On algebraicness of D0L power series

Juha Honkala
Department of Mathematics
University of Turku
FIN-20014 Turku, Finland
juha.honkala@utu.fi
and
Turku Centre for Computer Science (TUCS)
FIN-20520 Turku, Finland

Abstract

We show that it is decidable whether or not a given D0L power series over a semiring A is A-algebraic in case $A=\mathbf{Q}_{+}$or $A=\mathbf{N}$. The proof relies heavily on the use of elementary morphisms in a power series framework and gives also a new method to decide whether or not a given D0L language is context-free.

Category: F4.3

1 Introduction

D0L power series were defined in [Honkala 97] and studied in detail in [Honkala $98,00]$. The study of these series gives an interesting counterpart to the customary theory of D0L systems.

In [Honkala 97] it is shown to be decidable whether or not a given D0L power series over \mathbf{Q} is \mathbf{Q}-rational. In this paper we study the question whether or not a given D 0 L power series over a semiring A is A-algebraic. A decision method is provided in case A equals \mathbf{Q}_{+}or \mathbf{N}. We also discuss the same question in case $A=\mathbf{Q}$. Our decision method relies heavily on the use of elementary morphisms in a power series framework and applies various techniques dealing with D0L sequences and algebraic series. By taking $A=\mathbf{B}$ we also obtain a new decision method for the context-freeness of D0L languages (see [Salomaa 75]).

For further background and motivation we refer to [Honkala $95,97,98,00]$ and the references given therein. It is assumed that the reader is familiar with the basics of formal power series and L systems (see [Berstel and Reutenauer 88], [Kuich and Salomaa 86], [Rozenberg and Salomaa 80,97], [Salomaa and Soittola 78]). Notions and notations that are not defined are taken from these references.

2 Definitions

Suppose A is a commutative semiring and X is a finite alphabet. The set of formal power series with noncommuting variables in X and coefficients in A is denoted by $A \ll X^{*} \gg$. The subset of $A \ll X^{*} \gg$ consisting of all series with a finite support is denoted by $A<X^{*}>$. Series of $A<X^{*}>$ are referred to as polynomials.

Assume that X and Y are finite alphabets. A semialgebra morphism $h: A<$ $X^{*}>\longrightarrow A<Y^{*}>$ is called a monomial morphism if for each $x \in X$ there exist
a nonzero $a \in A$ and $w \in Y^{*}$ such that $h(x)=a w$. If $h: A<X^{*}>\longrightarrow A<Y^{*}>$ is a monomial morphism, the underlying monoid morphism $\bar{h}: X^{*} \longrightarrow Y^{*}$ is defined by $\bar{h}(x)=\operatorname{supp}(h(x))$ for $x \in X$. A series $r \in A \ll X^{*} \gg$ is called a DOL power series over A if there exist a nonzero $a \in A$, a word $w \in X^{*}$ and a monomial morphism $h: A<X^{*}>\longrightarrow A<X^{*}>$ such that

$$
\begin{equation*}
r=\sum_{n=0}^{\infty} a h^{n}(w) \tag{1}
\end{equation*}
$$

and, furthermore,

$$
\operatorname{supp}\left(a h^{i}(w)\right) \neq \operatorname{supp}\left(a h^{j}(w)\right) \text { whenever } 0 \leq i<j
$$

Consider the series r given in (1) and denote

$$
a h^{n}(w)=c_{n} w_{n}
$$

where $c_{n} \in A$ and $w_{n} \in X^{*}$ for $n \geq 0$. Then we have

$$
\begin{equation*}
r=\sum_{n=0}^{\infty} c_{n} w_{n} \tag{2}
\end{equation*}
$$

In what follows the righthand side of (2) is called the normal form of r. A sequence $\left(c_{n}\right)_{n \geq 0}$ of elements of A is called a D0L multiplicity sequence over A if there exists a D0L power series r over A such that (2) is the normal form of r.

If $r=\sum_{n=0}^{\infty} a h^{n}(w)$ is a D0L power series and $p \geq 1$ and $m \geq 0$ are integers, then the series $r(p, m)$ is defined by

$$
r(p, m)=\sum_{n=0}^{\infty} a h^{p n}\left(h^{m}(w)\right)
$$

Assume that X and Y are finite alphabets. By definition, a monomial morphism $h: A<X^{*}>\longrightarrow A<Y^{*}>$ is simplifiable if there exist a set X_{1} and monomial morphisms $h_{1}: A<X^{*}>\longrightarrow A<X_{1}^{*}>$ and $h_{2}: A<X_{1}^{*}>\longrightarrow A<$ $Y^{*}>$ such that $h=h_{2} h_{1}$ and $\operatorname{card}\left(X_{1}\right)<\operatorname{card}(X)$. If h is not simplifiable, it is called elementary. A D0L power series $r=\sum_{n=0}^{\infty} a h^{n}(w)$ is called elementary if the monomial morphism h is elementary.

3 Decidability of algebraicness in case $A=Q_{+}, A=N$ or $\mathrm{A}=\mathrm{B}$

In this section we show through a sequence of lemmas that it is decidable whether or not a given D0L power series over the semiring A is A-algebraic in case $A=\mathbf{Q}_{+}, A=\mathbf{N}$ or $A=\mathbf{B}$. (Here $\mathbf{Q}_{+}, \mathbf{N}$ and \mathbf{B} stand for the nonnegative rationals, nonnegative integers and Boolean semiring, respectively.) A decision method is first given for elementary D0L power series.

If X is a finite alphabet and $g: X^{*} \longrightarrow X^{*}$ is a morphism, a letter $x \in X$ is called growing if the set $\left\{g^{n}(x) \mid n \geq 0\right\}$ is infinite.

Lemma 1. Suppose A is a commutative semiring and $r=\sum_{n=0}^{\infty} a h^{n}(w) \in A \ll$ $X^{*} \gg$ is a DOL power series over A such that the underlying monoid morphism $g: X^{*} \longrightarrow X^{*}$ of h is injective. Furthermore, assume that there exist positive integers C and D such that

$$
\left|g^{n}(w)\right| \leq C n+D
$$

for all $n \geq 0$. Then there effectively exist integers $p \geq 1, q \geq 0, k \geq 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters $y_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, and nonzero $a_{0}, a_{1}, a_{2} \in$ A such that

$$
\begin{equation*}
h^{n p+q}(w)=a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} u_{0}\left(v_{1}^{n} y_{1} w_{1}^{n}\right) u_{1}\left(v_{2}^{n} y_{2} w_{2}^{n}\right) u_{2} \ldots u_{k-1}\left(v_{k}^{n} y_{k} w_{k}^{n}\right) u_{k} \tag{3}
\end{equation*}
$$

for all $n \geq 0$. Furthermore, none of the words $u_{\alpha}, v_{\beta}, w_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, contains a growing letter.

Proof. Denote

$$
X_{1}=\left\{x \in X| | g^{n}(x) \mid=1 \text { for all } n \geq 1\right\}
$$

and

$$
X_{2}=\{x \in X \mid x \text { is a growing letter }\} .
$$

If $x \in X_{1}$, clearly $g(x) \in X_{1}$. Hence g permutes the letters of X_{1}. If $x \in X$ is not growing, there exists a positive integer k such that $g^{k}(x) \in X_{1}^{*}$. Because g permutes the letters of X_{1} there exists $u \in X_{1}^{*}$ such that $g^{k}(x)=g^{k}(u)$. Because g^{k} is injective, we have $x=u$ implying that $x \in X_{1}$. Consequently, $X=X_{1} \cup X_{2}$.

Because $\left|g^{n}(w)\right|$ has a linear upper bound there exists a constant K such that no $g^{n}(w)$ contains more than K growing letters. Therefore there exist integers $p \geq 1$ and $q \geq 0$ such that

$$
p r_{X_{2}}\left(g^{q}(w)\right)=p r_{X_{2}}\left(g^{p+q}(w)\right)
$$

(Here $p r_{X_{2}}$ is the projection from X^{*} onto X_{2}^{*}.) By changing p, if necessary, we may assume that $g^{p}(x)=x$ for all $x \in X_{1}$. Now, denote

$$
\begin{equation*}
h^{q}(w)=a_{0} u_{0} y_{1} u_{1} y_{2} u_{2} \ldots u_{k-1} y_{k} u_{k} \tag{4}
\end{equation*}
$$

where $k \geq 0, a_{0} \in A, u_{\alpha} \in X_{1}^{*}$ and $y_{\beta} \in X_{2}$ for $0 \leq \alpha \leq k, 1 \leq \beta \leq k$. Because each $g^{p}\left(y_{\beta}\right)$ contains only one growing letter, there exist $v_{\beta}, w_{\beta} \in \bar{X}_{1}^{*}$ such that

$$
g^{p}\left(y_{\beta}\right)=v_{\beta} y_{\beta} w_{\beta}
$$

for $1 \leq \beta \leq k$. Finally, there exist nonzero $a_{1}, a_{2} \in A$ such that

$$
\begin{gathered}
h^{p}\left(u_{0} y_{1} u_{1} y_{2} u_{2} \ldots u_{k-1} y_{k} u_{k}\right)= \\
a_{1} u_{0}\left(v_{1} y_{1} w_{1}\right) u_{1}\left(v_{2} y_{2} w_{2}\right) u_{2} \ldots u_{k-1}\left(v_{k} y_{k} w_{k}\right) u_{k}
\end{gathered}
$$

and

$$
h^{p}\left(v_{1} w_{1} v_{2} w_{2} \ldots v_{k} w_{k}\right)=a_{2} v_{1} w_{1} v_{2} w_{2} \ldots v_{k} w_{k}
$$

Now (3) follows inductively. First, if $n=0$, (3) follows by (4). Then, if (3) holds, we have

$$
\begin{gathered}
h^{(n+1) p+q}(w)= \\
a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} h^{p}\left(u_{0}\left(v_{1}^{n} y_{1} w_{1}^{n}\right) u_{1}\left(v_{2}^{n} y_{2} w_{2}^{n}\right) u_{2} \ldots u_{k-1}\left(v_{k}^{n} y_{k} w_{k}^{n}\right) u_{k}\right)= \\
a_{0} a_{1}^{n+1} a_{2}^{\frac{n(n+1)}{2}} u_{0}\left(v_{1}^{n+1} y_{1} w_{1}^{n+1}\right) u_{1}\left(v_{2}^{n+1} y_{2} w_{2}^{n+1}\right) u_{2} \ldots u_{k-1}\left(v_{k}^{n+1} y_{k} w_{k}^{n+1}\right) u_{k}
\end{gathered}
$$

Hence (3) holds for all $n \geq 0$.

Lemma 2. Let $h: A<X^{*}>\longrightarrow A<X^{*}>$ be a monomial morphism such that there exist integers $p \geq 1, q \geq 0, k \geq 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters $y_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, and nonzero $a_{0}, a_{1}, a_{2} \in A$ such that (3) holds for all $n \geq 0$ and none of the words $u_{\alpha}, v_{\beta}, w_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, contains a growing letter. Then there exist words $\bar{u}_{\alpha}, \bar{v}_{\beta}, \bar{w}_{\beta}, \bar{y}_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, such that

$$
h^{n p+q}(w)=a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} \bar{u}_{0}\left(\bar{v}_{1}^{n} \bar{y}_{1} \bar{w}_{1}^{n}\right) \bar{u}_{1}\left(\bar{v}_{2}^{n} \bar{y}_{2} \bar{w}_{2}^{n}\right) \bar{u}_{2} \ldots \bar{u}_{k-1}\left(\bar{v}_{k}^{n} \bar{y}_{k} \bar{w}_{k}^{n}\right) \bar{u}_{k}
$$

for all $n \geq 0$. Furthermore, the following conditions hold: None of the words $\bar{u}_{\alpha}, \bar{v}_{\beta}, \bar{w}_{\beta}$ contains a growing letter. Each \bar{y}_{β} contains exactly one growing letter. If $\bar{u}_{\alpha}=\lambda$ then either $\left\{\bar{w}_{\alpha}, \bar{v}_{\alpha+1}\right\}$ is a code or contains the empty word, $1 \leq \alpha \leq$ $k-1$. If $\bar{u}_{\alpha} \neq \lambda$, then neither of the words \bar{u}_{α} and \bar{w}_{α} is a prefix of the other, $1 \leq \alpha \leq k-1$.

Proof. For each $\alpha, 1 \leq \alpha \leq k-1$, we modify the words $u_{\alpha}, v_{\beta}, w_{\beta}$ as follows. If $u_{\alpha}=\lambda, w_{\alpha} \neq \lambda, v_{\alpha+1} \neq \lambda$ and $\left\{w_{\alpha}, v_{\alpha+1}\right\}$ is not a code, replace w_{α} by $w_{\alpha} v_{\alpha+1}$, and $v_{\alpha+1}$ by λ, respectively. If $u_{\alpha} \neq \lambda$ and u_{α} is a prefix of w_{α}, replace y_{α} by $y_{\alpha} u_{\alpha}, w_{\alpha}$ by $u_{\alpha}^{-1} w_{\alpha} u_{\alpha}$, and u_{α} by λ, respectively. If $u_{\alpha} \neq \lambda$ and w_{α} is a prefix of u_{α}, replace y_{α} by $y_{\alpha} w_{\alpha}$, and u_{α} by $w_{\alpha}^{-1} u_{\alpha}$, respectively, and continue as before. When all these replacements are completed we have obtained the words $\bar{u}_{\alpha}, \bar{v}_{\beta}, \bar{w}_{\beta}, \bar{y}_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, satisfying the conditions of the claim.

Lemma 3. Denote

$$
r=\sum_{n=1}^{\infty} a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} \bar{u}_{0}\left(\bar{v}_{1}^{n} \bar{y}_{1} \bar{w}_{1}^{n}\right) \bar{u}_{1}\left(\bar{v}_{2}^{n} \bar{y}_{2} \bar{w}_{2}^{n}\right) \bar{u}_{2} \ldots \bar{u}_{k-1}\left(\bar{v}_{k}^{n} \bar{y}_{k} \bar{w}_{k}^{n}\right) \bar{u}_{k}
$$

where $a_{0}, a_{1}, a_{2} \in A$ are nonzero and the words $\bar{u}_{\alpha}, \bar{v}_{\beta}, \bar{w}_{\beta}, \bar{y}_{\beta}, 0 \leq \alpha \leq k$, $1 \leq \beta \leq k$, satisfy the conditions of Lemma 2. Let t be the number of the words $\bar{v}_{\beta}, \bar{w}_{\beta}, 1 \leq \beta \leq k$, when empty words are deleted and each nonempty word is counted as many times as it occurs. Let z_{1}, \ldots, z_{t} be new distinct letters and denote

$$
r_{1}=\sum_{n=1}^{\infty} a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} z_{1}^{n} z_{2}^{n} \ldots z_{t}^{n}
$$

Then r is A-algebraic if and only if r_{1} is A-algebraic.
Proof. First, suppose that r is A-algebraic. By the conditions stated in Lemma 2 , each word in the language

$$
\bar{u}_{0}\left(\bar{v}_{1}^{*} \bar{y}_{1} \bar{w}_{1}^{*}\right) \bar{u}_{1}\left(\bar{v}_{2}^{*} \bar{y}_{2} \bar{w}_{2}^{*}\right) \bar{u}_{2} \ldots \bar{u}_{k-1}\left(\bar{v}_{k}^{*} \bar{y}_{k} \bar{w}_{k}^{*}\right) \bar{u}_{k}
$$

can be written uniquely in the form

$$
\bar{u}_{0}\left(\bar{v}_{1}^{j_{1}} \bar{y}_{1} \bar{w}_{1}^{j_{2}}\right) \bar{u}_{1}\left(\bar{v}_{2}^{j_{3}} \bar{y}_{2} \bar{w}_{2}^{j_{4}}\right) \bar{u}_{2} \ldots \bar{u}_{k-1}\left(\bar{v}_{k}^{j_{2 k-1}} \bar{y}_{k} \bar{w}_{k}^{j_{2 k}}\right) \bar{u}_{k}
$$

where $j_{\gamma} \in \mathbf{N}$ for $1 \leq \gamma \leq 2 k$, provided that possibly different powers of empty words are not regarded as different. Because A-algebraic series are closed under inverse morphisms and Hadamard products with A-rational series, we may assume that the nonempty $\bar{u}_{\alpha}, \bar{v}_{\beta}, \bar{w}_{\beta}, \bar{y}_{\beta}$ are in fact distinct letters, $0 \leq \alpha \leq k$,
$1 \leq \beta \leq k$. Finally, we erase the letters corresponding to nonempty words $\bar{u}_{\alpha}, \bar{y}_{\beta}$, $0 \leq \alpha \leq k, 1 \leq \beta \leq k$. The resulting series is still A-algebraic because at most three consecutive letters are erased (see [Kuich and Salomaa 86]).

Suppose then that r_{1} is A-algebraic. By applying the closure properties of A-algebraic series it follows easily that r is A-algebraic.

The following two lemmas recall some basic properties of algebraic series.
Lemma 4. Suppose $A=\mathbf{Q}$ or $A=\mathbf{B}$. Let z be a letter and

$$
r=\sum_{i=0}^{\infty} a_{i} z^{n_{i}}
$$

where $a_{i} \neq 0$ for $i \geq 0$, be a power series in $A \ll z^{*} \gg$. If

$$
\lim _{i \rightarrow \infty} \frac{n_{i}}{i}=\infty
$$

then r is not A-algebraic.
Proof. For both cases see [Kuich and Salomaa 86].
If $p \geq 2$ is a prime, denote by ν_{p} the p-adic valuation over \mathbf{Q}.
Lemma 5. Suppose $r \in \mathbf{Q} \ll X^{*} \gg$ is \mathbf{Q}-algebraic and $p \geq 2$ is a prime. Then there exists a positive integer C such that

$$
\left|\nu_{p}((r, w))\right| \leq C|w|
$$

for any nonempty word $w \in \operatorname{supp}(r)$.
Proof. By Theorem IV6.6 in [Salomaa and Soittola 78] there exists a nonzero integer d such that

$$
\sum(r, w) d^{|w|} w \in \mathbf{Z}^{\mathrm{alg}} \ll X^{*} \gg
$$

Furthermore, there exists a positive integer M such that

$$
\left|(r, w) d^{|w|}\right| \leq M^{|w|}
$$

for any nonempty $w \in X^{*}$. Hence there exists a positive integer D such that

$$
0 \leq \nu_{p}\left((r, w) d^{|w|}\right) \leq D|w|
$$

for any nonempty $w \in \operatorname{supp}(r)$. Consequently

$$
-\nu_{p}(d)|w| \leq \nu_{p}((r, w)) \leq D|w|
$$

for any nonempty $w \in \operatorname{supp}(r)$. This implies the claim.
The following lemma gives our main result in the case of elementary D0L power series.

Lemma 6. Suppose the basic semiring A equals $\mathbf{Q}_{+}, \mathbf{N}$ or \mathbf{B}. Then it is decidable whether or not a given elementary D0L power series $r=\sum_{n=0}^{\infty} a h^{n}(w)$ over A is A-algebraic.

Proof. Let p_{1} be the smallest period of the ultimately periodic sequence $\left(\operatorname{Alph}\left(h^{n}(w)\right)\right)_{n \geq 0}$ and let q_{1} be a nonnegative integer such that

$$
\operatorname{Alph}\left(h^{n}(w)\right)=\operatorname{Alph}\left(h^{n+p_{1}}(w)\right)
$$

for all $n \geq q_{1}$. Because A-algebraic series are closed with respect to Hadamard products with A-rational series, if r is A-algebraic, so is $r\left(p_{1}, q_{1}\right)$. On the other hand, if $r\left(p_{1}, q_{1}\right)$ is A-algebraic, so is r, because

$$
r=\sum_{n=0}^{q_{1}-1} a h^{n}(w)+\sum_{i=q_{1}}^{q_{1}+p_{1}-1} r\left(p_{1}, i\right)=\sum_{n=0}^{q_{1}-1} a h^{n}(w)+\sum_{i=q_{1}}^{q_{1}+p_{1}-1} h^{i-q_{1}}\left(r\left(p_{1}, q_{1}\right)\right)
$$

and h is nonerasing. So, it remains to decide whether or not $r\left(p_{1}, q_{1}\right)$ is A algebraic.

Because h is nonerasing, the underlying D0L length sequence of $r\left(p_{1}, q_{1}\right)$ is strictly increasing. Next, decide whether or not the underlying D0L length sequence of $r\left(p_{1}, q_{1}\right)$ is linear. If not, Lemma 4 implies that r is not A-algebraic. We continue with the assumption that this sequence is linear. Then, by Lemma 1 , there effectively exist integers $p \geq 1, q \geq 0, k \geq 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters $y_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, and nonzero $a_{0}, a_{1}, a_{2} \in A$ such that

$$
\begin{gathered}
a\left(h^{p_{1}}\right)^{n p+q}\left(h^{q_{1}}(w)\right)= \\
a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} u_{0}\left(v_{1}^{n} y_{1} w_{1}^{n}\right) u_{1}\left(v_{2}^{n} y_{2} w_{2}^{n}\right) u_{2} \ldots u_{k-1}\left(v_{k}^{n} y_{k} w_{k}^{n}\right) u_{k}
\end{gathered}
$$

for all $n \geq 0$. Then we have

$$
r\left(p_{1}, q_{1}\right)(p, q)=\sum_{n=0}^{\infty} a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} u_{0}\left(v_{1}^{n} y_{1} w_{1}^{n}\right) u_{1}\left(v_{2}^{n} y_{2} w_{2}^{n}\right) u_{2} \ldots u_{k-1}\left(v_{k}^{n} y_{k} w_{k}^{n}\right) u_{k}
$$

Now, let L be the language of all words over the alphabet $\operatorname{Alph}\left(r\left(p_{1}, q_{1}\right)\right)$ having length $\left|u_{0} y_{1} u_{1} y_{2} u_{2} \ldots y_{k} u_{k}\right|+n\left|v_{1} w_{1} v_{2} w_{2} \ldots v_{k} w_{k}\right|$ for some $n \geq 0$. Because the underlying D0L length sequence of $r\left(p_{1}, q_{1}\right)$ is strictly increasing,

$$
r\left(p_{1}, q_{1}\right) \odot \operatorname{char}(L)=r\left(p_{1}, q_{1}\right)(p, q)
$$

(Here $s_{1} \odot s_{2}$ stands for the Hadamard product of the series s_{1} and s_{2}.) Hence, if $r\left(p_{1}, q_{1}\right)$ is A-algebraic, so is $r\left(p_{1}, q_{1}\right)(p, q)$. The converse is seen to be true as above.

Now, to decide whether or not $r\left(p_{1}, q_{1}\right)(p, q)$ is A-algebraic it suffices, by Lemmas 2 and 3 to decide whether or not the series

$$
r_{1}=\sum_{n=1}^{\infty} a_{0} a_{1}^{n} a_{2}^{\frac{(n-1) n}{2}} z_{1}^{n} z_{2}^{n} \ldots z_{t}^{n}
$$

is A-algebraic. Here t is an effectively obtainable integer and the letters z_{γ} are distinct. We claim that r_{1} is A-algebraic if and only if $a_{2}=1$ and $t \leq 2$. First, if
r_{1} is A-algebraic, Lemma 5 implies that $a_{2}=1$. Furthermore, if r_{1} is A-algebraic, $\operatorname{supp}(r)$ is context-free. Consequently, $t \leq 2$. The converse implication follows immediately.

In order to generalize Lemma 6 for arbitrary D0L power series a lemma is needed.

Lemma 7. Let $h: A<X^{*}>\longrightarrow A<Y^{*}>$ be a monomial morphism. Then h is elementary if and only if the underlying monoid morphism $g: X^{*} \longrightarrow Y^{*}$ of h is elementary. If h is elementary, g is injective. If h is simplifiable, there exist a set X_{1} and monomial morphisms $h_{1}: A<X^{*}>\longrightarrow A<X_{1}^{*}>$ and $h_{2}: A<X_{1}^{*}>\longrightarrow A<Y^{*}>$ such that $h=h_{2} h_{1}, \operatorname{card}\left(X_{1}\right)<\operatorname{card}(X)$ and $h_{2}\left(x_{1}\right) \in Y^{*}$ for all $x_{1} \in X_{1}$. Furthermore, the underlying monoid morphism $g_{2}: X_{1}^{*} \longrightarrow Y^{*}$ of h_{2} is injective.

Proof. For the first claim see [Honkala 98]. The second claim follows by the first claim. Suppose then that h is simplifiable. If $h(x) \in A$ for all $x \in X$ the claim holds trivially. Otherwise, there exist a nonempty set X_{1} and monoid morphisms $g_{1}: X^{*} \longrightarrow X_{1}^{*}, g_{2}: X_{1}^{*} \longrightarrow Y^{*}$ such that $g=g_{2} g_{1}$ and $\operatorname{card}\left(X_{1}\right)<\operatorname{card}(X)$. By choosing as small X_{1} as possible we may assume that g_{2} is elementary. Now, denote $h(x)=a_{x} g(x)$ where $x \in X$ and $a_{x} \in A$, and define the monomial morphisms $h_{1}: A<X^{*}>\longrightarrow A<X_{1}^{*}>$ and $h_{2}: A<X_{1}^{*}>\longrightarrow A<Y^{*}>$ by

$$
\begin{gathered}
h_{1}(x)=a_{x} g_{1}(x), \quad x \in X \\
h_{2}(x)=g_{2}(x), \quad x \in X_{1}
\end{gathered}
$$

Then, if $x \in X$ we have

$$
h_{2} h_{1}(x)=h_{2}\left(a_{x} g_{1}(x)\right)=a_{x} g_{2} g_{1}(x)=a_{x} g(x)=h(x)
$$

Furthermore, the underlying monoid morphism g_{2} of h_{2} is injective.
Now we are ready for the main result.
Theorem 8. Suppose the basic semiring A equals $\mathbf{Q}_{+}, \mathbf{N}$ or \mathbf{B}. Then it is decidable whether or not a given DOL power series $r=\sum_{n=0}^{\infty} a h^{n}(w)$ over A is A-algebraic.

Proof. If h is elementary, apply the method of Lemma 6. If h is simplifiable, let h_{1} and h_{2} be as in Lemma 7 (where now $Y=X$.) Denote

$$
r_{1}=\sum_{n=0}^{\infty} a\left(h_{1} h_{2}\right)^{n}\left(h_{1}(w)\right) .
$$

Hence, $r_{1} \in A \ll X_{1}^{*} \gg$ is a D0L power series and

$$
r=a w+h_{2}\left(r_{1}\right)
$$

Because h_{2} is nonerasing, the A-algebraicness of r_{1} implies that of r. Conversely, if r is A-algebraic, so is r_{1} because

$$
g_{2}^{-1}\left(\sum_{u \neq w}(r, u) u\right)=r_{1}
$$

Consequently, it suffices to decide whether or not r_{1} is A-algebraic. Continuing in the same way it is seen that after finitely many steps we are in a position to apply the method of Lemma 6 .

If the basic semiring A equals the Boolean semiring, Theorem 8 implies a new method to decide whether or not a given D0L language is context-free (see [Salomaa 75]).

4 The case $\mathrm{A}=\mathrm{Q}$

In this section we briefly discuss the case $A=\mathbf{Q}$. We start with a problem concerning algebraic series.

Fix a semiring A. Let $X=\left\{x_{i} \mid i \in \mathbf{N}\right\}$ be an infinite alphabet and denote $X_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ for $k \geq 1$. Define the series $P_{k} \in A \ll X_{k}^{*} \gg$ by

$$
P_{k}=\sum_{n=1}^{\infty} x_{1}^{n} x_{2}^{n} x_{3}^{n} \ldots x_{k}^{n}
$$

We claim that if P_{k+1} is A-algebraic, so is $P_{k}, k \geq 1$. For the proof, define the morphisms $g: X_{k+1}^{*} \longrightarrow X_{k}^{*}$ and $h: X_{k}^{*} \longrightarrow X_{k}^{*}$ by

$$
\begin{gathered}
g\left(x_{i}\right)=x_{i}^{2} \quad \text { for } \quad 1 \leq i \leq k-1 \\
g\left(x_{k}\right)=g\left(x_{k+1}\right)=x_{k}
\end{gathered}
$$

and

$$
h\left(x_{i}\right)=x_{i}^{2} \quad \text { for } \quad 1 \leq i \leq k
$$

Then we have $P_{k}=h^{-1}\left(g\left(P_{k+1}\right)\right)$ which implies the claim by the closure properties of A-algebraic series.

Now, an integer k is called the $A L G$-bound for A if k is the largest integer such that P_{k} is A-algebraic. If no such k exists, the ALG-bound for A equals ∞. By the claim established above, P_{k} is A-algebraic if and only if k is at most the ALG-bound for A.

If A is a positive semiring the ALG-bound for A equals two. We do not know the ALG-bound for $A=\mathbf{Q}$.

Next, suppose the basic semiring A equals \mathbf{Q}. By the previous section it is decidable whether or not a given D0L power series over \mathbf{Q} is \mathbf{Q}-algebraic. However, an explicit algorithm is obtained only if the ALG-bound for \mathbf{Q} is known.

The decidability of algebraicness of D0L power series and the determination of ALG-bounds are closely related. In fact, if A is any semiring such that A algebraicness is decidable for D0L power series over A then the ALG-bound for A is effectively computable if it is finite. This follows because P_{k} is A-algebraic if and only if the series

$$
T_{k}=\sum_{n=1}^{\infty} y_{1} x_{1}^{n} y_{2} x_{2}^{n} \ldots y_{k} x_{k}^{n}
$$

is A-algebraic. (Here y_{1}, \ldots, y_{k} are new letters.) Furthermore, T_{k} is a D0L power series over A.

References

[Berstel and Reutenauer 88] Berstel, J. and Reutenauer, C.: "Rational Series and Their Languages"; Springer, Berlin (1988).
[Honkala 95] Honkala, J.: "On morphically generated formal power series"; RAIRO, Theoret. Inform. and Appl. 29 (1995) 105-127.
[Honkala 97] Honkala, J.: "On the decidability of some equivalence problems for L algebraic series"; Intern. J. Algebra and Comput. 7 (1997) 339-351.
[Honkala 98] Honkala, J.: "On D0L power series"; Theoret. Comput. Sci., to appear.
[Honkala 00] Honkala, J.: "On sequences defined by D0L power series"; submitted.
[Kuich and Salomaa 86] Kuich, W. and Salomaa, A.: "Semirings, Automata, Languages"; Springer, Berlin (1986).
[Rozenberg and Salomaa 80] Rozenberg, G. and Salomaa, A.: "The Mathematical Theory of L Systems"; Academic Press, New York (1980).
[Rozenberg and Salomaa 97] Rozenberg, G. and Salomaa, A. (eds.): "Handbook of Formal Languages", Vol. 1-3; Springer, Berlin (1997).
[Salomaa 75] Salomaa, A.: "Comparative decision problems between sequential and parallel rewriting"; Proc. Symp. Uniformly Structured Automata and Logic (1975) 62-66.
[Salomaa and Soittola 78] Salomaa, A. and Soittola, M.: "Automata-Theoretic Aspects of Formal Power Series"; Springer, Berlin (1978).

