Lazar and Holfelder 96], Web appli-
cations are frequently written by casual programmers, following a rapid proto-
typing approach. To tie new technologies to the knowledge of complex languages
such as Perl, C++ or even Java may put a heavy load on these programmers.

Considering all these aspects, three points emerge as requirements for a Web
site development tool:

1. suitability to work based on common Web standards (like CGI [CGI 96]),
being portable to di�erent platforms and servers;

2. openness to incorporate new technologies, in a gradual way;
3. exibility to accommodate di�erent uses, from the \quick and dirty" ap-

proach of casual programmers, to an object-oriented structured approach of
a skilled team.

CGILua is a Web development tool based on CGI and the extension language
Lua [Ierusalimschy et al. 96][Figueiredo et al. 96]. Although based on an \old"
technology (CGI scripts), it di�ers from other tools by its set of features:

{ a exible and simple scripting language (Lua);
{ the ability to mix di�erent paradigms (templates and programming);
{ an extensibility mechanism to dynamically load libraries written both in Lua
and in C/C++.

These features make CGILua unusually portable, exible, and extensible, while
keeping it simple to use.

2 The Language Lua

Lua is a general purpose extension language that arose from our group's need to
use a single extension language to customize industrial applications [Ierusalim-
schy et al. 96][Figueiredo et al. 96]. Currently, Lua is being used in more than a
hundred products and prototypes, in many academic institutions and companies.
The whole package is written in ANSI C, and compiles without modi�cations in
all platforms that have an ANSI C compiler (DOS, Windows 3.1-95-NT, Next,
Sun-OS, Solaris, Mac, Linux, OS/2, etc).

Lua integrates in its design data-description facilities, reexive facilities, and
familiar imperative constructs. On the \traditional" side, Lua is a procedural
language with a Pascal-like syntax, usual control structures (whiles, ifs, etc.),
function de�nitions with parameters and local variables, and the like. On the
less traditional side, Lua provides functions as �rst order values, and dynami-
cally created associative arrays (called tables in Lua) as a single, unifying data-
structuring mechanism. As a simple illustration of Lua syntax, the code below
shows two implementations for the factorial function in Lua:

function factorial (n) function fatorial (n)

local i = 1 if n == 0 then

local r = 1 return 1

while i<=n do else

749Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

r = r*i return n*fatorial(n-1)

i = i+1 end

end end

return r

end

There is no notion of a \main" program in Lua; being an embedded language,
it only works embedded in a host client. Lua is provided as a library of C
functions to be linked to host applications. The host can invoke functions in
the library to execute a piece of code in Lua, write and read Lua variables, and
register C functions to be called by Lua code. Moreover, fallbacks can be speci�ed
to be called whenever Lua does not know how to proceed. In this way, Lua can
be augmented to cope with rather di�erent domains, thus creating customized
programming languages sharing a single syntactical framework [Beckman 91].

Functions in Lua are �rst class values. Like any other value, function values
can be stored in variables, passed as arguments to other functions, or returned
as results. The code in the factorial example shown above is actually syntactic
sugar for the more general syntax

factorial = function (n) ... end

This piece of code creates a value of type function, and assigns it to the global
variable factorial.

Lua is dynamically typed. Variables can handle values of any type. Whenever
an operation is performed, it checks the correctness of its argument types. Besides
the basic types number (oats) and string, and the type function, Lua provides
three other data types: nil, with a single value, also called nil, whose main
property is to be di�erent from any other value; userdata, that is provided to
allow arbitrary host data (typically C pointers) to be stored in Lua variables;
and table.

The type table implements associative arrays, that is, arrays that can be
indexed not only by integers, but by strings, reals, tables, and function val-
ues. Associative arrays are a powerful language construct: Many algorithms are
simpli�ed to the point of triviality because the required data structures and al-
gorithms for searching them are implicitly provided by the language [Bentley
88]. Most typical data containers, like ordinary arrays, sets, bags, and symbol
tables, can be directly implemented by tables. Tables can also implement records
by simply using �eld names as indices. Lua supports this representation by pro-
viding a.name as syntactic sugar for a["name"].

Unlike other languages that implement associative arrays, such as AWK [Aho
et al. 88] and Tcl [Ousterhout 94], tables in Lua are not bound to a variable
name; instead, they are dynamically created objects that can be manipulated
much like pointers in conventional languages. The disadvantage of this choice is
that a table must be explicitly created before used. The advantage is that tables
can freely refer to other tables, and therefore have expressive power to model
recursive data types, and to create generic graph structures, possibly with cycles.

Tables are created with special expressions, called constructors. The simplest
constructor is the expression {}, which returns a new empty table. An expression
like {n1 = exp1, n2 = exp2, ...} creates a new table, and stores in each �eld
ni the result of expi

. A typical example is the creation of a table to represent a
point:

750 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

point1 = {x = 10, y = 30}

Constructors can also build lists: The expression {exp1, exp2, ...} creates
a new table, and stores in each �eld i the result of exp

i
. Therefore, after the

assignment

days = {"Sun","Mon","Tue","Wed", "Thu","Fri","Sat"}

the expression days[3] will result in the string "Tue".
Sometimes, more powerful constructor facilities are needed. Instead of trying

to provide everything, Lua provides only a simple syntactic sugar: The syntax
name{...} stands for name({...}); that is, a table is created, initialized, and
passed as parameter to a function. This function can do whatever initialization
is needed, such as (dynamic) type checking, initialization of absent �elds, and
auxiliary data structures updating (even in the host program). Often, Lua users
are not aware that the constructor is a function; they simply write something
like

window1 = Window{x = 200, y = 300, foreground = "blue"}

and think about \windows" and other high level abstractions.
Since constructors are expressions, they can be freely nested. This allows the

description of quite complex objects in a convenient syntax, where the procedural
nature of Lua is disguised with a declarative avor. The example below illustrates
this point, using the IUP library for GUI descriptions [Levy et al. 96] to de�ne
a dialog box:

Dialog = iupdialog{

iupvbox{

iuphbox{iuplabel{title="name: "}, iuptext{}},

iupbutton{title = "OK"};

alignment = IUP_CENTER,

gap = 3,

margin = 3

}

}

Another feature of Lua relevant to CGILua is its string manipulation facil-
ities. Like other interpreted languages, such as Perl [Wall et al. 96], strings in
Lua do not have a �xed or limited length. In fact, many Lua programs handle
text �les by �rst reading the whole �le into a single string. Lua's prede�ned li-
braries o�er two pattern-matching functions, one for �nding patterns (strfind)
and another for pattern substitution (gsub). An unusual feature of gsub is that
a function can be used instead of the replacement string; whenever a match oc-
curs, this function is called with the contents of the matching, and the string
returned by it is used to replace the match. For instance, the following function
is used in CGILua as part of the decoding of an URL encoding string:

function cgilua.unescape (str)

str = gsub(str, "+", " ")

return gsub(str, "%%([0-9A-F][0-9A-F])",

function (x) return strchar(tonumber(x, 16)) end)

end

751Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

The �rst statement changes all \+" in the string to spaces. The second gsub

matches all hexadecimal numerals preceded by \%", and calls a local function (the
third argument of gsub). That function then converts the hexadecimal numeral
(a string) into a number, and returns the corresponding character. (The double
\%%" is not a typo; the character \%" has a special meaning in a pattern, so it
must be escaped).

As a more complete example, the following code shows all that CGILua uses
to decode an URL encoding string, storing the pairs key->value in a Lua table
called cgi:

function cgilua.pair (key, value)

key = cgilua.unescape(key)

value = cgilua.unescape(value)

cgi[key] = value

end

function cgilua.decode (string)

gsub(string, "&?([^&=]*)=([^&=]*)&?", cgilua.pair)

end

The last gsubmatches all pairs in the form &key=value& (where the ampersands
may be not present), and for each pair it calls the function cgilua.pairwith the
strings key and value (as marked by the parentheses in the matching string).
Function cgilua.pair simply \unescapes" both strings and stores the pair in a
table.

3 CGILua overview

The simplest form of a CGILua script is as a Lua program; when the page is
accessed, the program is ran and its output is interpreted as the �nal HTML
page sent to the browser. The majority of CGI scripts are written this way, as
with Perl [Stein 97], Tcl [Libes 96], C [Weber 96], Python [Vanaken 97], etc. In
CGILua, these programs are written in Lua.

The main advantage of writing a script as a program is its exibility. The
full power of the language is available in the creation of a page. This includes
all abstraction facilities of a programming language, plus prede�ned functions
for pattern-matching and the like. Also, some programmers �nd it convenient
because they can still use a conventional programming style. Nevertheless, this
approach is quite di�cult for non-programmers, and even for programmers it is
not very e�ective, since it operates in a very low abstraction level. Moreover,
the program logic and its interface get completely mixed, as the HTML tags are
scattered around the program text.

An alternative, and more interesting, way to write CGILua scripts is to use an
HTML template of the document to be generated. A template is a static HTML
document, with some marks representing its dynamic parts. When the page is
accessed, the template feeds a preprocessor that creates the �nal page. These
templates use special marks to indicate �elds to be handled by the preprocessor.
CGILua supports three kinds of �elds: statement �elds, expression �elds, and
control �elds. Statement �elds contain Lua statements to be executed by the
preprocessor; they generate no implicit output, although they can explicitly write

752 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

anything to the �nal page. Such �elds are written between the marks <!--$$
and $$-->. Expression �elds contain Lua expressions, which are evaluated by
the preprocessor, with the result used as the �nal text of the �eld. Such �elds
are written between the marks $| and |$. Finally, control �elds indicate parts
of the document to be repeated or conditionally inserted; their syntax is shown
below.

All marks have been carefully chosen so that a template has a sensible ap-
pearance in a browser even when it is not preprocessed. Statement and control
marks, which do not generate any implicit output, are handled as comments by
HTML syntax, while expression marks appear literally in the browser, acting as
a place-holder. In this way, a template can be edited as a regular static HTML
page. The main advantage of this approach is that it allows the use of conven-
tional HTML editors, such as Microsoft's Front Page, for building the template,
requiring no programming knowledge.

[Fig. 1] shows a small program to print the Collatz sequence of a given num-
ber. The LOOP construct acts as a C for statement: It repeats all the text between
it and the matching ENDLOOP. The �elds start, test and action contain the Lua
code that controls the loop. Loop constructs can be freely nested in a template,
whenever more complex structures are needed.

<html>

<head><title>Collatz Sequence</title></head>

<body>

<!--$$

-- defines function coll

function coll (x)

if mod(x,2) == 0 then return x/2

else return 3*x+1 end

end

$$-->

<h1>The number you have chosen is: $| cgi.number |$ </h1>

<!--$$ LOOP start="n=cgi.number",

test="n ~= 1",

action="n=coll(n)" $$-->

$| n |$

<!--$$ ENDLOOP $$-->

</body></html>

Figure 1: A CGILua template

As a more realistic example, a previous version of this paper, formated in
HTML, was written as a CGILua template that uses some Lua functions to
automatically deal with cross-references and formatting. [Fig. 2] shows a piece
of \code" used to write the second Section of the paper. The function section

formats the section title according to a given paper format speci�cation, and
de�nes a HTML anchor for link references. The function cite is used in the
example to generate an in-text citation to the references associated with the
keys lua-spe and lua-ddj, introducing LaTeX-like facilities [Lamport 86]. To

753Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

produce a static version of the document, we ran CGILua stand-alone over the
source scripts; this is possible because CGILua does not need a HTTP server to
run.

$|section('The Extension Language Lua')|$

<p>

Lua is a general purpose extension language

that arose from our group's need

to use a single extension language to customize industrial applications

$|cite("lua-spe")|$$|cite("lua-ddj")|$.

Currently, Lua is being used in more than a hundred

...

Figure 2: A sample of this paper before preprocessing

The use of CGILua to format a paper illustrates a typical use of the tool,
where speci�c Lua functions are de�ned to shape the environment according to
the task to be achieved. Users can explore CGILua in this way to de�ne their
abstractions and easily con�gure the environment for their needs.

<html>

<head><title>Members</title></head>

<body>

<h1>Club member list</h1>

<!--$$ DBOpen("DSN=club;") $$-->

<table border=1 width=100%>

<tr align=center>

<td>First Name</td>

<td>Last Name</td>

</tr>

<!--$$ LOOP

start="DBExec('SELECT firstname,lastname FROM Members');

m = DBRow()",

test="m ~= nil",

action="m = DBRow()" $$-->

<tr>

<td>$| m.firstname |$</td>

<td>$| m.lastname |$</td>

</tr>

<!--$$ ENDLOOP $$-->

</table>

<!--$$ DBClose() $$-->

</body></html>

Figure 3: A database query in CGILua

754 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

[Fig. 3] shows how to create a CGILua script to query a database using
templates. This example takes advantage of the CGILua extensibility, using a
dynamically loaded package to access the database. The package simply de�nes
four new Lua functions: DBOpen establishes a connection with a database, DBExec
executes an SQL statement, DBRow traverses the resulting table, and DBClose

closes the connection. Each row is returned as a Lua table, which is then stored
in variable m. Notice in this example the interaction between the control marks
and the HTML marks to format a table. The result of this template before
processing is shown in [Fig. 4], and the �nal result |after preprocessing| is
shown in [Fig. 5].

Figure 4: Template without preprocessing

Figure 5: Final result of the template

Traditionally, templates are used for more declarative, static uses, while pro-
gramming is used when there is a need for control structures and dynamic de-
scriptions. CGILua allows a reverse in this conventional use: A template can
be used as a kind of subroutine, while Lua is used as the declarative language.
[Fig. 6] and [Fig. 7] illustrate this style. Function cgilua.preprocess provides
a degree of reexivity: It allows a Lua script to process a template explicitly, as

755Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

if the user had accessed that template. File form.html describes how to show a
generic form. The abstract speci�cation of the form, on the other hand, is given
in script form.lua, in the format of a table (field). The same table field,
which gives the abstract speci�cation of the form, can be used to drive the cre-
ation of other pages. [Fig. 8] shows a script that validates the data from such a
form.

<html>

<head><title>Example Form</title></head>

<body>

<form method="POST" action="validate.lua">

<!--$$ LOOP start="i=1", test="field[i]", action="i=i+1" $$-->

$|field[i].label|$:

<input type="text"

name="$|field[i].name|$"

value="$|cgi[field[i].name]|$">

<!--$$ ENDLOOP $$-->

<input type=submit>

</form>

$|error_message|$

</body></html>

Figure 6: File form.html

field = {

{ name="project", label="Project" },

{ name="year", label="Base year" },

{ name="code", label="Project code" }

}

cgilua.preprocess("form.html")

Figure 7: File form.lua

CGILua can improve the management of Web sites even when used as a
stand-alone processor for static pages, since the use of parametric pages allows a
developer to work in a higher abstraction level. For instance, the same template
shown in [Fig. 6] can be used to create many di�erent forms, when fed with
di�erent values for table field.

4 CGILua Architecture

Like many programs that use a scripting language, CGILua has two main mod-
ules: A kernel, written in C, and a con�guration script, written in Lua [Fig. 9].

756 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

if not checkfields() then

error_message = "Please fill out all the fields."

cgilua.preprocess("form.html")

else

cgilua.preprocess("list-db.html")

end

Figure 8: Validating data from a form

The kernel is the program called by the HTTP server when a user accesses a
CGILua page. It creates a Lua environment, de�nes some new functions to Lua
and then runs the con�guration script. The con�guration itself is almost 70% of
all CGILua code. It decodes the data in the query, rede�nes some Lua functions
to provide a secure environment where the user script will run, locates the user
script and then runs it. Since all these steps are done by a script, they can easily
be adapted to local needs by the system administrator. In addition, a site may
have several con�guration scripts, allowing di�erentiated environments for dif-
ferent projects. For instance, personal user pages may have a stronger security
policy than the one enforced on institutional pages.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Configuration Extensions

Request Reply

CGILua

Kernel

HTTP

server

User scripts

Figure 9: CGILua architecture

4.1 Portability

The tool's portability is ensured by the standards upon which it is based: Lua is
fully implemented in ANSI C, which make it portable for every platform that has
a C compiler. The CGILua kernel is implemented following the POSIX standard
[Lewine 91] and uses CGI as the interface with the HTTP server, since this is
the only current standard for interfacing servers with external programs. These
features allow the use of CGILua in di�erent platforms without modi�cations,
with the same source code. Currently, CGILua is being used with di�erent servers

757Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

in MS-Windows 95 and NT, and most popular Unixes, such as SunOS, Solaris,
Linux, IRIX and AIX.

Despite its name, CGILua does not depend on the CGI standard. It has
been developed in a way such that the interface with the server is totally done
by the kernel and the con�guration script. This architecture allows the porting of
CGILua to other APIs, for example Microsoft's ISAPI or Apache API, improving
the script's performance.

Since CGILua scripts communicate with the server only through the kernel,
they are independent of the kernel's interface with the server. This allows the
use of the same scripts, even with di�erent kernels. At the time of writing, only
a CGI kernel is available, with an ISAPI kernel under development.

4.2 Extensibility

Both the con�guration script and the user script �le can run other Lua �les.
In this way, Lua libraries can be loaded before or during the execution of the
user scripts, o�ering new facilities. Sometimes, however, such extensions must
be written in C, either for e�ciency reasons (like a cryptography package), or
because a prede�ned C interface (like a database) is accessed.

Again, the solution adopted by CGILua has the same general pattern: The
kernel implements a generic mechanism for dynamic library loading, and the
con�guration script speci�es which and how each package will be loaded. After
this step, the script erases these loading facilities, thereby restricting the use of
any unauthorized extension.

An example of this facility is the database package used in [Fig. 3]. Lua itself
o�ers no database facilities. Its standard libraries o�er only access to �les in
conformance to the ANSI C facilities. DBLua is a Lua library that interfaces
Lua with a standard database API, called DBGraf [Mediano 96], which o�ers
access to di�erent database systems, like mini-SQL and ODBC. This library
is dynamically loaded by the con�guration script, thereby o�ering all database
facilities of CGILua.

In another example of its extensibility, CGILua is also being used in a network
management system based upon SMNP [Rodriguez et al. 98]. Again, a C package
has been built to o�er SMNP facilities to Lua, allowing a CGI application to get
and set SMNP variables. In this way, di�erent management applications can be
built over the Web by writing simple CGILua scripts.

Another package that can be used with CGILua is LuaOrb [Ierusalimschy
et al. 98], a binding between Lua and CORBA that allows a Lua script to ma-
nipulate CORBA objects in the same way it manipulates local objects. LuaOrb
is based on the CORBA Dynamic Invocation Interface, mapping its dynamic
character to the dynamic type system of Lua.

These feature brings another level of utilization to CGILua, allowing di�erent
instances of the tool for di�erent domains. Upon this perspective, CGILua is
not only a tool for the creation of Web sites, but also a supporting tool for fully
distributed applications.

4.3 Security Issues

A CGI script has the same security problems of any network server, since it
is invoked by remote requests; from this point of view, any CGI script can be

758 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

considered a mini-server. Because CGILua activates the user's Lua scripts, all
security concerns must be extended to these scripts [Gar�nkel and Spa�ord 96].

Lua is a language with secure semantics. There are no language constructions
with unde�ned behavior. Lua programs are translated into byte-codes, which
are then interpreted in a protected environment. There are no instructions to do
real memory access or to call arbitrary C functions; the stack is fully controlled.
Besides pure resource consumption, the only way a Lua program interacts with
the external environment is through function calls. Therefore, in the realm of a
Lua program, security issues can be focused on how to control the use of insecure
functions.

In Lua, functions are �rst class values; Lua programs can freely create, re-
de�ne or erase functions at run time. Therefore, a simple solution for a secure
environment would be the con�guration script to erase all \dangerous" func-
tions before calling the user script. For instance, to disallow the writing of �les,
a con�guration script has only to include the following line:

writeto = nil -- "writeto" opens a file in writing mode

This solution is clearly too simplistic; most system functions can (and, many
times, must) be used in restricted ways without security risk. For instance, a
generic writeto function, which allows a script to write to any �le, may be
dangerous, but it can be restricted to open �les only in a prede�ned directory.
That could be done by rede�ning the function:

unsafe_writeto = writeto

writeto = function (filename)

if checkfilename(filename) then

unsafe_writeto(filename) -- do the "real" open

else error("cannot open " .. filename)

end

end

Typically, the new version needs access to the original function to perform the
actual task, after the security checks. But, with this previous code, function
unsafe_writeto is still available not only to the new writeto, but to the whole
user script. The problem here is how to allow the new writeto to access the old,
unsecure version, without giving global access to it.

The solution adopted by CGILua is based on a mechanism of Lua called
upvalue. Originally, upvalues were envisioned to support closures. An upvalue,
syntatically written as %name, is like a variable access, but whose value is com-
puted when the function is created, instead of when the function is called. With
this mechanism, the previous rede�nition of writeto can be written as

unsafe_writeto = writeto

writeto = function (filename)

if checkfilename(filename) then

%unsafe_writeto(filename) -- do the "real" open

else error("cannot open " .. filename)

end

end

unsafe_writeto = nil -- no more accesses after this point

759Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

When this new function is created, the upvalue %unsafe_writeto is evaluated,
resulting in the original function. Therefore, the unsecure version is kept in the
closure of the newly created version, but after the last assignment it is no longer
accessible in any other point of the program.

With this solution, the whole Lua environment is con�gured in Lua itself,
with the usual bene�t: exibility. System administrators can change the con�g-
uration script to adapt the protected environment to their speci�c needs.

5 Final Remarks

Despite its inherent academic nature, CGILua has achieved industrial relevance,
being employed in many commercial web systems. A major example of indus-
trial use is SIGMA (Sistema de Gest~ao do Meio Ambiente). SIGMA is a WWW
system being developed for PETROBRAS (The state-owned Brazilian Oil com-
pany). Its function is to manage the procedure of obtaining environmental li-
censes and to inform users about rules and technical procedures. The system
is part of a strategy to obtain the ISO 14000 certi�cate. Around one hundred
people will use SIGMA as a work tool on a daily basis. Moreover, parts of the
system will be available to the general public. The system generates and col-
lects information by an active communication with a database. DBLua is used
to provide the connection through ODBC to an SQL Server database.

Unlike many other Web tools, both Lua and CGILua follow the same \min-
imalistic" principle: Instead of providing a myriad of mechanisms for speci�c
purposes, they provide a few generic meta-mechanisms to address general is-
sues. In this way, they can handle rather diverse application domains.

At a glance, the main features of CGILua are

exibility The use of an extension language both in the architecture of CGILua
and for writing user scripts makes the tool highly exible. A scripting lan-
guage greatly facilitates rapid prototyping, an important methodology for
Web applications [Everitt 96]. There are no �xed roles for what is written
in Lua and what is written in HTML templates. Moreover, many aspects of
the tool, from error handling to security policies, can be easily tailored by
the system administrator.

extensibility Applications can use libraries written both in Lua and in C. Lua
libraries allow the extension of internal CGILua facilities, as illustrated by
the de�nition of format functions for papers. C libraries are used to allow
access to external facilities, as illustrated by the SMNP example, and to
implement performance-critical functions.

simplicity The whole system has less than ten thousand lines of code (� 1500
lines for GCILua plus � 8000 for Lua). All its sources and binaries can be
put on a single oppy disk. Its use is also simple. Most users are able to
start using CGILua in less than half an hour. Lua is a small language, with
a simple Pascal-like syntax and a simple semantics.

portability CGILua runs on Windows NT, Windows 95, Linux, IRIX, Sun-OS,
Solaris, AIX, HP-UX, FreeBSD, Unixware, SCO, OSF, and other platforms
with essentially the same source code. Applications are fully portable: Any
script written in one platform runs without changes in any other platform.

The implementation of CGILua is freely available at

760 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

http://www.tecgraf.puc-rio.br/manuais/cgilua

References

[Aho et al. 88] A. V. Aho, B. W. Kerninghan, and P. J. Weinberger; The AWK pro-
gramming language; Addison-Wesley, 1988.

[Beckman 91] B. Beckman; A scheme for little languages in interactive graphics; Soft-
ware: Practice and Experience, 21:187{207, 1991.

[Bentley 88] J. Bentley; More programming pearls; Addison-Wesley, 1988.
[CGI 96] CGI - Common Gateway Interface; W3C - World Wide Web Consortium,

1996.
[Duan 96] Nick N. Duan; Distributed database access in a corporate environment

using Java; In Fifth International World Wide Web Conference, 1996.
[Everitt 96] P. Everitt; The ILU requester: Object services in HTTP servers; In W3C

Informational Draft, 1996.
[Figueiredo et al. 96] L. H. Figueiredo, R. Ierusalimschy, and W. Celes; Lua - an ex-

tensible embedded language; Dr. Dobb's Journal, 21(12):26{33, 1996.
[Gar�nkel and Spa�ord 96] S. Gar�nkel and G. Spa�ord; Practical UNIX & Internet

Security; O'Reilly & Associates, Inc., second edition, 1996.
[Hadjiefthymiades and Martakos 97] S. P. Hadjiefthymiades and Drakoulis I. Mar-

takos; Improving the performance of CGI compliant database gateways; In Sixth
International World Wide Web Conference, 1997.

[Ierusalimschy et al. 96] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes; Lua - an
extensible extension language; Software: Practice and Experience, 26(6):635{652,
1996.

[Ierusalimschy et al. 98] Roberto Ierusalimschy, Renato Cerqueira, and Noemi Ro-
driguez; Using reexivity to interface with CORBA; In IEEE International Con-
ference on Computer Languages (ICCL'98), pages 39{46, Chicago, IL, May 1998.
IEEE Computer Society.

[Lamport 86] L. Lamport; LATEX: A Document Preparation System; Addison-Wesley,
1986.

[Lazar and Holfelder 96] Z. Peter Lazar and Peter Holfelder; Web database connec-
tivity with scripting languages; 1996.

[Levy et al. 96] Carlos H. Levy, Luiz H. de Figueiredo, Marcelo Gattass, Carlos J. Lu-
cena, and Don D. Cowan; IUP/LED: a portable user interface development tool;
Software: Practice and Experience, 26(7):737{762, 1996.

[Lewine 91] Donald Lewine; POSIX Programmer's Guide; O'Reilly & Associates, Inc.,
1991.

[Libes 96] D. Libes; Writing CGI scripts in Tcl; In Tcl 96 Conference, May 1996.
[Mediano 96] M. Mediano; DBGraf - Manual de Referência; TeCGraf, May 1996.
[Ousterhout 94] J. K. Ousterhout; Tcl and the Tk Toolkit; Addison-Wesley, 1994.
[Rodriguez et al. 98] N. Rodriguez, M. Lima, A Moura, and M. Stanton; A platform

for the development of extensible management applications; In INET'98, Geneva,
Switzerland, july 1998.

[Stein 97] L. Stein; A Perl library for writing CGI scripts; Web Techniques, 2(2),
February 1997.

[Vanaken 97] M. Vanaken; Writing CGI scripts in Python; Linux Journal, 34, Febru-
ary 1997.

[Wall et al. 96] L. Wall, T. Christiansen, and R. L. Schwartz; Programming Perl;
O'Reilly & Associates, Inc., second edition, September 1996.

[Weber 96] J. Weber; libcgi; URL: http://wsk.eit.com/wsk/, 1996.

761Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

Acknowledgements

We would like to thank Andr�e Clinio, who helped the development of the very
�rst version of the kernel; Andr�e Carregal, who �rst suggested the idea of control
�elds in templates; and Mônica Leit~ao, for pioneering the use of CGILua in real
applications.

This work was developed at TeCGraf/PUC-Rio (Group of Technology on
Computer Graphics at the Catholic University of Rio de Janeiro), and it has
been partially supported by CNPq (the Brazilian Research Council).

762 Hester A., Borges R., Ierusalimschy R.: Building Flexible and Extensible Web ...

