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Abstract: In [Wastl 1998] we have introduced the Hilbert style inference system
K for deriving all keys of a database relation schema. In this paper we investigate
formal K -derivations more closely using the concept of tableaux. The analysis
gives insight into the process of deriving keys of a relation schema. Also, the
concept of tableaux gives a proof procedure for computing all keys of a relation
schema. In practice, the methods developed here will be usefull for computing
keys or for deciding whether an attribute is a key attribute, respectively non-
key attribute. This decision problem becomes relevant when checking whether
a relation schema is in third normal form, or when applying the well{known
3NF-decomposition algorithm (a.k.a. 3NF-synthesis algorithm).
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1 Introduction

Semantic tableaux are a well-known refutation proof procedure in automated
theorem proving. We will use tableaux for deriving keys of a relation schema
using the inference system K . The methods developed here are constructive in
the sense that branches in a tableau will correspond to formal K -derivations.
It will be shown that these derivations are linear. The paper is organized as
follows: In this section we will give an example to show that minimal keys are
needed for relational database design, and we will give the basic items concerning
relation schemas (cf. [Maier 1983], [Ullman 1988]). In section 2 we will shortly
discuss the inference system K (cf. [Wastl 1998]). In section 3 we will informally
introduce the concept of K -tableaux for deriving keys. A formal treatment is
then given in section 4. In the last section we will consider linear derivations for
keys.
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Example 1 ([Elmasri et al. 1994])
A manufacturer wants to describe lots in his database. Therefore, he designs a
relation schema R = hU; F i with

U = fPropertyId ;CountryName ;LotNumber ;Area;Priceg

and

F = f
PropertyId ! CountryName;LotNumber ;Area;Price ;

CountryName;LotNumber ! PropertyId ;Area;Price ;
Area ! Price g:

Intuitively, the PropertyId identi�es a lot; this is coded in the �rst functional
dependency. The CountryName and LotNumber determine the PropertyId , Area
and Price . Finally, given the Area , the manufacturer can tell the Price .

To avoid update, insert or delete anomalies (to a certain degree), the manu-
facturer wants to test whether his relation schema is in third normal form (3NF).
This requires to check whether for all functional dependencies in F the left hand
side is a super key or the right hand side is a prime attribute (that is, occurs in a
minimal key). For the �rst functional dependency we observe that the transitive
closure PropertyId+ equals U ; thus PropertyId is a super key (and obviously min-
imal). Also, fCountryName;LotNumberg+ equals U . For the third functional
dependency we compute Area+ = fArea; Priceg, which is a proper subset of U .
Hence, we have to check whether the right hand side occurs in any minimal key.
This is the point where one has e. g. to know all keys of a relation schema. The
minimal keys of R are fPropertyIdg and fCountryName;LotNumberg. Since
Price does not occur in any key, the relation schema is not 3NF.

In the rest of this section we collect the necessary terms from relational
database theory. An attribute A is an identi�er for an element of some domain
D. Let U be a set of attributes. An attribute set X over U is a subset of U . A
functional dependency over U is an expression of the form X ! Y , where X;Y
are attribute sets. Intuitively, a functional dependency X ! Y means that the
attribute set X determines the attribute set Y . If X;Y are attribute sets, then
we write XY for X [Y . We denote by attr(F ) the set of all attributes occurring
in F . All attribute sets and all sets of functional dependencies are �nite. The
cardinality of a set X is denoted by jX j.

We will use the following naming conventions: A;B;C;D; : : : for attributes,
X;Y; U; V; : : : for attribute sets, and F;G; : : : for sets of functional dependencies.

A relation schema R = hU; F i consists of an attribute set U and a set F
of functional dependencies over U . There are distinguished subsets K � U ,
called superkeys. To de�ne superkeys we use the algorithm transitive closure

below. The algorithm transitive closure computes for an attribute set X the set
X+ � X of all attributes which are functional determined by X .
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Algorithm transitive closure.
Input: A relation schema R = hU; F i and an attribute set X � U .
Output: X+.

[INIT] X+ := X ;
[LOOP] while (9(Y ! Z) 2 F : Y � X+ & Z 6� X+)

X+ := X+ [ Z;
[RESULT] return X+;

Figure 1: Algorithm transitive closure

Now an attribute set K � U is a superkey of R, if K+ = U . A superkey K of R
is a key of R, if K is minimal with respect to set inclusion. Keys are also known
as candidate keys. We denote by KR the set of all keys of the relation schema
R. For a computation of X+ we denote the LOOP{steps by X(0); X(1); X(2); : : :
and so on.

When the right hand side of a functional dependency is a singleton set, then
we use the notation X ! A, Y ! B, Z ! C or similar. We call such functional
dependencies unit functional dependencies. A functional dependency X ! Y is
trivial, if Y � X .
Let Y ! B be a unit functional dependency. To indicate that the attribute
A occurs in the left hand side of Y ! B, we write YA ! B. Additionally,
when we use the notation YA ! B, then we assume A 62 Y , that is, the union
YA is disjoint. In this paper we work with unit functional dependencies. It is
no restriction to consider only unit functional dependencies, see [Maier 1983] p.
77 Lemma 5.3. Further, for a relation schema R = hU; F i we always assume
that U = attr(F ). This is no restriction when considering keys, because the
attributes in U � attr(F ) have to be in every key of R. Summing up: For all
relation schemas R = hU; F i in this paper we assume that

� U = attr(F ) and

� F is a set of non{trivial unit functional dependencies.

2 The Inference System K

Let R = hU; F i be a relation schema. In [Wastl 1998] the Hilbert style inference
system K has been introduced for deriving all keys of a database relation schema
R. The entities which are derived with K are functional dependencies. The
inference system K depends on R. The axioms and rules of inference are given
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below. Note that by our convention the functional dependencies in F are non-
trivial unit functional dependencies.

Axioms of K

?! ?

X ! A if (X ! A) 2 F

Rules of inference of K

K1:
X ! A YA! B

XY ! B

K2:
X ! A Y ! B

XY ! B

The axioms of K are essentially the functional dependencies of F . The axiom
of the form ? ! ? is only needed when F = ?. Then ? is the only key of R.
Note that U = attr(F ) and so, F = ? implies U = ?. Note also, that in the
inference rule K2 the two functional dependencies in the premise can be swapped
and thus, one can also derive the functional dependency XY ! A.

The inference rules of K have two premises and one conclusion. A K -
derivation of the functional dependency X ! A from F , denoted by F `K X !
A, is de�ned in the usual way. That is, a derivation F `K X ! A starts with
axioms from K . Then one derives functional dependencies using axioms from
K or functional dependencies which have been derived by previous steps. The
length of a derivation F `K X ! A is de�ned as the number of inference steps
with K1 or K2. By a K1-derivation (K2-derivation) we mean a K{derivation
where only the inference rule K1 (K2) is used.

Example 2
Let R = hU; F i, where U = fA;B;C;D;E;H;Kg and

F = fAB ! C;
DC ! E;
H ! K g:

The following is a derivation of length 2 for the unique key ABDH . Note that
the entities in a derivation are functional dependencies, and that deriving the
key ABDH means deriving a functional dependency with left hand side ABDH .

[K2]
[K1]

AB ! C DC ! E

ABD ! E
H ! K

ABDH ! K
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A relation schema R = hU; F i is transitive, if F is closed with respect to the
inference rule K1. That is, for any two functional dependencies X ! A;YA! B
from F , the functional dependency XY ! B is in F , provided that XY ! B is
not trivial. In general, a relation schema R = hU; F i is not transitive. But there
exists a unique transitive relation schema R+ = hU; tc(F )i such that

� F � tc(F ), and

� K is a key of R if and only if K is a key of R+.

The following statements are taken from [Wastl 1998].

Lemma 3
Let R = hU; F i be a transitive relation schema and K be a key of R. Then,

K+ = K ] fA 2 U
>>>> 9X ! A 2 F such that X � Kg:

Remark: the symbol ] means disjoint union. So, the relation above gives a
partition of U .

Theorem 4 (Completeness of `K)
Let R = hU; F i be a relation schema. Then, for every key K of R there exists a
derivation F `K K ! A, where A 2 U or A = ?. 2

3 The Concept of Tableau Proof for Keys

We will �rst sketch the idea of using the inference rules K1 and K2 for de�ning
a tableau whose branches are formal derivations (in the inference system K ) for
keys of a relation schema. The tableau T to be de�ned for a relation schema
R = hU; F i should be characterized by the following three items:

� The nodes of T are functional dependencies over U .

� Each branch in T is a formal derivation in the inference system K .

� For each node X ! A in T the path from the root of T to X ! A is a
derivation F [ froot of Tg `K X ! A, where only the inference rule K1 is
used.

The aim is then that the tableau T should enjoy the following properties:

� For each leaf X ! A of T , X is a super key of R.

� For every key K there is a leaf node K ! A (completeness property).
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Now, the construction of a tableau T for the relation schema R = hU; F i goes
as follows: First determine the root of T . To this end, let

F = fX1 ! A1; X2 ! A2; : : : ; Xn�1 ! An�1; Xn ! Ang;

Build a K2-derivation

[K2]
X1 ! A1 X2 ! A2

X1X2 ! A2

. . .

[K2]
X1 : : : Xn�1 ! An�1 Xn ! An

X1 : : : Xn ! An
;

where only the inference rule K2 is used to collect the left hand sides of all
functional dependencies in F . The left hand side of the resulting functional
dependency X1 : : : Xn ! An has the properties

� (X1 : : : Xn)
+ = U , that is, X1 : : :Xn is a superkey, and

�
S
K2KR

� X1 : : : Xn, that is, all keys of R are included in X1 : : : Xn.

This is the point where tableaux come into play. Using tableaux we specialize
X1 : : : Xn to all keys of R using only the inference rule K1. Remark: a sim-
ilar idea has been used in [Gottlob 1987] for computing covers for embedded
functional dependencies.

The root of the tableau T is the functional dependency X1 : : : Xn ! An.
Let Z ! C be any node in T . Then Z ! C has the functional dependency
(Z � Ai)Xi ! C as a successor node and the edge between Z ! C and (Z �
Ai)Xi ! C is labeled with Ai, if and only if there exists a functional dependency
Xi ! Ai 2 F such that condition (1) and (2) holds:

(1) Ai 2 Z,

(2) Xi \ L = ?, where L is the union of the edge labels on the (unique) path
from the root to the node Z ! C.

Graphically this looks like

(Z �Ai)Xi ! C :

Z ! C

Ai

888 Wastl R.: Linear Derivations for Keys ...



Observe that this conforms with one inference step with the inference rule
K1. Let Z = Z 0Ai. Then we have

[K1]
Xi ! Ai Z 0Ai ! C

XiZ 0 ! C
:

Condition (1) is needed to apply the inference rule K1, and condition (2) ensures
that no attribute which has been removed from X1 : : : Xn on the path from the
root to Z ! C will be introduced again through Xi. This can be seen as a kind
of loop checking (cf. [ Lifschitz et al. 1995]). The set of attributes removed from
X1 : : : Xn on the path from the root to Z ! C, denoted by L, is the union of
the edge labels on that path.

So far we have explained the concepts. We give an example.

Example 5
Let R = hU; F i, where U = fA;B;C;D;Eg and

F = fAB ! C;
CD ! E;
E ! A g:

There are three keys: BDE ;BCD and ABD . In a �rst step we determine the
root of the tableau T with the K2{derivation below.

[K2]
[K2]

AB ! C CD ! E

ABCD ! E
E ! A

ABCDE ! A

The tableau T is the following tree:

ABCDE ! A
               

``````````````̀

ABCD ! A
ABDE ! A BCDE ! A

BDE ! A BCD ! A
ABD ! A

C A

E

C
A E

The the left hand sides of the leafs of T are exactly the keys of R. Each branch
is a K1{derivation from F [ fABCDE ! Ag. We discuss the left branch; the
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argumentation for the other branches is similar. The node ABDE ! A is a
successor node of the root ABCDE ! A, because there exists a functional
dependency AB ! C in F such that (1) C 2 ABCDE and (2) AB \ L = ?,
because L = ?. Recall that the attribute set L is the union of the edge labels
from the root to ABCDE ! A, which is the root in this case. When considering
the successor nodes of ABDE ! A, we have L = fCg. There is only one
functional dependency in F whose right hand side occurs in ABDE and whose
left hand side is disjoint to L, namely E ! A. Thus, node ABDE ! A has
the sole successor node BDE ! A, and L will be fA;Cg. Now, none of the
functional dependencies in F ful�lls condition (1) and (2), and so, BDE ! A
has no successor nodes.

We close this section with a technical remark. We have de�ned the nodes of a
tableau as functional dependencies. This is good for the proofs in the following,
because each branch in a tableau is a K -derivation which starts in a leaf and
ends in the root. On the other hand, when applying tableau one can simply
work with the left hand sides. Note that the tableau in the example above could
have also been constructed whitout the right hand sides. So, in the following
examples we will omit the right hand sides.

4 K -Tableaux

The de�nition of a K -tableau for a relation schema below collects the properties
which have been developed in the previous section.

De�nition 6
Let R = hU; F i be a relation schema. A K -tableau for R is a non-empty tree
whose nodes are functional dependencies over U and whose edges are labeled
with attributes from U such that the following two conditions hold:

(1) The root V ! D of T ful�lls

�
S
K2KR

� V (this implies V + = U),

and

(2) for every node Z ! C of T the following condition is true: the functional
dependency (Z � Ai)Xi ! C is a successor node of Z ! C if and only if
there exists a functional dependency Xi ! Ai in F such that

(2a) Ai 2 Z,

(2b) Xi \L = ?, where L is the union of the edge labels on the path from
the root to the node Z ! C, and

(2c) the edge from Z ! C to (Z �Ai)Xi ! C is labeled with Ai.
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In the following we will consider K -tableaux T for relation schemas R =
hU; F i where the left hand side of the root of T is the union of the left hand
sides of the functional dependencies in F . The union of the left hand sides of
the functional dependencies in F trivially ful�lls condition (1) of De�nition 6.
Then, the K -tableaux for relation schemas are unique modulo permutation of
branches, and therefore, we will speak of the K -tableau of a relation schema. As
a special case the empty relation schema R = h?;?i has tableau ? ! ?. The
edge lable set L depends on the nodes in T . Sometimes it will be appropriate to
make this dependency explicit; then we index the set L with nodes, for example,
L = LZ!C .

Lemma 7
Let R = hU; F i be a relation schema and T be the K -tableau for R. Then, the
left hand side of every node in T is a superkey of R.

Proof. We make an induction on the depth d � 1 of the tableau1 T . For
the inductive basis let d = 1. Then, the statement of the lemma holds, because
the transitive closure of the left hand side of the root equals U . So, assume as
inductive hypothesis that the lemma holds for tableaux of depth � 1. Let R be
a relation schema whose tableau T has depth d + 1. Let (Z � Ai)Xi ! C be
a leaf of T which has depth d + 1, and let Z ! C be its parent node (which
exists, because d + 1 > 1). Let Ai be the edge label between parent Z ! C
and successor (Z �Ai)Xi ! C. Then, according to De�nition 6, there exists a
functional dependency Xi ! Ai in F such that Ai 2 Z, and we have

[K1]
Xi ! Ai

=Zz }| {
Z 0Ai ! C

(Z �Ai)Xi ! C
:

By inductive hypothesis, Z is a superkey of R, that is Z+ = U . We must show�
(Z � Ai)Xi

�+
= U . Therefore, it is enough to observe that Xi � (Z �Ai)Xi.

This yields Ai 2
�
(Z�Ai)Xi

�+
. Now Z+ = U implies

�
(Z�Ai)Xi

�+
= U . 2

Proposition 8
Let R = hU; F i be a relation schema and T be the K -tableau for R. Then, for
every node Z ! C of T there is

(a) Z \ LZ!C = ?, and

(b) Z ] LZ!C = left hand side of the root node.

1We usually write tableau instead of K-tableau.
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Proof. A straightforward induction on the depth of the tableau T . Note that
LZ!C is uniquely determined through Z ! C. For (a) note also that F does
not contain trivial functional dependencies. 2

The theorem below states that the K -tableau for a transitive relation schema
is sound and complete for keys.

Theorem 9
Let R = hU; F i be a transitive relation schema and T be the K -tableau for R.

(a) For every leaf X ! A in T , X is a �{minimal key of R.

(b) For every key K of R there exists a leaf K ! A in T .

Proof. (a) Let X ! A be a leaf of T . By Lemma 7 we have X+ = U . So,
it remains to show that X is �{minimal. We show this by contradiction and
assume to this end that X is a proper superkey. Then there exists a key K of R
such that K � X . Since R is transitive, by Lemma 3, there exists a functional
dependency Y ! B in F such that (i) B 2 X�K and (ii) Y � K � X .
By Proposition 8 (a) we have X \ LX!A = ?. Together with (ii) we obtain
Y \ LX!A = ?. Since by (i) B 2 X , we get

[K1]
Y ! B

=Xz}|{
X 0B ! A

(X �B)Y ! A
;

that is, the leaf X ! A has the successor node (X�B)Y ! A. This is a
contradiction.

(b) Choose a key K of R. We have to �nd a branch from the root of T to
a leaf K ! A. Let V ! D be the root of T , and let V �K = fA1; : : : ; Ang.
Then, by Lemma 3 there exists n functional dependencies

X1 ! A1; : : : ; Xn ! An

in F such that

� Xi � K, for all 1 � i � n.

If n = 0, then V is the unique key of R. Hence, K = V and the theorem is
proved. We proceed under the assumption n > 0. Then, we get a K1{derivation
F [ fV ! Dg `K K ! D as follows:

[K1]
X1 ! A1

=Vz }| {
V 0A1 ! D

(V �A1)X1 ! D

. . .
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[K1]
Xn ! An

contains Anz }| {
(V �A1 : : : An�1)X1 : : :Xn�1 ! D

(V �A1 : : : An�1An)X1 : : : Xn�1Xn| {z }
=K

! D
:

Since Ai 2 U�K and Xi � K for all 1 � i � n we get

� Xi \ L(V�A1:::Ai)X1:::Xi!D = ?.

Hence, the K1{derivation displayed above is a branch in T by De�nition 6. To
complete the proof we must show that there exists no functional dependency
Y ! B in F with right hand side in K such that Y \ LK!D = ?. Intuitively,
the functional dependency Y ! B could be used to lengthen the K1{derivation
above and then, the left hand side of the successor node would not include K.
We falsify the existence of such a functional dependency in the claim below.
This will prove the theorem.

Claim: There exists no functional dependency Y ! B in F with right hand
side in K such that Y \ LK!D = ?.

We prove the claim by contradiction. To this end let Y ! B 2 F with right
hand side in K such that Y \ LK!D = ?. We show Y � K. First note that
V equals the union of the left hand sides of the functional dependencies in F ;
Therefore, Y � V . By Proposition 8 (b) we haveK]LK!D = V . Together, this
shows, Y � K. Further, Y ! B 2 F implies that the functional dependency
Y ! B is not trivial, that is, B 62 Y . Using the hypothesis Y \ LK!D = ? we
conclude with De�nition 6 that the node

K ! D

has the successor node
(K �B)Y ! D:

This node can be written as (K�B) ! D, because B 62 Y and Y � K, as
observed above. By Lemma 7, K�B is a super key of R. This is a contradiction.

2

It is interesting to note that Theorem 9 (a) fails, if the relation schema is not
transitive.

Example 10
Let R = hU; F i, where U = fA;B;Cg and

F = fC ! A;
A ! B;
B ! A g:

There is a unique key C. The tableau T is the following tree:
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ABC
            

```````````̀

AC

BC BC

A A

B

A

C

The transitive closure of F is tc(F ) = F [ fC ! Bg. Thus, when adding the
the following two edges and nodes to the tree T above we get a tableau for R+.

C

B

C

B

Theorem 11
Let R = hU; F i be a relation schema and T be the K -tableau for R.

(a) For every leaf X ! A in T , X is a super key of R.

(b) For every key K of R there exists a leaf K ! A in T .

Proof. (a) By Lemma 7.

(b) Fix a key K of R. Let V ! D be the root of T . Assume that

V �K = fA1; : : : ; Ang:

If n = 0, then V is the unique key of R. Hence, K = V and the theorem is
proved. We proceed under the assumption n > 0. Since K is a key there exists
functional dependencies

Z1 ! A1; : : : ; Zn ! An

in F such that

� Ai 6= Aj for all 1 � i < j � n,
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� K(n) = V , and

� Zi � KA1 : : : Ai�1 for all 1 � i � n.

This yields a K1{derivation

[K1]
Zn ! An

=Vz }| {
V 0An ! D

(V �An)Zn ! D

. . .

[K1]
Z1 ! A1

contains A1z }| {
(: : : ((V �An)Zn �An�1)Zn�1 � : : :�A2)Z2 ! D

(: : : (((V �An)Zn �An�1)Zn�1 � : : :�A2)Z2 �A1)Z1| {z }
=K

! D
;

such that for all 1 � i � n

� Zi \ L(:::(V�An)Zn�:::�Ai)Zi!D = ?

(Note that L(:::(V�An)Zn�:::�Ai)Zi!D = fAi; : : : ; Ang and LV!D = ?).

By De�nition 6 this K1{derivation corresponds to a branch in T beginning in
the root V ! D of T . To complete the proof we must show that there exists
no functional dependency Y ! B in F with right hand side in K such that
Y \ LK!D = ?. This is done as in the proof of Theorem 9. 2

5 Linear Derivations for Keys

A K -derivation is linear if the length is zero and the derivation consists of exactly
one axiom, or the length is > 0 and the derivation has the form

Axiom; Axiom; K1=K 2; Axiom; K1=K 2; : : : ;Axiom; K1=K 2;

that is, the derivation starts with two axioms from F followed by an application
of K1 or K2; the derived functional dependency together with an axiom from F
are then the premises of another application of K1 or K2, and so on.

A linear K -derivation is a linear K1-derivation (K2-derivation), if only the
inference rule K1 (K2) is used.

Theorem 12
Let R = hU; F i be a relation schema. Then, for every key K of R and every
attribute D 2 U there exists a linear

(a) K1-derivation F [ fU ! Dg `K K ! D of length � jF j.
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(b) K -derivation F `K K ! D of length � 2jF j.

Proof. (a) Let T be the tableau of R and V ! D be its root. Then V equals
the union of the left hand sides of the functional dependencies in F . Hence,
attributes in U�V occur only in the right hand side of functional dependencies
in F . Now choose a key K of R. At �rst we make a linear K1-derivation
F [fU ! Dg `K V ! D. This derivation is obtained by removing all attributes
in U�V with jU�V j K1 steps. This is possible because attributes in U�V occur
only in the right hand side of functional dependencies in F . In a second step we
apply Theorem 11 (b) and get a linear K1-derivation F [ fV ! Dg `K K ! D.
Together, this yields a linear K1-derivation F [ fU ! Dg `K K ! D of length
� jF j.

(b) At �rst make a linear K2-derivation F `K V ! D. Then apply Theorem
11 (b). 2

Example 13
Let R = hU; F i, where U = fA;B;C;Dg and

F = fA ! B;
B ! A;

BC ! D;
D ! A g:

There are three keys: BC ;AC and CD . The following is a linear K2-derivation
F `K ABCD ! A for determining the root of the tableau T :

[K2]
[K2]

A! B BC ! D

ABC ! D
D ! A

ABCD ! A

The following is a linear K1-derivation F [ fABCD ! Ag `K CD ! A:

[K1]
D ! A [K1]

A! B ABCD ! A

ACD ! A
CD ! A

The tableau T is the following tree:
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ABCD
               

``````````````̀

ACD
BCD ABC

�
�
�
�
�

H
H
H
H
H

BC

A D

B

D

BC AC

A

A

B

CD

6 Conclusion

Using the concept of tableaux and the inference system K we have shown that
K -tableaux are complete for keys of a relation schema. The branches of a K -
tableau are linear K1-derivations. So, we get linear derivations for keys whose
length is bounded by the number of axioms.

Acknowledgement. I am grateful to the referees for their suggestions to
improve the paper. In particular, the second referee has given several detailed
hints which improve the readability of the paper a lot.
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