
PSL: An Alternate Approach to Style Sheet Languages

for the World Wide Web

1

Philip M. Marden, Jr. and Ethan V. Munson

Department of Electrical Engineering and Computer Science

University of Wisconsin{Milwaukee

Milwaukee, WI 53201, USA

fphil,munsong@cs.uwm.edu

http://www.cs.uwm.edu/~multimedia

Abstract: Style sheets, which are used to specify the appearance of documents, are

rapidly growing in their importance for the World Wide Web. Cascading Style Sheets

are now in widespread use and work on a future Web standard, the Extensible Style

Language (XSL), is proceeding at a rapid pace. In this paper, we show how a di�erent

style sheet language, PSL, represents an attractive midpoint between CSS and XSL in

complexity and power. PSL is based on general language design principles that give

it simple syntax, easily-described semantics, and considerable expressive power. Our

testbed MPMosaic uses Proteus, a portable style sheet system, to support PSL.

1 Introduction

Style sheets are used to specify how a document should be presented to users.

For Web documents, style sheets can be used to specify fonts, colors, borders,

and overall layout, as well as other style properties. For example, a style sheet

might indicate that the document's title should appear centered on the top of

the �rst page in a 36 point Helvetica font.

Style sheets can be used for a variety of purposes:

{ they can enforce consistent style across a large collection of similar docu-

ments;

{ they provide the ability to tailor a document's presentation to the needs of

the end user or the capabilities of the presentation device without altering

the document itself; and

{ for limited document representations like HTML, they can describe style

e�ects that go beyond the style information implicit in a document's tag

structure.

In the Web community, the usefulness of style sheets for HTML [Wor98c]

documents has become apparent because style sheets give document design-

ers a level of control over the appearance of their documents that HTML alone

cannot provide. Several style sheet languages are being developed including Cas-

cading Style Sheets (CSS) [Wor96, Wor98a] and the Extensible Style Language

(XSL) [Wor97]. CSS has simple syntax, simple semantics, and limited power and

is primarily designed to support HTML. XSL is a much larger and more powerful

1

This is an extended version of a paper presented at the WebNet '98 conference in

Orlando, Florida. The paper has received a \Top Full Paper Award".

Journal of Universal Computer Science, vol. 4, no. 10 (1998), 100-200
submitted: 1/9/98, accepted: 25/9/98, appeared: 28/10/98 Springer Pub. Co.

language with signi�cant syntactic and semantic complexity. It is part of a larger

e�ort to move the Web beyond HTML's limitations that is also producing the

Extensible Markup Language (XML) [Wor98b] for document representation.

This paper describes our study of style sheet languages for HTML documents.

We believe that in an ideal world, a style sheet language would have

{ simple syntax so that the language is easy to read and write;

{ consistent and easily-described semantics so that style sheets are easy to

understand and straightforward to explain to others; and

{ the ability to specify a wide variety of useful presentations for authors and

end-users.

We seek to �nd the best way to balance these sometimes-conicting design

goals for style sheet languages. We have also been exploring ways that style

sheets can be used to enhance the user interface of Web browsers. Style sheets

have considerable promise for creating improved browser interfaces, because they

can be changed without touching the browser's source code or the HTML of

individual documents.

Our research has focused on the application of an alternate style sheet lan-

guage, the Presentation Speci�cation Language (PSL) [Mun95], to HTML doc-

uments. We have developed an experimental Web browser, MPMosaic [MM98],

that uses PSL style sheets to control the appearance of HTML documents. Our

work with PSL shows that it is possible to create a style sheet language that is at

an attractive midpoint between CSS and XSL in both complexity and expressive

power by basing the language on very general design principles in conjunction

with simple syntax and powerful semantics.

The remainder of the paper is organized as follows. Section 2 describes some

other style sheet languages. Section 3 provides an introduction to PSL. Section 4

discusses the advantages of PSL's use of general language facilities in comparison

to Cascading Style Sheets. Section 5 describes our experiences in using PSL in

the MPMosaic system, and the �nal section presents our conclusions.

2 CSS, XSL, and DSSSL

Style sheets have been used for some time in the structured document commu-

nity, where a central premise has been that the appearance of documents should

be speci�ed separately from their structure and content.

SGML and DSSSL are the respective ISO standards for structure and presen-

tation. SGML [Gol86] is a meta-language for de�ning markup languages, such

as HTML, that are used to describe the structure and content of individual

documents. The elements (or tags) of each SGML-based markup language are

speci�ed by a Document Type De�nition (DTD) written in this meta-language.

DSSSL [ISO94], SGML's companion standard for style sheets, is a powerful,

Turing-complete style language based on the Scheme programming language.

DSSSL is a very complex language both syntactically and semantically and has

not yet seen widespread implementation or use. DSSSL is clearly very powerful,

but the lack of working implementations makes comparison di�cult. DSSSL

could be used to describe HTML documents, but has usability problems for

interactive systems that have prevented its inclusion in any widely-used editing

or browsing software.

2 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

The World Wide Web Consortium (W3C) has developed a language called

Cascading Style Sheets (CSS) which has become the standard style sheet lan-

guage for the Web. CSS Level 1 (CSS1) [Wor96], the �rst version of CSS, is now

supported by the major browser vendors, and a more extensive version, CSS

Level 2 (CSS2) [Wor98a], has been developed. Work has also begun on another

proposed style sheet standard, the Extensible Style Language (XSL) [Wor97],

which is derived from DSSSL and appears to support most of DSSSL's features.

CSS is at the other end of the design spectrum from DSSSL and XSL. CSS

has a very simple syntax, but limited expressive power. CSS has been explicitly

designed to be written by non-programmers and often provides nice, intuitive

ways to express style ideas. However, this intuitiveness comes at the cost of

consistency. The semantics of CSS are not consistent across language features,

and we believe the language will grow increasingly di�cult to reason about as

new features are added to it.

Due to length restrictions, we will not describe the features of the CSS, XSL,

and DSSSL languages in any detail. We urge readers to review the speci�ca-

tions for CSS1 [Wor96] and CSS2 [Wor98a], if they are not familiar with them.

For general information on style sheets, the Web Consortium has a number of

resources at http://www.w3.org/style.

3 The PSL Language

PSL is the style sheet language for Proteus [GHM92], a portable presentation

system for multimedia documents. PSL is a declarative language that was de-

signed to be independent of any particular medium. PSL's syntax and semantics

were designed to be easy to use, and the language has very few special cases. An

example style sheet is shown in Figure 1.

In order to understand how PSL (or any style sheet language for HTML)

works, an important fact about the structure of HTML documents must be

understood. Structured markup languages like HTML annotate the document

contents with tags, or markup. The tags break up the document into elements

such as paragraphs, lists, headings, and emphasized text. Because elements can

be nested inside other elements, they can be thought of as the nodes of a tree that

represents the entire document, which we call the document tree (see Figure 6).

All existing style sheet languages take advantage of this tree structure.

PSL provides three presentation services: property propagation, tree elabo-

ration, and box layout. In Proteus, these services operate on a presentation tree,

which is a copy of the document tree. The presentation process does not alter

the document tree. Using presentation trees allows multiple styles of the same

document to be shown simultaneously.

{ Property propagation assigns values to the formatting properties of each

element, or node. Section 3.1 describes the syntax for assigning values to

properties.

{ Tree elaboration allows style sheet authors to add content to the presentation

by adding elements to the presentation tree (section 3.2).

{ Box layout is a constraint-based layout system (section 3.3). Elements can

can be placed on the screen in a di�erent order from their order in a tree

traversal. PSL distinguishes between the speci�ed and actual size of an ele-

ment.

3Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

MEDIUM mosaic;

PRESENTATION links FOR html;

ELABORATIONS {

linebreak : Markup ("
") {

visible = Yes;

}

arrow : Markup ("") {

visible = Yes;

}

url : Content (getAttribute(creator, "href")) {

visible = Yes;

fontSize = 12;

}

}

DEFAULT {

lineHeight = Self.fontSize * 1.5;

}

RULES {

HTML {

visible = No;

fgColor = "black";

fontSize = 14;

}

A {

if (getAttribute(self, "href") != "") then

visible = Yes;

fgColor = "blue";

underlineNumber = 1;

createRight (arrow, url, linebreak);

endif

}

}

Figure 1: A PSL style sheet. This style sheet speci�es that only links and their desti-

nations should be displayed on the screen. All other content is elided.

<HTML>

<HEAD> <TITLE> A Sample HTML document </TITLE>

<BODY>

<H1> Style sheets </H1>

 Give users control of formatting

 Support the accessibility goals of the

Web Accessibility Initiative

 Support multiple presentations

Figure 2: A sample HTML document.

4 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

Figure 3: This �gure shows the presentation produced when the style sheet in Figure 1

is applied to the document in Figure 2. The style sheet speci�es that only the links

and their destinations are displayed. (Captured from MPMosaic)

3.1 Properties and Rules

In the RULES section of the style sheet, the presentation of an element can be

speci�ed by following the element's markup name (also referred to as node type)

with a list of property rules:

P {

fontFamily = "times";

fontSize = 14;

lineHeight = Self.fontSize * 1.5;

indent = LeftSib.indent + 10;

}

This PSL fragment speci�es several properties for P elements: the font for text

should be 14 point Times, the line height should be 21 points (1.5 times the font

size of this element), and the �rst line of text should be indented 10 points more

than this element's left sibling. Each property has a data type, which is either

boolean, string, real, or prede�ned enumeration. Property rules have the form:

<property> = <expression> ;

The right hand side of the property rule can contain any expression whose data

type is the same as the type of the property named on the left hand side. Ex-

pressions can be constructed using a variety of operations and functions common

to general-purpose programming languages including standard arithmetic, com-

parison, and boolean operators, common mathematical functions (such as min,

max, and round) and trigonometric functions.

Property values can be constrained to depend on the property values of other

nodes (elements) by using the property access expression, for which the syntax

is:

<node expression> . <property name>

The value of a property access expression is computed by �nding the node spec-

i�ed by the expression on the left hand side of the dot and getting the value of

the named property for that node.

There are several tree traversal functions that return nodes, any of which can

appear in the left hand side of a property access expression. Some of these func-

tions return immediate neighbors (Parent, LeftSib, RightSib, FirstChild,

5Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

LastChild, NthChild), while others return nodes that may be more distant

(Root, AncestorOfType for obtaining ancestors, and Creator which returns

the generating node of an elaborated node). There is also a Self function

which returns the de�ning node, the node for which the property rule was

de�ned. Collectively, these functions are designed to allow the speci�cation of

constraints between the de�ning node and every other node in the tree. Dis-

tant nodes in the tree can be speci�ed through function composition, as in

FirstChild(LeftSib(Parent)).fontSize which speci�es the fontSize prop-

erty of a \cousin" node.

3.1.1 Default Rules

PSL style sheets can have a DEFAULT section which de�nes default rules that are

used when there are no node-speci�c rules for a property. The DEFAULT section

contains a rule list having the same syntax and semantics as the rule lists for

speci�c node types.

3.1.2 Order of Evaluation

Every property in every node is assigned a value. The value of a property is

determined by the �rst source below that returns a valid value for that property:

1. Node-speci�c rule.

2. DEFAULT section rule.

3. Inherited value.

4. Medium speci�ed value. (CSS calls this the initial value.)

Invalid values occur when a rule fails, namely its expression cannot be com-

puted for some reason. This could occur because of an arithmetic error (such

as division by zero), but most commonly it results from a tree navigation error.

For instance, a node that is a �rst child has no left sibling, so if the LeftSib

function is invoked on a �rst child, the function fails.

All properties can be inherited during the third step in the order of evalua-

tion. This is equivalent to a rule of the form:

<property> = Parent . <property> ;

3.2 Tree Elaboration

Tree elaboration allows style sheet authors to add content to a document's pre-

sentation by adding nodes to the presentation tree. For example, tree elaboration

is used to precede list items with numbers or \bullets," and is used to create

borders around elements.

Tree elaboration is speci�ed in two parts: node declarations and creation com-

mands. The ELABORATIONS section of the style sheet is used to declare the node

types that can be generated. These declarations specify a primitive type: Content

for text, Markup for tags, and Graphic for graphical objects like lines, rectan-

gles, and circles. Declarations also require an initialization argument, which is

an expression that describes the content of the generated node. Properties of

6 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

generated nodes are treated in exactly the same manner as properties of other

nodes.

In the style sheet in Figure 1, there are three node types declared in the

ELABORATIONS section. The �rst declaration de�nes a node type called linebreak,

which can be used to add
 tags into a document to force linebreaks. The

next declaration creates an arrow node type that can be used to insert an image

of an arrow into the presentation. The third declaration allows the style sheet

author to display the target of a link (the href attribute of the A tag).

The actual generation of nodes is controlled by the creation commands:

CreateLeft, CreateRight, CreateFirst, and CreateLast. These commands

create and attach nodes to the de�ning node. As the names suggest, the functions

attach the nodes as left siblings, right siblings, �rst children, and last children,

respectively, while maintaining the ordering speci�ed in their argument list. In

the style sheet in Figure 1, every A node will have arrow, url, and linebreak

nodes created as right siblings as the result of the node speci�c rule:

CreateRight (arrow, url, linebreak);

3.3 Box Layout

In addition to the traditional \ow" layout model, PSL supports a box layout

service for positioning the elements of a document. The box layout service is

based on a model of nested boxes, or regions. Each node in the presentation

tree has a bounding box, which for a two-dimensional medium such as text, is a

rectangle that encloses the text of the node. The nodes of the presentation tree

can be laid out by de�ning constraints between their bounding boxes.

The style sheet author lays out an element by specifying the size and location

of its bounding box with respect to the dimensions of the document. For HTML

documents, the properties Width and HorizPos specify size and position in the

horizontal dimension, while Height and VertPos specify the size and position in

the vertical dimension. Size properties are handled just like other properties in

PSL, but position properties are treated di�erently. A position property refer-

ences either the minimum, maximum, or center point of the bounding box along

each dimension. The horizontal points are called Left, Right, and HMiddle, and

the vertical points are Top, Bottom, and VMiddle. Position rules are de�ned with

a special syntax:

<position name> : <point name> = <expression> ;

In the horizontal dimension, one possible rule would be:

HorizPos: Left = LeftSib.Right;

This rule constrains its node's left edge to be aligned with the right edge of its

left sibling. Notice that point names without position names are used on the

right-hand side of attribute access expressions. Examples of other layout rules

are:

VertPos: VMiddle = 250;

Height = 100;

Width = LeftSib.Width * 2;

7Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

3.3.1 A Layout Example

PSL's box layout can describe generic layout e�ects. Suppose that an author

would like to layout a list into two columns so that half of the items are placed

in the �rst column and the remaining items are placed in the second column.

The HTML document in Figure 5 is shown formatted in this style in Figure 4. A

general rule for achieving this layout with N list items is that each item follows

its predecessor (i.e. has the same left edge and has its top placed a little below

its predecessor's bottom). The (

N

2

+ 1) item is treated as an exception and is

placed at the top of the second column. Since items \follow" their predecessors,

only this one item needs a special layout rule | all subsequent items will appear

below it in the second column. This rule can be described in PSL as follows:

LI {

if (ChildNum(Self) == round(NumChildren(Parent) / 2 + 1)) then

VertPos: Top = Parent.Top;

HorizPos: Left = LeftSib.Left + Self.Width;

else

VertPos: Top = LeftSib.Actual Bottom;

HorizPos: Left = LeftSib.Left;

endif

Width = 200;

}

The Actual keyword accesses the �nal results of the formatting process. In

this example, Actual Bottom refers to the bottom of the formatted list item.

The command ChildNum(Self) returns the child number of the de�ning node,

and NumChildren(Parent) returns the number of children of its parent. Note

that the top and left position of the �rst item is inherited from its parent since

a �rst child does not have a left sibling. The width of each list item is arbitrarily

set to 200 points; the width can be made dependent on the window size by using

the windowWidth command.

Figure 4: A list formatted into two columns where the �rst column contains half of the

list items. The HTML source is in Figure 5. (Captured from MPMosaic)

8 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

<TITLE> Another Document </TITLE>

<P> PSL provides general language mechanisms:

 expressions,

 tree navigation functions,

 conditionals through an if-then-else construct,

 tree elaboration,

 access to both specified and actual layout, and

 constraint-based layout.

Figure 5: An HTML document containing a list of items.

3.3.2 Out-of-Order Layout

PSL places no restrictions on layout constraints. This allows the style sheet

author to write layout rules that draw the elements of the document on the

screen in an order di�erent from their order in a traversal of the presentation

tree. For instance, paragraphs can be laid out in reverse order so that the �rst

paragraph is displayed last and the last paragraph is displayed �rst by using this

rule:

P { VertPos: Top = RightSib.Actual Bottom; }

For a series of paragraphs, the top of each paragraph will be below the actual

bottom of the next paragraph.

3.4 Other Features

PSL contains a number of other language features. As shown earlier, PSL's

grammar contains an if-then-else conditional construct that is very useful for

making rules dependent on the results of arbitrary expressions. The box lay-

out system makes a useful distinction between speci�ed and actual layout. PSL

supports the addition of function-like commands (referred to as interface func-

tions). For HTML, we added the functions getAttribute for obtaining the value

of an element's attribute, getMarkup for obtaining the markup string used in

the document, getText to return the text of a node, and windowHeight and

windowWidth for getting the height and width of the browser's window.

3.5 Combining PSL's Services

Complex and dramatic presentations can be produced by PSL style sheets that

employ a combination of services. Figure 6 shows a presentation produced by a

PSL style sheet that graphically displays the tree structure of any HTML docu-

ment. For each element in the document, elaboration adds text of the element's

name, an ellipse around its name, and horizontal and vertical lines. Box layout

is used to position all of the displayed elements. Each document element (and its

ellipse) is constrained to be centered horizontally above the bounding boxes of

its children. The content of the document is elided through a visibility property.

9Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

Figure 6: A presentation of a document's tree structure. The document in Figure 2 is

presented according to the rules of a PSL style sheet that graphically displays the tree

structure of HTML documents. (Captured from MPMosaic)

4 Comparing PSL and CSS

In this section, we compare some of the features of CSS and PSL. Our standards

for comparing the two languages are based on the standards put forth in the

introduction which stated that a style sheet language should have

{ simple syntax;

{ consistent and easily-described semantics; and

{ the ability to specify a wide variety of useful presentations.

4.1 Syntactic Complexity

Both CSS and PSL have simple syntax, but CSS is still noticeably simpler than

PSL.

{ Where PSL style sheets have a number of di�erent sections (e.g. DEFAULT,

RULES, ELABORATIONS), CSS essentially has only one section that is equiva-

lent to the RULES section of PSL.

{ Because PSL allows the right-hand side of property rules to be general ex-

pressions, it has a standard set of syntactic rules for expressions. In contrast,

the right-hand side of CSS property rules are simply constant values (gen-

erally strings, keywords, or numbers).

10 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

{ PSL has a conditional rule syntax for which CSS has no equivalent.

{ CSS supports a variety of contextual selectors that are used to specify rules

that apply to elements only when they appear in certain contexts. The syntax

for specifying contextual selectors is simple. In PSL, similar ideas can only

be expressed using conditional rules.

Overall, CSS has somewhat simpler syntax than PSL, though the di�erence is

not dramatic, especially when compared to languages like XSL and DSSSL.

4.2 Semantic Consistency

A more striking contrast between PSL and CSS can be found in the area of

semantics. PSL has simple and consistent semantics that are applied uniformly

throughout the language. For example, property rules have the form:

<property> = <expression> ;

The right-hand side of these rules may be any expression whose type matches

the data type of the property. The restriction that the types match is the only

restriction. Since PSL provides a wide range of expression operators, it is pos-

sible to specify almost any desired e�ect, but some e�ects may require complex

expressions.

In contrast, CSS is designed to allow convenient speci�cation of common

presentation e�ects and does so at the price of consistency. CSS property rules

are written

<property> : <value> ;

Most CSS properties de�ne a mixture of keywords, numbers, and length mea-

surements, and these values are predetermined to be absolute values or relative

to another property value.

As an example, here are four di�erent rules for the CSS font-size property:

P { font-size: 12pt; }

P { font-size: medium; }

BLOCKQUOTE { font-size: larger; }

EM { font-size: 200%; }

The �rst rule uses a length which is an absolute value. The second rule uses

an absolute-size keyword which gets a value from a table of size preferences

maintained by the browser. The third rule uses a relative-size keyword that

speci�es a size relative to the parent. The fourth rule uses a percentage which is

also relative to the parent's size.

Nearly every CSS property has di�erent rules for the values on its right-

hand side and it is not much of an exaggeration to say that each property's

right-hand side has its own specialized language. This point is illustrated by the

line-height property. It does not accept the keywords that can be used with

font-size and, in addition, percentages are interpreted relative to the font-size

of the current element, rather than relative to the parent element's line-height.

For example, this rule

EM { line-height: 200%; }

11Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

speci�es that the line height for elements EM should be twice as large as its font

size. This is a natural way to specify line height, but it is not consistent with

the treatment of percentages in other parts of the language.

In a small language like CSS1, some inconsistency in semantics is easily toler-

ated. However, as a language's scope is increased, as is being done with CSS2, it

becomes progressively harder to describe the language and to understand it. So,

even though the semantics for each property are generally intuitive, we believe

that as properties are added to CSS, its users could become overwhelmed by

special cases and will be forced to depend on manuals as they write style sheets.

PSL's consistent semantic design allows it to be well described by a small

set of rules that are independent of the set of properties used by a particular

application. It is certainly the case that as new properties are added, they will

have to be described and will make descriptions of the language more complex.

However, any additional complexity is only the result of a more complex style

model, not the result of greater complexity of the speci�cation system.

4.3 Expressive Power

PSL has more expressive power than CSS because it provides general mechanisms

to describe presentation styles. CSS tries to provide expressive power through

a wide variety of special cases. However, the range of special cases available is

limited to those cases that CSS's designers have recognized as valuable. The

problem is not that CSS's designers are not perceptive and thoughtful, but that

it is simply not possible for any language designer to anticipate every interesting

and useful presentation style.

Suppose that a document designer would like to emphasize text by making

it 20% larger than the text that precedes it. In PSL, this style is easily speci�ed

with one rule:

EM { fontSize = LeftSib.fontSize * 1.2; }

In general, CSS cannot specify this style because, for the font-size property,

relative values are always relative to the parent. (Extensive use of contextual

selectors might be su�cient to handle this case, but would require enumerating

every possible context that EM elements could appear in.)

Due to its general language mechanisms, PSL is not only able to specify a

much wider variety of presentations than CSS, but is dramatically better than

CSS at generalizing speci�cations. In the two-column layout example in Sec-

tion 3.3.1, PSL speci�es the layout through a mathematical formulation. This

speci�cation can be applied to any list with any number of list items in any

document. In contrast, CSS is unable to describe this layout in a general way

because CSS does not support general mathematical expressions. A CSS author

must position each list item individually to layout a list into two columns so

that each column contains half of the list items. Currently, the most common

practice of CSS authors is to modify the document by hard-coding identi�ers

into the elements of the list using the HTML id attribute and then to use these

identi�ers in the style sheet to position the elements. Figures 7 and 8 show this

approach. The CSS approach requires authors to manually calculate the position

values and the style rules must be edited if list items are added to the document.

12 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

<TITLE> Another Document </TITLE>

<P> PSL provides general language mechanisms:

<LI id=a> expressions,

<LI id=b> tree navigation functions,

<LI id=c> conditionals through an if-then-else construct,

<LI id=d> tree elaboration,

<LI id=e> access to both specified and actual layout, and

<LI id=f> constraint-based layout.

Figure 7: id attributes have been added to the list items of the Figure 5 document so

that the list can be laid out by the CSS rules in Figure 8.

LI { width : 200px; position: absolute; }

#a { top : 0; left : 0; }

#b { top : 14px; left : 0; }

#c { top : 28px; left : 0; }

#d { top : 0; left : 200px; }

#e { top : 14px; left : 200px; }

#f { top : 42px; left : 200px; }

Figure 8: These CSS style rules will layout the document in Figure 7 into two columns

(as shown in Figure 4). In CSS, top and left are o�sets from the top and left edges

of the element's containing block. The pound symbol selects elements by their id

attribute.

5 Experience with MPMosaic

Our experiences with PSL have been very positive. Our testbed is Multiple Pre-

sentation Mosaic (MPMosaic) [MM98], a modi�ed version of NCSA's Mosaic

browser. In MPMosaic, users can select their own style sheets to control the

appearance of a document regardless of the document's origin or authorship.

MPMosaic also supports multiple presentations | users can open multiple win-

dows displaying the same document with each window using a di�erent style

sheet (see Figure 9).

We have written a number of PSL style sheets that provide \views" of HTML

documents. Below are a few of these views.

Table of contents view shows only the headings (the H1 through H6 ele-

ments).

Links view shows only anchors and their destinations (see Figure 3).

Embedded tags view displays the markup tags in the formatted document.

Tree-structured view graphically renders the tree structure of a document

(see Figure 6).

Reduced size view shows all fonts and images at half size.

These views can be as used as visualization tools to help users understand docu-

ments. The links view, for example, can be used as a inter-document navigation

13Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

tool since it shows all of the possible destinations the user can reach from the

current document. Figure 3 shows the links view of the document in Figure 2.

The links view is generated from the style sheet in Figure 1. Views used for vi-

sualization seem to be most useful when they are displayed side by side with the

standard HTML presentation. Figure 9 shows four di�erent views of the same

document: the standard view along with the �rst three views listed above.

Support for PSL was added to Mosaic by using the Proteus style sheet system.

Mosaic's formatter was not signi�cantly altered when we added the Proteus

library to Mosaic to make MPMosaic. Approximately 600 lines of C++ code

were added to the 8000 line formatter in Mosaic.

Figure 9: MPMosaic is displaying four di�erent presentations of the same document.

Listed clockwise from the upper left window, the presentations are the stardard view,

the table of contents view, the links view, and the embedded tags view.

14 Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

6 Conclusions

Many people in the document community have believed that in order for a style

sheet language to have powerful formatting capabilities, the language must ap-

proach the complexity of a programming language and that style sheet languages

with simple syntax will be special purpose languages with limited capabilities.

Our experience with PSL has shown that there is a middle ground: a style

sheet can have simple syntax and semantics while having considerable expres-

sive power. PSL's power is the result a design based around general principles

with an emphasis on simple and consistent language constructs.

Acknowledgements

This work was supported in part by the U.S. Department of Defense. Its suc-

cessful completion and this article would not have been possible without the

help and support of the members of the Multimedia Software Lab at UWM,

especially Terry Cumaranatunge.

References

[GHM92] Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus

presentation system. In Proceedings of the ACM SIGSOFT Fifth Symposium

on Software Development Environments, pages 130{138, Tyson's Corner, VA,

December 1992. ACM Press.

[Gol86] Charles F. Goldfarb, editor. Information Processing | Text and O�ce Sys-

tems | Standard Generalized Markup Language (SGML). International Or-

ganization for Standardization, Geneva, Switzerland, 1986. International

Standard ISO 8879.

[ISO94] ISO/IEC. Information technology | Text and o�ce systems | Document

Style Semantics and Speci�cation Language (DSSSL), August 1994. Draft

International Standard ISO/IEC DIS 10179.2.

[MM98] Philip M. Marden, Jr. and Ethan V. Munson. Multiple Presentations of

WWW Documents Using Style Sheets. In Proceedings of ED-MEDIA 98,

Conference on Educational Multimedia and Hypermedia, Freiburg, Germany,

June 1998. Association for the Advancement of Computing in Education.

[Mun95] Ethan V. Munson. A new presentation language for structured documents.

Electronic Publishing: Origination, Dissemination, and Design, 8:125{138,

September 1995. Originally presented at EP96, the Sixth International Con-

ference on Electronic Publishing, Document Manipulation, and Typography,

Palo Alto, CA, September 1996.

[Wor96] World Wide Web Consortium. Cascading Style Sheets, level 1, December

1996. http://w3c.org/TR/REC-CSS1.

[Wor97] World Wide Web Consortium. A Proposal for XSL, August 1997.

http://www.w3.org/TR/NOTE-XSL.html.

[Wor98a] World Wide Web Consortium. Cascading Style Sheets, level 2, May 1998.

http://www.w3.org/TR/REC-CSS2.

[Wor98b] World Wide Web Consortium. Extensible Markup Language (XML) 1.0,

February 1998. http://www.w3.org/TR/REC-xml.

[Wor98c] World Wide Web Consortium. HTML 4.0 Speci�cation, April 1998.

http://www.w3.org/TR/REC-html40.

15Marden P.M., Munson E. V.: PSL: An Alternate Approach to Style Sheet Languagess ...

