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Abstract: We continue the investigation of the power of the computability models
introduced in [12] under the name of transition super-cell systems. We compare these
systems with classic mechanisms in formal language theory, context-free and matrix
grammars, E0L and ET0L systems, interpreted as generating mechanisms of number
relations (we take the Parikh image of the usual language generated by these mecha-
nisms rather than the language). Several open problems are also formulated.

1 Introduction

A super-cell system is a distributed parallel computing model inspired from bio-
chemistry and recently introduced in [12]. It is based on the notion of amembrane
structure, of a kind similar to that used by the chemical abstract machine of [3].
Such a structure consists of several cell-like membranes, hierarchically embed-
ded. Objects are placed in its regions, subject to given evolution rules. These
rules are of the type used in multiset rewriting systems, see [1], [2]. An object
can be transformed in other objects, can pass through adjacent membranes, and
can dissolve the membrane in which it is placed. Such a construct leads to a
computing device: start from an initial con�guration and evolve until a halt-
ing con�guration is obtained; (the number of) the objects in a speci�ed output
membrane is the result of the computation.

The objects can evolve in dependence to each other (we then say that the
system is cooperating), or independently. A particular case of cooperating sys-
tems is that where one considers catalysts, certain objects which are allowed to
participate to the evolution of other objects, but without being modi�ed by this
operation. It is proved in [12] that super-cell systems with catalysts, without us-
ing the membrane dissolving action, of degree two (composed of two membranes
only) characterize the family of recursively enumerable sets of natural numbers.

The non-cooperating case is not investigated in [12]. We consider here sys-
tematically the eight possibilities: with or without priorities, with or without
cooperation, with or without the membrane dissolving action. The eight hierar-
chies on the number of membranes used in a system are compared to classes of
number relations associated with languages generated by devices in the Chom-
sky hierarchy and in the Lindenmayer area. Five of these hierarchies are proved
to collapse. In the cooperating case when priorities are used, we give a proof
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of the equivalence with Turing machines shorter than the corresponding proof
given in [12] for the weaker case of systems with catalysts (of course, systems
with catalysts are particular cases of cooperating systems). The membrane dis-
solving action is not used, so in this way we settle the case of two hierarchies.
When no priority, no cooperation, and no dissolving action is used, we get ex-
actly the Parikh sets of context-free languages. This is a third hierarchy which
we know that collapses. In general, when the dissolving action is not used, the
region where an object is placed at any time can be identi�ed by a subscript of
its \name", hence again the hierarchy collapses (at level two, because we need
an output membrane). This covers two more cases, di�erent from the previously
mentioned ones. For the other three hierarchies, this problem remains open. Also
the properness of most of the inclusions we prove here remains open.

2 Super-cell Systems

We do not give a formal de�nition of a super-cell system; the reader is referred
to [12] for details (and illustrating examples). Rather, we prefer an informal
de�nition. For elements of formal language theory we refer to [16]. Here we only
specify some notations.

For an alphabet V , we denote by V � the free monoid generated by V under
the operation of concatenation; the empty string is denoted by �. For x 2 V � and
a 2 V , we denote by jxj the length of x and by jxja the number of occurrences
of the symbol a in x. If L � V �, then the length set of L is length(L) = fjxj j
x 2 Lg: The set of natural numbers is denoted by N. If V = fa1; : : : ; ang,
then the Parikh mapping associated with V is 	V : V � �! Nn de�ned by
	V (x) = (jxja1 ; : : : ; jxjan) for x 2 V �. The mapping 	V is extended in the
natural way to languages. 	V (L) is called the Parikh set of L � V �.

We denote by REG, CF, CS, RE the basic families in the Chomsky hierarchy:
of regular, context-free, context-sensitive, and recursively enumerable languages,
respectively. The family of Parikh sets of languages in a family F is denoted by
PsF , while the family of length sets of languages in a family F is denoted by
LsF .

A multiset over a given set U is a mapping M : U �! N. The set fa 2
U j M(a) > 0g is the support of M . The multiset with an empty support
is said to be itself empty and denoted by ;. Multisets of �nite support are
represented as strings which specify, in any order, the objects in the support
and their multiplicities. The empty multiset is represented by the empty string
�.

A membrane structure is a construct consisting of several membranes placed
in a unique \skin" membrane; we identify a membrane structure with a string of
correctly matching parentheses, placed in a unique pair of matching parentheses.
Graphically, a membrane structure is represented by a Venn diagram without
intersection and with a unique superset (two sets can be either disjoint or one
the subset of the other).

If in the regions delimited by the membranes we place multisets of objects
from a speci�ed �nite set V , then we obtain a super-cell.

A super-cell system is a super-cell provided with evolution rules of objects
and with a designated output membrane.
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More formally, a transition super-cell system of degree m;m � 1, is a con-
struct

� = (V; �;M1; : : : ;Mm; (R1; �1); : : : ; (Rm; �m); i0);

where:

(i) V is an alphabet; its elements are called objects;
(ii) � is a membrane structure consisting of m membranes, with the membranes

and the regions labeled in a one-to-one manner with elements in a given set
�; here we always use the labels 1; 2; : : : ;m;

(iii) Mi; 1 � i � m; are multisets over V associated with the regions 1; 2; : : : ;m
of �;

(iv) Ri; 1 � i � m, are �nite sets of evolution rules over V associated with the
regions 1; 2; : : : ;m of �; �i is a partial order relation over Ri, 1 � i � m,
specifying a priority relation among rules of Ri. This relation is con
ictless
(its graph contains no cycle).
An evolution rule is a pair (u; v), which we will usually write in the form
u! v, where u is a string over V and v = v0 or v = v0Æ, where v0 is a string
over

(V � fhere; outg) [ (V � finj j 1 � j � mg);

and Æ is a special symbol not in V . The length of u is called the radius of
the rule u! v.

(v) i0 is a number between 1 and m and it speci�es the output membrane of � .

When presenting the evolution rules, the indication \here" is often omitted.
Because we usually represent multisets by strings, we write w1; : : : ; wm in-

stead of M1; : : : ;Mm, for wi 2 V �; 1 � i � m.
If � contains rules of radius greater than one, then it is said to be a system

with cooperation.
The membrane structure and the multisets in � constitute the initial con�g-

uration of the system. We can pass from a con�guration to another one by using
the evolution rules. This is done in parallel: all objects, from all membranes,
which can be the subject of local evolution rules, as prescribed by the priority
relation, should evolve simultaneously.

The priority checking is done as follows: we take a rule for which there is no
rule of a higher priority and applicable and we assign to it the objects to which it
can be applied; we repeat this operation with the rule of maximal priority which
can be applied to the objects which were not assigned yet to rules (of course, the
objects are assigned only once to a rule). That is, a rule can be used only if there
are objects which are \free" in the moment when we check its applicability, and
no rule of a higher priority can be applied at the same step, irrespective to which
objects. Note that, because the priority relation is not circular, no con
ict (loop)
appears when checking it. (A possible variant is to use the priority relation only
to settle the choice among rules which involve common objects in their left hand
members, but this raises some diÆculty in the cooperating case, because of the
transitivity: consider r1 : ab ! v1; r2 : bc ! v2; and r3 : cd ! v3, and the
relations r1 > r2 > r3. Do we have to observe the relation r1 > r3, in spite of
the fact that r1 acts on ab and r3 acts on the di�erent objects cd ?)

The use of a rule u ! v in a region with a multiset M means to subtract
the multiset identi�ed by u from M , then to follow the prescriptions of v: if an
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object appears in v in the form (a; here), then it remains in the same region; if
we have (a; out), then a copy of the object a will be introduced in the membrane
immediately outside the region of the rule u! v; if we have (a; ini), then a copy
of a is introduced in the membrane with the label i, providing that this membrane
is adjacent to the region of the rule u! v, otherwise the rule cannot be applied;
if the special symbol Æ appears in v, then the membrane which delimits the
region of the rule u ! v is dissolved; in this way, all the objects in this region
become elements of the region placed immediately outside, while the rules of
the dissolved membrane are removed. Several membranes can be dissolved at
the same time, hence objects from several regions can come together in a higher
region in one step.

We note the fact that we observe here no \conservation low". For instance,
a rule of the form a ! ab can be used an arbitrarily large number of times,
producing an arbitrarily large number of copies of object b, without taking care
of the \row materials" used for that. Otherwise stated, we use some biochemical
inspiring details, but we work in info (as opposed to in vivo and to in vitro).

A sequence of transitions between con�gurations of a given super-cell sys-
tem � is called a computation with respect to � . A computation is success-
ful if and only if it halts, that is, there is no rule applicable to the objects
present in the last con�guration and the output membrane is present as an ele-
mentary membrane in this last con�guration. The result of a successful com-
putation is the total number of objects present in the output membrane of
the halting con�guration. We denote by N(�) the set of numbers computed
by a super-cell system � . We can also associate a relation to a system: con-
sider a subset T � V; T = fa1; : : : ; ang, as a designated output alphabet
(and explicitly provided in the system: then we write the system in the form
� = (V; T; �; w1; : : : ; wm; (R1; �1);. . . ,(Rm; �m); i0)); then the Parikh set com-
puted by � (with respect to T ), denoted PT (�), consists of all vectors 	T (x)
for x describing the multiset present in the output membrane in a halting con-
�guration.

The following example can clarify the way of de�ning the transition between
con�gurations of a super-cell system, as well as the way of writing such systems.
Consider the system:

� = (V; T; �; w1; w2; (R1; �1); (R2; �2); 2);

V = fa; b; c; dg;

T = fa; bg;

� = [1[2 ]2]1;

w1 = ad;

w2 = �;

R1 = fr1 : a! aab; r2 : a! (a; in2); r3 : b! (b; in2);

r4 : c! b; r5 : d! d; r6 : d! cg;

�1 = fr4 > r1; r5 > r2; r6 > r2; r5 > r3; r6 > r3g;

R2 = ;;

�2 = ;:
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This is a super-cell system of degree two, of type (Pri; nCoo; nÆ), with the output
membrane labeled by 2.

The initial con�guration of the system is better seen in the graphical rep-
resentation from Figure 1. As long as the object d is present, the rules r2; r3
cannot be used. Thus, for evolving a we have to use the rule r1, for all currently
available copies of a. In this way, after n steps, we get 2n copies of a and 2n � 1
copies of b. Let us suppose that in the meantime we have used n� 1 times the
rule r5 and, at step n, the rule r6. The multiset present in membrane 1 is (in
the string representation) a2

n

b2
n�1c. Because rule r4 can now be used, the rule

r1 cannot be used again, but all copies of a and b should now evolve using the
available rules r2; r3, which can now be applied, because r5 and r6 aro no longer
applicable. In this way, all copies of the objects a and b are sent to membrane
2. By using the rule r4, in membrane 1 we produce one more copy of b; at
the next step, this copy of b is also sent to the output membrane. No further
transition can be done, the computation stops with the result 2 � 2n. Therefore,
N(�) = f2n+1 j n � 1g:

If we distinguish the symbols in the output membrane, then the Parikh set
computed by � is Pfa;bg(�) = f(2n; 2n) j n � 1g. ut

Figure 1. Example of a super-cell system.
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r4 : c! b > r1 : a! aab

r5 : d! d r2 : a! (a; in2)

r6 : d! c r3 : b! (b; in2)
>

We emphasize the fact that the objects we deal with in this paper are consid-
ered atomic, in the etymological sense: they have no parts, so we identify them
with symbols. In [12] one also considers super-cell systems with the objects be-
ing strings and evolving either by means of rewriting rules, as usual in Chomsky
grammars, or by means of splicing rules, as in DNA computing area (see, e.g.,
[13]). They are called rewriting super-cell systems and splicing super-cell sys-
tems, respectively, while the basic variant, introduced at the beginning of this
section, is called a transition super-cell system. Because we work here only with
transition systems, we simply call them super-cell systems.

The family of number relations PT (�) generated by super-cell systems with
priority, cooperation, and membrane dissolving action, and of degree at most
m;m � 1, is denoted by PsSCm(Pri; Coo; Æ); when one of the features � 2
fPri, Coo, Æg is not present, we replace it with n�. The union of all families
PsSCm(�; �; 
);m � 1; is denoted by PsSC(�; �; 
), for � 2 fPri; nPrig; � 2
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fCoo; nCoog; 
 2 fÆ; nÆg. When dealing with the set N(�), we replace P in
front of PsSC with N. In general, the results we obtain for PsSC families are the
same with those for NsSC families.

The following inclusions directly follow from the de�nitions:

Lemma1. (i) PsSCm(�; �; 
) � PsSCm+1(�; �; 
); and PsSCm(�; �; 
) �
PsSC(�; �; 
), for all m � 1 and for all possible �; �; 
.

(ii) PsSCm(�
0; �0; 
0) � PsSCm(�; �; 
), for all m � 1 and all possible

�; �; 
 such that �0; �0; 
0 are either equal to �; �; 
 or to n�; n�; n
, respec-
tively, when n is not already present. The same assertion holds for families
PsSC(�; �; 
).

(iii) The previous assertions hold true also for families NsSCm(�; �; 
);m �
1; and NsSC(�; �; 
).

(iv) All these families are included in PsRE, LsRE, respectively.

3 A Basic Result

We start by giving a general result, which says that when the membrane dissolv-
ing action is not used, then all hierarchies collapse at the level two. Although
intuitively simple, this result will considerably simplify the subsequent investi-
gations.

Theorem2. PsSC(�; �; nÆ) = PsSCm(�; �; nÆ), for all � 2 fPri; nPrig; � 2
fCoo; nCoog, and m � 2.

Proof. Consider a super-cell system � = (V; T; �; w1; . . . , wm; (R1; �1); . . . ,
(Rm; �m); i0), of some degree m � 1, with the skin membrane labeled with 1.
Assume that m � 2; then, because i0 should be elementary, it is not the skin
membrane, that is i0 6= 1. Let ai; 1 � i � m, be new symbols associated with
each a 2 V , and hi be the morphisms de�ned by hi(a) = ai, for a 2 V; 1 �
i � m. Assume that Ri = fri;1; : : : ; ri;tig, with ti � 0; 1 � i � m. Also, assume
that � does not contain rules which cannot be applied because of wrong target
indications: if Ri contains a rule a ! v with v introducing (b; inj), then j is a
membrane placed immediately inside i.

We construct the system

� 0 = (V 0; T; [1[ i0 ]
i0
]1; w; wi0 ; (R

0
1; �

0
1); (R

0
i0
; �0i0); i0);

V 0 = V [ fai j a 2 V; 1 � i � mg;

w = h1(w1) : : : hi0�1(wi0�1)hi0+1(wi0+1) : : : hm(wm);

R0
1 = fr0i;j : hi(u)! v0 j for ri;j : u! v 2 Ri; 1 � i � m; i 6= i0; 1 � j � ti;

where v0 is obtained from v in the following way:

each (b; here) from v is replaced with bi;

each (b; out) from v is replaced with bj ;

where j is the membrane outside i;

with the exception of i = 1; where (b; out) is left unchangedg;

each (b; ins) from v is replaced with bs; for s a membrane
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placed immediately inside i;

with the exception of s = i0; when (b; ini0) is left unchanged;

�01 = fr0i;j > r0i;k j for ri;j > ri;k ; 1 � i � m; i 6= i0; 1 � j; k � tig;

R0
i0
= fr0i0;j : u! v0 j for ri0;j : u! v 2 Ri0 ; 1 � j � ti0 ; where

v0 is obtained from v in the following way:

each (b; here) from v remains unchanged;

each (b; out) from v is replaced with (bj ; out); where j

is the membrane outside i0 in the system �;

each (b; ins) from v is replaced with (bs; out) for s a membrane

placed immediately inside i0g;

�0i0 = fr0i0;j > r0i0;k j for ri0;j > ri0;k; 1 � j; k � ti0g:

The itinerary of objects through membranes of � is simulated by the sub-
scripts of symbols used in � 0. The membrane i0 is preserved, with the symbols
representing its objects without having subscripts. Thus, the rules in Ri0 have
the same left hand multiset (but a modi�ed right hand side). The priorities im-
posed by �1; : : : ; �m are captured by the relations in �01; �

0
i0
, which act \locally",

on the rules associated with each membrane of � , because of the subscripts of
symbols. In this way, any computation in � can be simulated by an equivalent
computation in � 0, and conversely; the two computations stops in the same
circumstances. In consequence, PT (�) = PT (�

0) and we have the inclusion
PsSC(�; �; nÆ) � PsSC2(�; �; nÆ). The converse inclusion was pointed out in
Lemma 1.

4 Super-cell Systems with Cooperation

In this section we investigate the size of the families PsSCm(�;Coo; �), for
� 2 fPri; nPrig and � 2 fÆ; nÆg, in comparison with known families in formal
language theory.

In [12] it is proved that even for a particular class of super-cell systems with
cooperation, the systems with catalysts, as we have mentioned in the Introduc-
tion, we can characterize all recursively enumerable relations over N. Systems
with two membranes are suÆcient. We give here a new proof of this result, much
shorter, but directly for the cooperating systems, also proving that in this case
one membrane is enough. As in [12], too, to this aim we use the notion of a
matrix grammar with appearance checking.

Such a grammar is a construct G = (N;T; S;M; F ), where N;T are disjoint
alphabets, S 2 N ,M is a �nite set of sequences of the form (A1 ! x1; : : : ; An !
xn), n � 1, of context-free rules over N [ T (with Ai 2 N; xi 2 (N [ T )�,
in all cases), and F is a set of occurrences of rules in M (we say that N is
the nonterminal alphabet, T is the terminal alphabet, S is the axiom, and the
elements of M are called matrices.)

For w; z 2 (N[T )� we write w =) z if there is a matrix (A1 ! x1; : : : ; An !
xn) in M and the strings wi 2 (N [ T )�; 1 � i � n+ 1, such that w = w1; z =
wn+1; and, for all 1 � i � n, either wi = w0iAiw

00
i ; wi+1 = w0ixiw

00
i , for some

w0i; w
00
i 2 (N [ T )�, or wi = wi+1; Ai does not appear in wi, and the rule
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Ai ! xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied; we say that these rules are
applied in the appearance checking mode.)

We denote by =)� the re
exive and transitive closure of the relation =).
The language generated by G is de�ned by L(G) = fw 2 T � j S =)� wg:
The family of languages of this form is denoted by MATac. When the set F is
empty, hence all rules have to be applied e�ectively (the grammars are said to
be without appearance checking), the obtained family is denoted by MAT .

It is known that CF �MAT �MATac = RE. Further details about matrix
grammars can be found in [7] and in [16].

Lemma3. PsCF � PsMAT � PsMATac = PsRE, and LsCF = LsMAT �
LsMATac = LsRE.

Proof. The inclusions follow from the remark above about the power of matrix
grammars. It is known that PsCF contains only semilinear sets, while MAT
contains languages which are not semilinear (see Example 1.1.2 in [7]). On the
other hand, it is known that the one-letter languages in the family MAT are
regular ([9]), which implies that LsCF = LsMAT and also that the inclusions
PsMAT � PsMATac, LsMAT � LsMATac are proper.

Theorem4. PsRE = PsSCm(Pri; Coo; nÆ) = PsSCm(Pri; Coo; Æ) =
PsSC(Pri; Coo; Æ) = PsSC(Pri; Coo; nÆ); for all m � 1. The similar equalities
for length sets also hold true.

Proof. According to Lemma 1, it is enough to prove the inclusion PsRE �
PsSC1(Pri; Coo; nÆ). To this aim, we use the equality PsRE = PsMATac and
show that each matrix grammar with appearance checking can be simulated, up
to the order of symbols in the sentential forms, by a super-cell system of degree
one with cooperation and priorities.

Take a matrix grammar with appearance checking, G = (N;T; S;M; F ) gen-
erating the language L(G) such that 	T (L(G)) is a given recursively enumerable
subset of Nk, for k = card(T ).

According to Lemma 1.3.7 in [7], without loss of generality we may assume
that N = N1 [N2 [ fS; yg, with these three sets mutually disjoint, and that the
matrices in M are of one of the following forms:

1. (S ! XA); with X 2 N1; A 2 N2;
2. (X ! Y;A! x); with X;Y 2 N1; A 2 N2; x 2 (N2 [ T )�;
3. (X ! Y;A! y); with X;Y 2 N1; A 2 N2,
4. (X ! x1; A! x2), with X 2 N1; A 2 N2; and x1; x2 2 T �:

Moreover, there is only one matrix of type 1 (we use then to write its rule in the
form S ! X0A0, in order to stress that these symbols are �xed) and F consists
exactly of all rules A ! y appearing in matrices of type 3; y is a trap-symbol,
once introduced, it is never removed. A matrix of type 4 is used only once, at
the last step of a derivation.

We construct the super-cell system of degree one

� = (N [ T; T; [1 ]1; X0A0; (R1; �1); 1);

with the following rules:
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1. XA! Y x, for each matrix (X ! Y;A! x) in M of type 2;
2. r : X ! Y; r0 : A ! y, for each matrix (X ! Y;A ! y) in M of type 3;

moreover r0 > r for each such a pair of rules;
3. y ! y;
4. XA! x1x2, for each matrix (X ! x1; A! x2) in M of type 4;
5. X ! X , for all X 2 N1;
6. A! A, for all A 2 N2.

It is easy to see that the cooperating rules of types 1 and 4 simulate the
non-appearance checking matrices of M , while, because of the priority relation,
the rules of type 2 correctly simulate the matrices with rules applied in the
appearance checking mode: if A is present, then the trap-symbol y is introduced,
which can evolve for ever. If not, then the change of X for Y is performed.
Always we have only one copy of a symbol from N1. If we reach a multiset where
only terminal symbols appear, then no further step can be done; otherwise, the
rules of types 5, 6 prevent terminating the computation. Note that after using
a rule of type 4, no rule of type 1 or of the form X ! Y can be used, and,
conversely, if a string contains a symbol X 2 N1 and no symbol from N2, then
X can never be eliminated. Consequently, 	T (L(G)) = PT (�). Note that we do
not use the membrane dissolving action.

Theorem5. PsMAT � PsSC1(nPri; Coo; Æ); and PsMAT � PsSC2(nPri;
Coo; Æ); strict inclusion; PsMAT � PsSC1(nPri; Coo; nÆ); the same assertions
are valid for families NsSC instead of PsSC.

Proof. The inclusions follow as a particular case of the construction in the previ-
ous proof: if there is no matrix with appearance checking in the starting grammar
G, then we need no priority in our super-cell system which simulates G.

Super-cell systems with two membranes which use the dissolving action can
generate one-component non-semilinear sets even in the non-cooperating non-
priority case: consider the system

� = (fa; bg; [1[2 ]2]1; �; ab; (fb! b; b! Æ; a! aag; ;); (;; ;); 1):

We obtain N(�) = f2n j n � 1g: at each step we have to multiply by two all
currently available copies of a, and this is done as long as the inner membrane
exists, that is, as long as the rule b! b is used; after dissolving it, by using the
rule b! Æ, the computation halts.

Corollary 6. PsCF � PsSC1(nPri; nCoo; nÆ).

Proof. A construction similar to that in the proof of Theorem 4 can be carried
out for a context-free grammar (which corresponds to a matrix grammar whose
matrices have only one rule each and no appearance checking is present) and we
get a super-cell system of degree one using no priority, no cooperation, and no
membrane dissolving action.

5 Super-cell Systems without Cooperation

We now investigate the families PsSCm(�; nCoo; �); NsSCm(�; nCoo; �), for
m � 1 and � 2 fPri; nPrig; � 2 fÆ; nÆg. We �rst complete the study of the
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families considered in Corollary 6. To this aim, we need the notion of a cooper-
ating distributed (CD, for short) grammar system with maximal derivation, as
introduced in [11], [4]; see details in [5].

A CD grammar system of degree m;m � 1, is a construct � =
(N;T; S; P1; : : : ; Pm), where N;T are disjoint alphabets (of nonterminals and
of terminals, respectively), S 2 N (axiom), and Pi; 1 � i � m, are �nite sets of
context-free rules over the alphabets N;T . Each set Pi is called a component of
the system. With respect to each set Pi we de�ne the derivation relation =)i

over (N [T )� as usual. Then, a maximal derivation with respect to a component
Pi is a derivation x =)�

i y for which there is no z 2 (N [T )� such that y =)i z.
We write x =)t

i y. (No rule of the component Pi can be applied to the string
y.) The language generated by the system � is

L(� ) = fw 2 T � j S =)t
i1
w1 =)

t
i2
: : : =)t

ir
wr = w;

for some r � 1; i1; : : : ; ir 2 f1; 2; : : : ;mgg:

We denote by CDm;m � 1, the family of languages generated by CD gram-
mar systems of degree at most m and by CD the union of all these families.

It is known that CF = CD1 = CD2 � CD3 = CD = ET0L. These relations
extend also to Parikh sets and length sets.

For the sake of completeness, we specify that an ET0L system is a construct
G = (V; T; w; P1; : : : ; Pm), where V is an alphabet, T � V , w 2 V �, and Pi; 1 �
i � m, are �nite sets of context-free rules over V such that for each a 2 V there
is at least one rule a ! x in each set Pi (we say that these set, called tables,
are complete). In a derivation step, a table, nondeterministically chosen, is used;
this means rewriting once all the symbols presents in the current sentential form.
The language generated by G, denoted L(G), consists of all strings over T which
can be generated in this way starting from the axiom w. An ET0L system with
only one table is called an E0L system. Details can be found, e.g., in [15].

Theorem7. PsCF = PsSCm(nPri; nCoo; nÆ) = PsSC(nPri; nCoo; nÆ),
LsCF = LsSCm(nPri; nCoo; nÆ) = LsSC(nPri; nCoo; nÆ), m � 1.

Proof. According to Lemma 1 and Corollary 6 we only have to prove the inclu-
sion PsSC(nPri; nCoo; nÆ) � PsCF . To this aim, we will prove the inclusion
PsSC(nPri; nCoo; nÆ) � PsCD2.

Consider a super-cell system of degree m � 1, � = (V; T; �; w1; . . . , wm;
(R1; ;); . . . , (Rm; ;); i0), without cooperation and without using de dissolving
action. We assume the membranes labeled with the numbers 1; 2; : : : ;m. We
also assume that if a rule a ! x in a set Ri contains a symbol (b; inj) in x,
then the membrane j is \accessible" to the rule, in the sense that the rule is
placed in the region immediately outside membrane j (otherwise, the rule is
never applicable and we can remove it; note that because we cannot dissolve
membranes, the membrane structure is constant). Denote Ti = fa 2 V j there
is no rule a ! x 2 Rig. For each symbol a 2 V we consider two new symbols,
ai and a

0
i, for each i 2 f1; 2; : : : ;mg. We denote by hi the morphisms de�ned by

hi(a) = a0i, for all a 2 V; 1 � i � m. If a symbol a 2 Ti appears in wi, for i 6= i0,
then it is removed (it cannot evolve and cannot reach the output membrane).
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We construct the CD grammar system of degree two � = (N;T; S; P1; P2),
where

N = fai; a
0
i j a 2 V; 1 � i � mg [ (V � Ti0) [ fSg;

and with the following components:

P1 = fS ! h01(w1)h
0
2(w2) : : : h

0
m(wm)g

[ fai ! �x j a! x 2 Ri; where �x is obtained from

x in the following way:

(a) if a symbol (b; here) appears in x; then in �x

we put b0i instead of it;

(b) if a symbol (b; out) appears in x; then in �x

we put b0j instead of it, where j is the label

of the membrane immediately outside the membrane i;

in the case of the skin membrane, instead of (b; out) we put �;

(c) if a symbol (b; inj) appears in x; then in �x

we put b0j instead of it;

moreover, in any of the cases (a), (b), (c), instead of any symbol

b0j ; for b 2 Tj ; we put � in �x; with the exception

of the output membrane, where we put bg;

P2 = fa0i ! ai j 1 � i � mg:

The component P1 simulates the transitions in the super-cell system � . All
symbols ai such that a rule in Ri can be applied to a have to be rewritten,
otherwise the derivation step is not done in the t mode. Because the use of a
rule introduces primed symbols, we cannot rewrite repeatedly a symbol (this
is possible in CD grammar systems, but it is not allowed in a transition in a
super-cell system). The subscripts of the symbols indicate the membranes where
they are placed in the same way as in the proof of Theorem 2 and they se-
lect the corresponding rules to be applied to these symbols; these subscripts are
changed during the derivation according to the evolution rules of � . All sym-
bols which cannot evolve or are sent outside the skin membrane are removed,
with the exception of the symbols reaching the output membrane. The compo-
nent P2 replaces primed symbols with non-primed symbols, still preserving their
subscripts. Thus, the process can be iterated. The only way to reach a termi-
nal string is to remove all symbols di�erent from those from T which reach the
output membrane. Consequently, PT (�) = 	T (� ).

We do not know whether or not also the hierarchies not mentioned in The-
orems 2, 4, and 7 collapse. At least for PsSCm(nPri; nCoo; Æ);m � 1, we con-
jecture that we have an in�nite hierarchy.

An estimation of families of Parikh sets in the remaining families is obtained
by comparing them with the Parikh sets of languages in the L area. We start
with lower estimations. First, we mention the few results about Parikh sets and
length sets we know for E0L and ET0L languages.

Lemma8. PsCF � PsE0L � PsET0L � PsCS; PsE0L�PsMAT 6= ;: The
same relations hold also for length sets.
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Proof. The inclusions follow from the similar inclusions for the language fam-
ilies. Because LsE0L contains one-component non-semilinear sets, we get the
assertions for the CF and MAT cases. The language fan j n a is prime numberg
is known not to be an ET0L language (Exercise VI.2.6 in [15]), hence we have
the strictness of the inclusions PsET0L � PsCS;LsET0L � LsCS.

Theorem9. PsE0L � PsSC2(nPri; nCoo; Æ) and similarly for the length sets.

Proof. Having an E0L system G = (V; T; w; P ), we construct the super-cell sys-
tem of degree two

� = (V [ fdg; T; [1[2 ]2]1; ;; dw; (R1; ;); (R2; ;); 1);

with

R1 = fa! a j a 2 V � Tg;

R2 = fd! d; d! Æg [ P:

In the inner membrane one simulates derivation steps in G as long as the symbol
d is present; when the membrane is dissolved, the simulation stops. If any symbol
not in T is still present, then we can use the corresponding rule a ! a in
R1 for ever. Thus, only the terminal derivations in G are simulated by halting
computations in � .

The result above cannot be improved by taking only one membrane: one
membrane means no dissolving action; according to Theorem 7, we can then
compute only context-free Parikh images.

It is also worth mentioning here the importance of a detail in the de�nition of
super-cell systems: the output membrane is not necessarily an elementary one in
the initial con�guration, but it must be elementary in the halting con�guration.
This is the case for the system � in the previous proof.

It is not possible to generate all E0L Parikh sets without using this feature.
More speci�cally, systems of the form � = (V; T; [1[2 ]2]1; w1; w2; (R1; �1);
(R2; �2); 2), without priority and without cooperation, do not generate all E0L
Parikh sets. This is a consequence of Theorem 7: because neither the output
membrane nor the skin membrane can be dissolved, the system is also not using
the membrane dissolving action. Consequently, it generates only Parikh images
of context-free languages.

When a priority relation is used, by super-cell systems of degree one we can
simulate all Parikh sets of ET0L languages (without knowing whether or not
this actually means more than Parikh sets of E0L languages: see again Lemma
8).

Theorem10. PsET0L � PsSC1(Pri; nCoo; nÆ) � PsSC1(Pri; nCoo; Æ).
Similar relations hold for length sets.

Proof. It is known that each ET0L language can be generated by an ET0L
system with two tables only. Let G = (V; T; w; P1; P2) be such a system. For
each letter a 2 V , let a0 be a new symbol, let V 0 be the set fa0 j a 2 V g, and h
be the morphism de�ned by h(a) = a0; a 2 V . Let d; d1; d2; e; y be new symbols.
Assume that P1 = fp1; : : : ; pug and P2 = fq1; : : : ; qvg.
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We construct the super-cell system of degree 1

� = (V [ V 0 [ fd; d1; d2; e; yg; T; [1 ]1; d h(w); (R1; �1); 1);

with the following rules:

r1 : d! d1;
r2 : d! d2,
r01 : d1 ! d;
r02 : d2 ! d;
r3 : d! e;
r4 : e! (e; out);
p0i : a

0 ! h(x), for pi : a! x 2 P1; 1 � i � u;
q0i : a

0 ! h(x), for qi : a! x 2 P2; 1 � i � v;
ra : a

0 ! a, for a 2 T ,
ra : a

0 ! y, for a 2 V � T ,
r1 : y ! y;

and the priority relations

r1 > p0i; r2 > p0i; r3 > p0i; r4 > p0i; 1 � i � u;

r1 > q0i; r2 > q0i; r3 > q0i; r4 > q0i; 1 � i � v;

r1 > ra; r2 > ra; r
0
1 > ra; r

0
2 > ra; r3 > ra; a 2 V;

r01 > q0i; 1 � i � v;

r02 > p0i; 1 � i � u:

The system works as follows. To the multiset described by the string d h(z)
we can apply one of the rules r1; r2; r3, and no rule can be applied to the objects
in h(z) because of the priority relation. The rules r1; r2 select the table to be
simulated: in the presence of di only rules from Pi can be simulated, i = 1; 2.
This is done in one step, in the same way as in an ET0L system (note that the
completeness of tables ensures the fact that all objects evolve). After such a step,
the symbols d1; d2 return to d and the process can be iterated. As long as one of
the symbols d; d1; d2 is present, no rule ra can be used. When we use the rule r3,
we pass to the �nal stage of the computation. In the presence of e no rule p0i; q

0
i

can be used, but now the rules ra can be used, because no rule with a higher
priority can be applied. This means that at the same time when we remove the
object e from the system, we have to replace with the trap-object y each a0 such
that a 2 V � T ; for the symbols in T we just remove their primes. Therefore,
the computation stops when no symbol from V � T is present and continues for
ever in the opposite case. This is exactly the condition for including a string in
the language generated by an ET0L system. Consequently, 	T (G) = PT (�).

We do not have similarly many upper approximations for families
PsSC(�; �; 
) di�erent from the cases (�; �; 
) 2 f(Pri; Coo; Æ); (Pri; Coo; nÆ);
(nPri; nCoo; nÆ)g. We believe that most of the remaining families are included
in PsET0L, but we have a proof only for one case.

Theorem11. PsSC(nPri; nCoo; Æ) � PsET0L: The same assertions are true
for length sets.
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Proof. Let us consider a super-cell system of degree m;m � 1, without coopera-
tion, � = (V; T; �; w1; . . . , wm; (R1; �1); : : : ; (Rm; �m); i0), with the membranes
labeled with the numbers 1; 2; : : : ;m. For each membrane i and for each symbol
a 2 V we consider a new symbol, ai, 1 � i � m. We de�ne the morphisms hi by
hi(a) = ai, for all a 2 V; 1 � i � m. Denote by Ti the sets fa 2 V j there is no
rule of the form a! x in Rig. We remove from wi, for i 6= i0, all symbols in Ti
(they do not evolve and do not reach the output membrane).

For each i = 1; 2; : : : ;m, consider four new symbols ci; c
0
i; �ci; di; ci is meant

to tell us that membrane i exists, c0i; di will tell us that membrane i was just
dissolved, while �ci will indicate the fact that membrane i was dissolved at a
previous step.

We construct the ET0L system G with the total alphabet W de�ned by

W = fai j a 2 V; 1 � i � mg [ fyg[ fci; c
0
i; �ci; di j 1 � i � mg [ fa0 j a 2 Tg [ T;

the terminal alphabet T , the axiom

w = h1(w1) : : : hn(wm)c1c2 : : : cm;

and the tables obtained in the following way.
Consider all sets of rules of the following form:

fci1 ! ci1 ; : : : ; cik ! cik ; cj1 ! y; : : : ; cjl ! y;

�ci1 ! y; : : : ; �cik ! y; �cj1 ! �cj1 ; : : : ; �cjl ! �cjl ;

d1 ! y; : : : ; dm ! y; c01 ! y; : : : ; c0m ! yg;

for fi1; : : : ; ikg; fj1; : : : ; jlg a partition of f1; 2; : : : ;mg:

There are 2m sets of this form. Let us enumerate them in any given order and
denote them by M1;M2; : : : ;M2m . Let E(Mj) = fi j ci ! ci 2 Mj ; 1 � i � mg
(the set of membranes which exist according to Mj).

We consider all sets of rules

Qj =Mj [
[

i2E(Mj)

Ri; 1 � j � 2m:

(Because i 2 E(Mj), the rules in Ri can be applied, the membrane with the
label i still exists.)

For each such set Qj we proceed as follows.
For each rule a ! x 2 Ri; i 2 E(Mj), consider the rule ai ! �x constructed

in a way similar to that in the proofs of Theorems 2 and 7 (with the di�erences
imposed by the use of Æ):

(a) if a symbol (b; here) appears in x, then in �x we put bi instead of it;
(b) if a symbol (b; out) appears in x, then in �x we put bt instead of it, where t is

the label of the membrane immediately outside the membrane i; in the case
of the skin membrane, instead of (b; out) we put �,

(c) if a symbol (b; int) appears in x, and Mj contains the rules ct ! ct, �ct ! y
(that is, membrane t exists), and, moreover, membrane t is adjacent to the
rule a ! x 2 Ri (this can be checked by examining � and the information
given byMj about the membranes still existing), then in �x we put bt instead
of it; if membrane t is not adjacent to the rule, maybe because it was dis-
solved, then the rule a! �x is removed from the set we construct, it cannot
be applied in the given circumstances.
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Moreover, instead of any symbol bj , for b 2 Tj ; we put � in �x; with the
exception of the output membrane, where we put b0, for b 2 T , and � for
b 2 Ti0 � T .

If the rule a! x introduces the symbol Æ, then instead of Æ, in �x we introduce
the symbol di.

LetQ0
j be the set of rules obtained in this way. For each rule ci ! ci appearing

in Q0
j such that Ri contains a rule a! vÆ, we either let ci ! ci unchanged (this

is meant to correspond to the case when the rule a ! vÆ is not actually used),
or we replace it with ci ! c0i (this will correspond to the case when the rule
a! vÆ is e�ectively used, that is the symbol di is also introduced in the current
string), and we do this in all possible combinations; that is, we produce a series
of sets Qj;1; : : : ; Qj;s, di�ering from Q0

j just by rules ci ! ci; ci ! c0i. Of course,
for each i, each set Qj;t contains exactly one of these two rules.

To these sets we add the rules a ! y, for a 2 T , as well as completion rules
a ! a for all a 2 W � T for which there is no rule a ! y already considered.
The obtained sets { we still denote them with Qj;1; : : : ; Qj;s { are tables of our
ET0L system. We say that these tables are of type Q.

We also consider the following tables:

fci1 ! ci1 ; : : : ; cik ! cik ; cj1 ! y; : : : ; cjl ! y; cr1 ! y; : : : ; crs ! y;

�ci1 ! y; : : : ; �cik ! y; �cj1 ! y; : : : ; �cjl ! y; �cr1 ! �cr1 ; : : : ; �crs ! �crs ;

c0i1 ! y; : : : ; c0ik ! y; c0j1 ! �cj1 ; : : : ; c
0
jl
! �cjl ; c

0
r1
! y; : : : ; c0rs ! y;

di1 ! y; : : : ; dik ! y; dj1 ! �cj1 ; : : : ; djl ! �cjl ; dr1 ! y; : : : ; drs ! y;

ap ! aq j where: p 2 fj1; : : : ; jlg;

q is the membrane where a symbol from membrane p

will be placed after dissolving membranes j1; : : : ; jl;

for all a 2 V and all partitions

fi1; : : : ; ikg; fj1; : : : ; jlg; fr1; : : : ; rsg of f1; 2; : : : ;mgg

[ fa! y j a 2 Tg:

(Of course, we also add completions rules a! a for symbols a 2W for which
there is no a-rule already considered.) We say that these tables are of type P.

We also consider the following \�nal" table:

Tf = fci ! �; j 1 � i � mg

[ f�ci ! � j 1 � i � m; i 6= i0g [ f�ci0 ! yg

[ fa0 ! a j a 2 Tg

[ fa! y j a 2W � (fb0 j b 2 Tg [ fci; �ci j 1 � i � mg)g:

These are all the tables of our ET0L system G.
From the above construction, it is now clear that the use of a table of type Q

in our ET0L system G is equivalent to a transition in the super-cell system � .
The di�erence is that after using a table Qj;r, in the case of membrane dissolving,
the subscripts of the symbols do not indicate correctly the membranes to which
they belong. To this aim, we have to use a table of type P for performing the cor-
rections indicated by the symbols dt present in it (remember that these symbols
tell us which are the membranes which were dissolved at the last transition).
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On the other hand, as long as symbols c0t; d
0
t are present, no table of type Q can

be used: we have introduced rules c0t ! y; dt ! y in all these tables, hence the
trap-symbol will be produced. Similarly, for each string there precisely is only
one table of type P which can be used without introducing the trap-symbol,
because of the partition of the set f1; : : : ;mg in the de�nition of tables of type
P, in a set of existing membranes, a set of just dissolved membranes, and one of
membranes which were dissolved at a previous transition.

Thus, we correctly simulate the transitions in � (by two derivation steps in
G), and, conversely, the derivations in G correspond to correct transitions in � .
Moreover, only halting computations in � lead to terminal derivations in G: all
symbols which can evolve in � are nonterminal symbols in G, hence they should
be removed in order to get a terminal derivation. After obtaining a terminal
string (that is, after using the table Tf ), no further derivation step is possible,
because of the rules a! y, for a 2 T , present in all tables di�erent from Tf . In
the output membrane we always collect terminal strings. If the trap symbol y is
introduced, then it will never be eliminated.

Consequently, PT (�) = 	T (G).

6 Open Problems

We conclude this paper by pointing out a series of open problems. The �rst
one is speci�c to super-cell systems: does the use of the membrane dissolving
action makes any di�erence in what concerns the power of transition super-cell
systems? The answer is negative for all cases considered in [12]: transition super-
cell systems with catalysts (hence also cooperative systems), super-cell systems
based on rewriting or on splicing (in the latter cases, the objects are strings over
a given alphabet and the evolution rules are given as context-free rewriting rules
or as splicing rules). In all these cases, one obtains characterizations of recur-
sively enumerable sets of numbers or of languages without using the membrane
dissolving action.

Can the result in Theorem 11 be extended to other classes of super-cell
systems (that is, can ve also take into consideration systems with priority)? We
expect a positive answer (maybe using ET0L systems with permitting random
contexts, sets of symbols associated with tables and such that a table can be
applied only if the associated symbols appear in the rewritten string; see details
in [7]).

Which of the inclusions appearing in the lemmas and the theorems from the
previous sections are proper? For instance, are the hierarchies on the number of
membranes in�nite in the cases not covered by Theorems 2 and 5? (A related
question concerns the hierarchies on the depth of the membrane structure of
super-cell systems. A partial answer can be found in [14].) For other inclusions
(for instance, whether or not the inclusions in Theorems 9, 10 are proper), the
answer could be based on an answer to the following problem of a \classic"

avour: how large is the family PsET0L in comparison, for instance, with the
family PsE0L. The same problem can be formulated for length sets. There are
several papers about the length sets and the Parikh sets of L languages (see, e.g.,
[6], [8], [10]), but always dealing with non-extended systems. To our knowledge,
the extended case was never investigated.
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