
-- --

The Average Case Performance of an Algorithm for
Demand-Driven Evaluation of Boolean Formulae

Paul E. Dunne and Paul H. Leng
(University of Liverpool, U.K.

ped@csc.liv.ac.uk)

Abstract: Demand-driven simulation is an approach to the simulation of digital logic cir-
cuits that was proposed, independently, in the work of several authors. Experimental stud-
ies of the paradigm have indicated that this approach may reduce the time required for sim-
ulation, when compared with event-driven techniques. In this paper we present some ana-
lytic support for these experimental results by analysing the average number of gates evalu-
ated with a naive demand-driven algorithm for formula evaluation.

Key Words: Simulation, Logic Design; Average-case Analysis of Algorithms;

Categories: F.2.m, B.6.3

1 Introduction

Almost all systems for the computer-aided design of digital systems and VLSI cir-
cuits employ simulation as a means of analysing and verifying the functional
behaviour of the circuit under design. Logic-based simulation is most readily
effected using a model of the circuit as a directed graph in which nodes represent-
ing logic gates are linked by edges representing circuit connections through which
logic signals are propagated. Simulation proceeds by performing component evalu-
ations in an appropriate sequence to determine signal values for edges of the
graph.

In the case of modern VLSI systems employing 106 or more circuit ele-
ments (gates), speed of simulation becomes significant, and this has led to contin-
uing interest in efficient methods for logic-level simulation. The simulation
method most usually employed is event-driven simulation, e.g. [Szygenda and
Thompson 1975], [Ulrich 1969], in which each change in value of a signal arising
from the activation of a component is used to schedule the activation of compo-
nents for which this signal is an input. The resulting event-list of scheduled com-
ponent evaluations is serviced continuously, becoming empty when a cycle of sim-
ulation is completed.

Since, in general, a circuit component may have more than one input signal,
ev ent-driven simulation may lead to unnecessary repeated evaluation of a compo-
nent. To overcome this problem, an alternative method of demand-driven simula-
tion has been investigated independently in [Jackson 1986], [Jackson et al. 1987],
and [Smith et al. 1987]. In this case, the activation of a circuit component
involves a set of demands for the values of signals which are inputs to this com-
ponent, and thence to demands for the activation of those components which are
the sources of these signals. The recursive demand-sequence is satisfied ultimately
using signal values provided as circuit inputs, or propagated from a previous sim-
ulation cycle.

As well as ensuring that, in any combinational circuit, no component need
be activated more than once, demand-driven simulation offers another significant

Journal of Universal Computer Science, vol. 5, no. 5 (1999), 288-306
submitted: 23/2/99, accepted: 6/5/99, appeared: 28/5/99  Springer Pub. Co.

-- --

advantage arising from the characteristics of certain logic functions, including in
particular ∧ and ∨-gates. Since the output of an ∧-gate, for example, is known to
be 0 if any one input has the value 0, the invocation of demands for gate inputs
can cease as soon as an input is found to have the value 0. In these cases, it may
be possible to evaluate circuit outputs without the need to evaluate all intermediate
gates and signal values, as described in [Charlton et al. 1991].

The potential for lazy evaluation, cf [Henderson and Morris 1976], can be
exploited most effectively if in the simulation of appropriate components, demands
for the evaluation of input signals are made in an order which minimises the total
number of signal evaluations required. In [Dunne and Leng 1992], this problem
was examined using a model in which there is associated with each signal, xi , a
probability, pi of its having the value 1, and a cost, wi which is interpreted as the
expected time to evaluate xi . Using this model, an optimal ordering strategy is
described for the sequential evaluation of circuits comprising components which
are threshold functions i.e. those Boolean functions that return the result 1 if and
only if at least (or at most) some number k of the arguments have the value 1. A
variant of this model was investigated within a more general context in [Jackson
1986].

Our aim in the present paper is to provide analytic support for the experi-
mental evidence concerning the efficiency gains offered by demand-driven simula-
tion methods. To this end we analyse the ‘typical’ behaviour of a naive demand-
driven algorithm. More precisely, we obtain bounds on the average number of
components that are evaluated in Boolean formulae of a given size. Thus, given a
random Boolean logic formula of size, m, we are concerned with determining the
number of components we expect to have to evaluate, as a function of m.

The remainder of the paper is organised as follows. In the next section we
introduce the notations and definitions that will be used throughout. In particular
we define a formal model for calculating the expected behaviour of demand-driven
simulation methods. Also in this section, we discuss the choice of probability dis-
tributions for selecting formulae of a given size. This choice has an important
bearing on the generality of the results derived since we are concerned with an
av erage-case analysis. Section 3 concentrates on simplifying the expression for
av erage-case evaluation complexity that results from the models introduced in the
previous section. In Section 4, the main results of this paper are proved: we con-
sider two probability distributions over formulae — both of which are discussed in
Section 2 — and prove that one of these gives rise to an upper bound of O (m 0.5)
for the average number of gates evaluated in a formula of size m; while the other
distribution yields an O (1) upper bound on the same measure. We discuss some
issues concerning the development and application of the main technical results in
Section 5. Conclusions are given in Section 6.

2 Preliminary Definitions

2.1 The Simulation Model

In this section we describe the simulation model, terminology, and notations that
will be used subsequently. Our aim is to analyse the average number of evaluation
steps taken by a specific demand-driven logic simulation method on Boolean for-
mulae of a given size.

Definition 2.1: B 2 denotes the set of binary Boolean logic operations. Let Ω ⊆ B 2
and Xn = < x 1 , x 2 , . . . , xn > be an ordered set of n Boolean variables. An n-
input combinational circuit over the basis Ω is modelled as a directed acyclic

289Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

graph, S, in which there are two distinguished types of node: input nodes which
have in-degree 0; and gate nodes which have in-degree 2. There are n input
nodes, each of which is associated with a specific variable xi ∈Xn . Each gate
node is associated with some binary operation θ ∈Ω. S contains a unique node
with out-degree 0, termed the output. In a natural way, an assignment of Boolean
values, α to the input variables Xn induces a Boolean result S (α) at the output of
S. S realises a giv en n-input Boolean function, f(Xn) if and only if, for all
assignments α, S (α) ≡ f (α).

An n-input Boolean formula over the basis Ω is a combinational circuit in which
all non-output gate nodes have out-degree equal to 1. The size of a formula
F (Xn), denoted | F | , is defined to be

xi ∈Xn

Σ out −degree(xi), i.e. the total fanout

from the input nodes of F. •

A formula, F (Xn), may be viewed as a binary tree with | F | leaf nodes, thus in
such a tree there are out −degree(xi) distinct leaves associated with the input xi

for each xi ∈Xn . We shall adopt this view of a formula of size m as an m-leaf
binary tree in the analyses of the remainder of the paper. To avoid excessive rep-
etition, we shall refer to formulae over the basis Ω as Ω−formulae.

Definition 2.2: Let Ω ⊆ B 2 . A Boolean operation θ ∈B 2 is called ∧−type if

x θ y ≡ (x α ∧ y β)γ { α, β, γ } ∈{ 0,1 }

where z ε = z + ε + 1. θ is called an +−type function if

x θ y ≡ x + y + α α ∈{ 0,1 }

(+ denotes the binary Boolean function which takes the value 1 if and only if its
two arguments have different values).

If θ is ∧−type then there is a Boolean value, denoted c θ , with the property that
c θ θ 0 ≡ c θ θ 1. •

+-type functions require the evaluation of both arguments in order for their result
to be determined whereas ∧-type functions may only need one input to be calcu-
lated.

For Ω ⊆ B 2 we use the the following notations:

ω will denote | Ω | .
Ω∧ =def { θ ∈Ω : θ is ∧−type }; σ will denote | Ω∧ | .
Ω+ =def { θ ∈Ω : θ is +−type }.

The demand-driven simulation algorithm which we examine is a rather naive one.

290 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

function evaluate (F(Xn) : formula;
m : integer -- m = | F | ;
α : assignment to Xn)

return boolean is -- returns F (α)
y, z : boolean;
begin

-- F contains a single input node xi

if m = 1 then
return value of xi under α;

else
-- m > 1, so F (Xn) ≡ G (Xn) θ H (Xn) for some G, H and θ.
-- Since F is a formula, we have | G | + | H | = | F |
y := evaluate (G, | G | , α);
if y θ 0 = y θ 1 then

return y θ 0;
else

z := evaluate (H, | H | , α);
return y θ z;

end if;
end if;

end evaluate;

Algorithm 2.1: Demand-driven formula evaluation

The recursive form of Algorithm 2.1 above, provides the basis for defining the
number of evaluation steps used on a given formula with a specific input instantia-
tion.

Definition 2.3: Let F (Xn) be a formula of size m and α ∈{ 0,1 }n be an assign-
ment to the input arguments of F. The evaluation complexity of F (Xn) under α,
is denoted by W (F, α) and recursively defined as:

If m = 1, then W (F, α) = 0

If m > 1 then F (Xn) ≡ G (Xn) θ H (Xn) where | G | + | H | = m. In this case

W (F, α) =




1 + W (G, α) + W (H, α) otherwise

1 + W (G, α) if G (α) θ 0 = G (α) θ 1
•

Following the convention of [Jakoby et al. 1994] it is assumed that the input argu-
ments of a formula are available without any cost, hence W (xi , α) = 0.

The quantity with which this paper is concerned is the average value of W (F, α)
where this average is calculated over all Ω-formulae F(Xn) of size m that use
particular bases Ω ⊆ B2 and over all input assignments α ∈{ 0,1 }n . We denote this
value by S (m, Ω), thus

S (m, Ω) =def

F (Xn) ∈F (m, Ω)
Σ

α ∈{ 0,1 }n
Σ µn(α) βm(F (Xn), Ω) W (F, α) (2.1)

where, µn is a probability distribution over { 0, 1 }n and βm is a probability distri-
bution over F (m, Ω) the set of n-input Ω-formulae having | F | = m. We note at
this point, that whenever the term ‘probability distribution’ is used subsequently,
with such a distribution, λ over a set Z say, it is assumed that λ always satisfies

z ∈Z
Σ λ(z) = 1.

291Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

2.2 Distributions over Formulae and Input Assignments

The expression defining S (m, Ω), the average number of evaluations carried out
by Algorithm 2.1 over formulae of size m, inv olves two probability distributions:
µn over assignments α to the formula arguments Xn; and βm over Ω-formulae of
size m.

An interesting property of the average case analysis is that the value of
S (m, Ω) as giv en by expression (2.1) above, is the same irrespective of the
choice of µn , provided that the following two conditions hold.

S1) The basis Ω ⊆ B 2 satisfies (θ ∈Ω) ⇔ (θ̂ ∈Ω) (where θ̂ is the dual of θ,
i.e. the operation defined by x θ̂ y = ¬ ((¬x) θ (¬y)).

S2) In the distribution βm , the probability that a gate in a random formula is
chosen to have the operation θ ∈Ω is 1/ | Ω | for all θ ∈Ω.

Some discussion of these restrictions is in order. Considering the condition S1,
one weakness of this is that it prevents consideration of complete bases containing
only one operation, e.g. Ω = { NAND }. Such bases, however, may be sub-optimal
in terms of the Boolean formula realisation of some simple functions, e.g.
[McColl, 1978] has shown that any n-input symmetric Boolean function when
realised in this basis requires a circuit to have depth at least  2log2n . For many
functions in this class, e.g. the function which is 1 if at least two inputs have the
value 1, formulae of depth  log2n  can be constructed using a basis satisfying the
restriction S1, e.g. { ∧, ∨ }. The second condition, S2, provides a ‘natural’ proba-
bility distribution with which to instantiate a given tree structure to an Ω-formula.
It is worth noting, however, that in view of Lemma 3.3 below, there is be some
scope for relaxing this and considering other ‘natural’ distributions on the proba-
bility of a given gate operation being chosen. Any such relaxation would, how-
ev er, require that the probability of specific formulae arising could be expressed in
a ‘reasonably succinct’ form in order to avoid the analysis supporting the proof of
Theorem 3.1 and Section 4 becoming unmanageable. One possibility that would
be consistent with these analysis would be to give ∧-type operations a different
weighting from +-type, e.g. with σ the number of ∧-type operations and ω = | Ω |
one could consider distributions in which the probability of choosing any ∧-type
operation is c and any +-type 1−c, with specific operations consistent with this
choice being equally likely, i.e. P [θ | θ chosen as ∧−type] = 1/σ. The model
implied by S2 gives c = σ/ω. As will be apparent from our subsequent analyses,
variations in c in this context, will result in different asymptotic (or constants in
the uniform tree generation model) values for the expected evaluation costs. Since
it is unclear whether the additional level of notational complexity that would be
introduced justifies a detailed analysis of such variations, we will concentrate on
the simpler S2 model.

In view of the fact — to be proved in the next section — that with the conditions
above we do not need to be specific about the distribution on input assignments,
we concentrate on the probability distribution for Ω-formulae of size m. This will
be described in terms of methods of generating random Ω-formulae of size m, in
which case the likelihoods of specific formulae being generated define a particular
probability distribution. Let F (Xn) be an Ω-formula of size m. F is characterised
by 3 attributes:

F1. The underlying graph structure, TF , i.e. the manner in which the nodes and
edges of F define a binary tree with m leaves.

F2. The assignment of gate operations from Ω to the non-leaf nodes of TF .

292 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

F3. The association of input variables, xi from Xn , with the leaf nodes of TF .

Let:

Tm =def { T : T is an m −leaf binary tree }

Φm (T) =def { φ : { Non −leaf nodes of T } → Ω where T ∈Tm }

Γn,m (T) =def { γ : { Leaves of T } → Xn where T ∈Tm }

So that, Φm(T) is the set of all mappings from the (m −1) non-leaf nodes of an
m-leaf binary tree T onto specific gate operations; and Γn,m(T) the set of all map-
pings of the m leaves of T onto specific input variables from Xn .

For T ∈Tm , φ ∈Φm(T), and γ ∈Γn,m(T), F φ,γ(T, Xn) will denote the Ω-formula
of size m that results by instantiating T with the gate operations specified by φ(T)
and input arguments from Xn specified by γ(T).

With these sets we can view the process of generating a random formulae of size
m as consisting of 3 distinct phases: first generate a random binary tree with m
leaves, i.e. choose a random element T from Tm; second, fix a random allocation
of gate operations, i.e. choose a random element of Φm(T); and, finally, select a
random association of leaves with specific input variables, i.e. choose a random
element of Γn,m(T).

In summary, we consider probability distributions on Ω-formulae, F(Xn) of size
m, with the property that:

βm(F (Xn), Ω) ≡ Prob [F (Xn) is chosen]

≡ Prob [F φ,γ(T, Xn) is chosen]

=
| Φm |

δm(T) ρm,n(γ)
(2.2)

where δm(T) is a probability distribution over m-leaf binary trees and ρm,n(γ) is a
probability distribution over Γn,m(T). At the risk of appearing over-pedantic we
distinguish F (Xn) - a completely described Ω-formula, from F φ,γ(T, Xn) - which
is exactly the same formula as F (Xn) but whose description is given more com-
pletely in terms of the underlying tree structure (T), the association of tree leaves
with input variables (γ), and the mapping of non-leaf nodes onto operations (φ).

Thus, recalling that ω denotes the number of gate operations in Ω, so that
| Φm | =ωm −1 , we may rewrite the expression for S (m, Ω) in (2.1) as,

ωm −1

1

T ∈Tm

Σ
φ ∈Φm(T)

Σ
γ ∈Γn,m(T)

Σ
α ∈{0, 1}n

Σ δm(T) ρn,m(γ) µn(α) W (F φ,γ(T, Xn), α) (2.3)

In Section 3 it is shown that, as with the distribution µn , this expression does not
vary with different choices for ρn,m(T) (for all T ∈Tm), subject to the conditions
S1 and S2 described earlier. Since we have assumed that each gate operation is
equally likely all that remains to be described is the method of generating a ran-
dom m-leaf tree, in order to characterise the distribution δm(T).

Consider the following general procedure for producing a random m-leaf binary
tree, in which η(m) returns a random integer value 1 ≤ η(m) ≤ m −1, according to
some probability distribution ζm , i.e. Prob [η(m) = i] = ζm(i).

293Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

function ∆ (m : integer) return T ∈Tm is
L, R : binary tree;
i : integer;
begin

if m = 1 then
return a single node v as result

else
i := η(m);
L := ∆ (i);
R := ∆ (m-i);
return the m-leaf tree T := L ♦ R;

-- i.e. T has left sub-tree L and right sub-tree R
end if;

end ∆;

Algorithm 2.2: Random Tree Generation Algorithm

In terms of our earlier notation, it is clear that

δm(L ♦ R) =def P [∆(m) = L ♦ R] = ζm(| L |) δ | L | (L) δ | R | (R).

The only restriction we impose on ζm is that we require it to be symmetric, i.e.
ζm(i) = ζm(m −i) for all m and 1 ≤ i ≤ m −1. Differing choices for ζm will yield
different distributions over the set Tm of m-leaf binary trees. For example, in order
to obtain the uniform distribution in which each tree was equally likely, we could
use ζm(i) = | Ti | | Tm −i | / | Tm | .

The uniform distribution is a natural choice for average-case analyses, and this
will be one of the two cases examined in Section 4. There are, however, argu-
ments against this choice arising from properties of typical trees generated by this.
In particular, the average-depth of binary trees under the uniform distribution is
quite large.

For this reason our subsequent analyses will also involve choosing ζm to be such
that

∀ m ≥ 2, ∀ 1 ≤ i ≤ m −1 ζm(i) =
m −1

1

i.e., each choice of sub-tree size (measuring size by numbers of leaves) is equally
likely.

This choice gives rise to the distribution known as the binary search tree distribu-
tion, or bst-distribution, the properties of which have been extensively investigated
in [Baeza-Yates et al. 1992], [Dunne et al. 1995], [Knuth 1973], and [Robson
1979]. Its chief interest, for our purposes, lies in the fact that the average depth
of m-leaf trees under this distribution is Θ(log m) as opposed to the Θ(m 0.5)
depth proved to hold for the uniform distribution in [Flajolet and Odzlyko 1982].
In practice, Boolean logic circuits tend to have depth which is small in terms of
the number of input signals: the depth of a circuit being an important measure of
the operating speed of a digital system. If the Boolean operations available have
constant fan-in then logarithmic depth is the best attainable. We note also that for-
mulae for which the number of gates is O (n k) for some constant k, can be
restructured (without changing the basis Ω) to hav e depth at most c Ωk log2n
where c Ω is a constant depending on Ω, [Brent et al., 1973], hence in practice it
should not be necessary to consider formulae with ‘large’ depth and a ‘small’
number of gates. Such formulae are, however, are likely to be generated using the
uniform distribution. Thus, we argue that the bst-distribution provides a more

294 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

realistic basis for analysing average-case behaviour of the demand-driven simula-
tion method on formulae, by virtue of the fact that this distribution biases towards
trees with ‘small’ depth.

3 Simplification of Expression (2.3) for S(m,ΩΩ)

Our concern in this section is to simplify expression (2.3) by eliminating the
dependencies on the distributions µn and ρn,m . The following three Lemmata allow
this simplification to be achieved.

Lemma 3.1: Let Ω ⊆ B 2 such that (θ ∈Ω) ⇔ (θ̂ ∈Ω). For T ∈Tm , γ ∈Γn,m(T)
and α ∈{ 0,1 }n , let

Φε(T, γ, α) =def { φ ∈Φm(T) : F φ,γ(T, Xn)(α) = ε }

(where ε ∈{ 0,1 }) ∀ m ≥ 2, ∀ T ∈Tm , ∀ γ ∈Γn,m(T), ∀ α ∈{ 0,1 }n it holds that:

| Φ0(T, γ, α) | = | Φ1(T, γ, α) |

Proof: Let T ∈Tm , where m ≥ 2, γ ∈Γn,m(T) and α ∈{ 0,1 }n . Since m ≥ 2 it fol-
lows that T ≡ Li ♦ Rm −i for some trees Li ∈Ti , Rm −i ∈Tm −i and 1 ≤ i ≤m −1. Con-
sider any φL ∈Φi(Li) and φR ∈Φm −i(Rm −i). Let γL (respectively γR) denote the
restriction of γ to the leaves of Li (respectively Rm −i), so that γL ∈Γn,i(Li) and
γR ∈Γn,m −i(Rm −i). Finally, let G and H denote the formulae

G φL , γL
(Li , Xn) ; H φR , γR

(Rm −i , Xn)

Under the assignment α we have

G (α) = αG ; H (α) = αH

for some αG , αH ∈ { 0,1 }.

With φL and φR fixed, only one gate operation remains to be chosen to instantiate
a formula F φ, γ(T, Xn). Since the assignment of gate operations to Li and Rm −i

has been chosen arbitrarily, in order to prove the Lemma it suffices to establish
that

| { θ ∈Ω : (αG θ αH) = 0 } | = | { θ ∈Ω : (αG θ αH) = 1 } | (3.1)

The condition on Ω required in the Lemma statement ensures that 3.1 is the case,
since (αG θ αH) = 0 if and only if (αG θ̂ αH) = 1.

In order to avoid repetition it will be assumed subsequently that Ω ⊆ B 2 satisfies
the condition specified in the statement of Lemma 3.1.

Lemma 3.2: Let T ≡ (L ♦ R) where T ∈Tm , L ∈Ti , and R ∈Tm −i (1 ≤ i ≤ m −1).
For γ∈Γn,m(T) and α ∈{ 0,1 }n , let

Q (T, γ, α) =def

φ ∈Φm(T)
Σ W (F φ, γ(T, Xn), α)

(with Q (T, γ, α) = 0 if T ∈T 1).

Let γL and γR denote the restrictions of γ to the leaves of L and R respectively.

∀ m ≥ 2, ∀ T ∈Tm , ∀ γ ∈Γn,m(T), ∀ α ∈{ 0,1 }n it holds that:

Q (L ♦ R, γ, α) = | Φm(T) | + ω | Φm −i(R) | Q (L, γL , α)

+ (ω−σ/2) | Φi(L) | Q (R, γR , α)

295Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

where σ is the number of ∧-type functions in Ω.

Proof: Let T ∈Tm . Since m ≥ 2 it follows that T ≡ L ♦ R for trees L ∈Ti , R ∈Tm −i ,
and some value i with 1 ≤ i ≤ m.

By definition, Q (T, γ, α)

=
φ ∈Φm(T)

Σ W (F φ,γ(T, Xn), α)

=
φL ∈Φi(L)

Σ
φR ∈Φm −i(R)

Σ
θ ∈Ω
Σ W (G φL ,γL

(L, Xn) θ H φR , γR
(R, Xn), α)

=
φL ∈Φi(L)

Σ
φR ∈Φm −i(R)

Σ
θ ∈Ω+

Σ (1 + W (G φL ,γL
(L, Xn), α) + W(H φR , γR

(R, Xn), α))

+
φR ∈Φm −i(R)

Σ
θ ∈Ω∧

Σ
φL ∈Φi(L) : G (α) = c θ

Σ (1 + W (G φL ,γL
(L, Xn), α))

+
φR ∈Φm −i(R)

Σ
θ ∈Ω∧

Σ
φL ∈Φi(L) : G (α) = c θ

Σ (1 + W (G φL ,γL
(L, Xn), α)

+ W(H φR , γR
(R, Xn), α))

= | Φm(T) | + ω | Φm −i(R) |
φL ∈Φi(L)

Σ W (G φL , γL
(L, Xn),α)

+ | Φi(L) |
θ ∈Ω+

Σ
φR ∈Φm −i(R)

Σ W(H φR , γR
(R, Xn), α)

+
θ ∈Ω∧

Σ
φL ∈Φi(L) : G (α) = c θ

Σ
φR ∈Φm −i(R)

Σ W(H φR , γR
(R, Xn), α)

= | Φm(T) | + ω | Φm −i(R) | Q (L, γL , α) + (ω−σ) | Φi(L) | Q (R, γR , α)

+ (σ | Φi(L) | /2) Q (R, γR , α) (3.2)

The expression (3.2) following from Lemma 3.1, since for fixed γL and α and a
given ∧-type operation θ, there are exactly | Φi(L) | /2 instantiations of
G φL , γL

(L, Xn) such that G (α) = c θ .

A simple re-arrangement of (3.2) gives,

Q (L ♦ R, γ, α) = | Φm(T) | + ω | Φm −i(R) | Q (L, γL , α)

+ (ω−σ/2) | Φi(L) | Q (R, γR , α)

as required.

The quantity Q (T, γ, α) introduced in Lemma 3.2, can be interpreted in the fol-
lowing way: fix a particular m leaf tree structure (T), a mapping, γ, from the
leaves of T to variables in Xn , and an assignment, α, of Boolean values to these
variables. Then, Q (T,γ,α) is the total number of steps taken by Algorithm 2.1, to
evaluate F φ,γ(T, α) summed over all mappings, φ of gate operations onto non-leaf
nodes of T. The key point of the next Lemma is in showing that the quantity
Q (T, γ,α) depends neither on the specific mapping of leaf nodes to variables, nor
on the specific instantiation of the variables defined by α, i.e. that the value of
Q (T, γ,α) is the same for all choices of γ and all choices of α. This shows that
the significant influences on expected evaluation costs in our model are the likeli-
hoods of a particular tree structure and assignment of gate operations occurring.

Lemma 3.3: ∀ m ≥ 1, ∀ T ∈Tm , ∀ γ1 , γ2 ∈Γn,m(T), ∀ α1 , α2 ∈{ 0,1 }n , it holds
that

296 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

Q (T, γ1 , α1) = Q (T, γ2 , α2)

Proof: By induction on m ≥ 1. The base case is immediate since in this instance
Q (T, γ, α) = 0 for all γ and α.

Assuming that the Lemma holds for all values k < m, we shall prove it holds for
m also. Let T ∈Tm and γ1 , γ2 , α1 , and α2 be as in the Lemma statement. Since
m ≥ 2, T = L ♦ R for some trees L ∈Ti and R ∈Tm −i . For j =1 and j =2, let γj,L and
γj,R denote the restrictions of γj to the leaves of L and R respectively. From
Lemma 3.2,

Q (L ♦ R, γ1 , α1) = | Φm(T) | + ω | Φm −i(R) | Q (L, γ1,L , α1)

+ (ω−σ/2) | Φi(L) | Q (R, γ1,R , α1)

Applying the Inductive Hypothesis, shows that this is

= | Φm(T) | + ω | Φm −i(R) | Q (L, γ2,L , α2) + (ω−σ/2) | Φi(L) | Q (R, γ2,R , α2)

= Q (L ♦ R, γ2 , α2)

from Lemma 3.2.

As a consequence of the result of Lemma 3.3, we shall write Q (T) rather than
Q (T, γ, α). The main result of this section is now giv en in,

Theorem 3.1:

∀ m ≥ 2 S (m, Ω) =
ωm −1

1

T ∈Tm

Σ δm(T) Q (T)

(Note: that S (1, Ω) = 0 is immediate from the definition of W (F, α) when
| F | = 1).

Proof: In expression (2.3) we have that, S (m, Ω)

=
ωm −1

1

T ∈Tm

Σ
φ ∈Φm(T)

Σ
γ ∈Γn,m(T)

Σ
α ∈{0, 1}n

Σ δm(T) ρn,m(γ) µn(α) W (F φ,γ(T, Xn), α)

=
ωm −1

1

T ∈Tm

Σ δm(T)
γ ∈Γn,m(T)

Σ
α ∈{0, 1}n

Σ ρn,m(γ) µn(α)
φ ∈Φm(T)

Σ W (F φ,γ(T, Xn), α)

=
ωm −1

1

T ∈Tm

Σ δm(T)
γ ∈Γn,m(T)

Σ ρn,m(γ)
α ∈{0, 1}n

Σ µn(α) Q (T, γ, α) (3.3)

From Lemma 3.3 and the notational convention introduced following the proof of
this, (3.3) is

=
ωm −1

1

T ∈Tm

Σ δm(T) Q (T)
γ ∈Γn,m(T)

Σ ρn,m(γ)
α ∈{0, 1}n

Σ µn(α)

=
ωm −1

1

T ∈Tm

Σ δm(T) Q (T)

from the fact that µn and ρn,m are probability distributions.

297Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

4 Analysis of Average-Case Complexity

In this section the main results of the paper are presented. We analyse the
behaviour of the demand-driven simulation approach given in Algorithm 2.1 and
determine its expected running time for Ω-formulae of size m. In Section 3, we
have shown that this quantity S (m, Ω) is giv en by the expressions:

S(1, Ω) = 0 (4.1)

S (m, Ω) =
ωm −1

1

T ∈Tm

Σ δm(T) Q (T) (4.2)

If m ≥ 2, then T = L ♦ R for L ∈Ti and R ∈Tm −i (1 ≤ i ≤ m −1). By virtue of
Lemma 3.2, Lemma 3.3, and the fact that | Φm(T) | = ωm −1 , the function
Q (L ♦ R) satisfies the relationship,

Q (L ♦ R) = ωm −1 + ωm −i Q (L) + (ω − σ/2) ωi −1 Q (R) (4.3)

Finally we recall that δm is a probability distribution over the set of m-leaf binary
trees, which satisfies

δm(T) =




ζm(i) δi(L) δm −i(R) if m ≥ 2, T = L ♦ R

1 if m = 1
(4.4)

where ζm is a (symmetric) probability distribution over the integers
{ 1,2 , . . . , m −1 }.

We use (4.1-4.4) to derive a preliminary recurrence relationship governing the
behaviour of S (m, Ω).

Lemma 4.1: For all probability distributions δm over Tm that satisfy the relation-
ship given in (4.4), the relationship of (4.2) for S (m, Ω) may be written,

S (m, Ω) = 1 +
2ω

4ω − σ

i =1
Σ

m −1

ζm(i) S (i, Ω)

(recalling that σ is the number of ∧-type operations in the basis Ω).

Proof: From (4.2)

S (m, Ω) =
ωm −1

1

T ∈Tm

Σ δm(T) Q (T)

=
ωm −1

1

i =1
Σ

m −1

L ∈Ti

Σ
R ∈Tm −i

Σ δm(L ♦R) Q (L ♦R)

= 1 +
ωm −1

1

i =1
Σ

m −1

ζm(i)
R ∈Tm −i

Σ δm −i(R)
L ∈Ti

Σ δi(L) ωm −i Q (L)

+
ωm −1

1

i =1
Σ

m −1

ζm(i)
L ∈Ti

Σ δi(L)
R ∈Tm −i

Σ δm −i(R) (ω−σ/2)ωi −1 Q (R) (via 4.3)

= 1 +
i =1
Σ

m −1

ωi −1

ζm(i)

L ∈Ti

Σ δi(L) Q(L) +
2ω

2ω−σ

i =1
Σ

m −1

ωm −i −1

ζm(i)

R ∈Tm −i

Σ δm −i(R) Q(R)

= 1+
i =1
Σ

m −1

ζm(i)S (i, Ω) +
2ω

2ω−σ

i =1
Σ

m −1

ζm(i)S (m −i, Ω) = 1+
2ω

4ω−σ

i =1
Σ

m −1

ζm(i)S (i, Ω)

298 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

4.2 S(m,ΩΩ) under the Binary Search Tree Distribution

For the distribution over m-leaf binary trees defined by the bst-distribution, we
have ζm(i) = 1/(m −1), for all 1 ≤ i ≤ m −1. Applying the relevant substitution to the
recurrence proved in Lemma 4.1, we obtain for this case, for m ≥ 2

S (m, Ω) = 1 +
2ω(m −1)

4ω−σ

i =1
Σ

m −1

S (i, Ω) (4.5)

To put (4.5) into a more manageable form, we introduce a function H (m) defined
by

H (m) =def

i =1
Σ
m

S (i, Ω)

With this function, obviously, S (m, Ω) = H (m) − H (m −1), and so in order to
determine the asymptotic behaviour of S (m, Ω) it suffices to determine similar
behaviour for H (m). Combining (4.5) with the definition of H (m) results in a
considerably simpler recurrence relation.

Lemma 4.2:

H (m) =







1 +
2ω(m −1)

2ω(m +1)−σ
H (m −1) if m > 1

0 if m = 1

Proof: Immediate from substituting the definition for H (m) into (4.5) and re-
arranging the resulting expression. .

Theorem 4.1: Let Ω ⊆ B 2 with ω = | Ω | and σ denoting the number of ∧-type
operations in Ω. Let τ = 2 − σ/2ω.

H (m) ≈ 1 + K Ω (m −1)τ

where K Ω is a constant depending on Ω.

Proof: From Lemma 4.2, if m ≥ 2

H (m) = 1 +




1 +
m −1

τ





H (m −1)

= 1 +
k =1
Σ
i −1

j =1
Π

k





1 +
m −j

τ





+
j =1
Π

i





1 +
m −j

τ





H (m −i)

= 1 +
k =1
Σ

m −2

j =1
Π

k





1 +
m −j

τ





= 1 +
k =1
Σ

m −2

j =m −k
Π
m −1

j

j + τ

= 1 +
Γ (m)

Γ (m + τ)

k =1
Σ

m −2

Γ (k + τ + 1)

Γ (k +1)
(4.6)

where Γ(x) if the Γ-function, defined for x ∈R+ , by Γ(x +1) = x Γ(x).

Applying Stirling’s approximation — Γ(x +1) ≈ (x x /exp(x)) (2πx)0.5 — and sim-
plifying the resulting form of (4.6), gives

H (m) ≈ 1 +
exp(τ)

(m −1)τ





1 +
m −1

τ



m +τ−0.5

k =1
Σ

m −2

Γ(k +τ+1)

Γ(k +1)

299Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

To further simplify this, we observe that

1 <




1 +
m −1

τ



m +τ−0.5

≈
< exp(τ+0.5)

Finally, the summation

k =1
Σ

m −2

Γ(k +τ+1)

Γ(k +1) ≈
k =1
Σ

m −2

k η
1

for some constant η > 1. Thus this sum is constant bounded for all m. It follows
that there is a constant K Ω ∈R such that

H (m) ≈ 1 + K Ω (m −1)τ

Theorem 4.1., gives an asymptotic estimate of the function H (m). This can now
be applied to give the main result of this section.

Theorem 4.2: Let Ω ⊆ B 2 be as in Theorem 4.1. S (m, Ω), the expected running
time of the demand-driven simulation method in Algorithm 2.1, when averaged
over formulae of size m under the binary search tree distribution, satisfies

S (m, Ω) = O ((m −1)τ−1)

Proof: The function H (m) introduced at the start of Section 4.1, satisfies for
m ≥ 2

S (m, Ω) = H (m) − H (m −1)

From Theorem 4.1, this yields

S (m, Ω) ≈ K Ω ((m −1)τ − (m −2)τ)

which by elementary analysis is O ((m −1)τ−1).

Some specific special cases are presented in the following.

Corollary 4.1:

i. S (m, { ∧, ∨, ¬ ∧, ¬ ∨ }) = O ((m −1)0.5).

ii. S (m, B̂ 2) = O ((m −1)0.6), where B̂ 2 consists of those binary Boolean func-
tion that depend on both arguments, i.e. constant functions and projections
are excluded.

iii. S (m, { +, ¬ + }) = O (m)

Proof: For (i) we have ω = σ = 4; for (ii) ω = 10 and σ = 8; and for (iii), σ = 0. It
may be noted that an exact result for (iii) may be obtained directly from the
recurrences of Lemma 4.2.

4.3 S(m,ΩΩ) under the Uniform Distribution

It has been shown, in Lemma 4.1, that the expected evaluation complexity of
Ω-formula of size m, is governed by the recurrence

S (m, Ω) = 1 +
2ω

4ω − σ

i =1
Σ

m −1

ζm(i) S (i, Ω) (4.7)

where ω = | Ω | , σ = { θ ∈Ω : θ is ∧−type } and ζm is a probability distribution over
{ 1, 2 , . . . , m −1 }. In Section 4.1, we determined an asymptotic bound for the

300 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

choice of ζm that leads to the bst-distribution. In this section we establish bounds
on S (m, Ω) for the choice of ζm that yields the uniform distribution on m-leaf
binary trees, i.e. the distribution under which each m-leaf binary tree is equally
likely to be chosen.

It is easily seen that to realise the uniform distribution, ζm , must satisfy

ζm(i) =
tm

ti tm −i ∀ 1 ≤ i ≤ m −1 (4.8)

where tm denotes | Tm | , the number of m-leaf binary trees. It is well-known that
for all m ≥ 1

tm =
4m −2

1



m
2m




(4.9)

The behaviour of ζm for the uniform distribution is clearly quite different from the
choice for the bst-distribution. Nevertheless, it turns out that the resulting form of
(4.7) is susceptible to precise analysis. In order to reduce the notational complexi-
ties involved in this analysis we make use of the following notations. Throughout
ζm(i) is as defined by the relationships (4.8) and (4.9) above.

τ =def (4ω−σ)/(2ω), as previously.

ζ∞(i) =def
m → ∞
lim ζm(i).

Λ(m, r) =def

i =1
Σ
r

ζm(i) S (i, Ω), where r < m.

Λ(∞, r) =def

i =1
Σ
r

ζ∞(i) S (i, Ω).

We first establish some basic facts about these functions.

Lemma 4.3:

i) ∀ m, ∀ 1 ≤ i ≤m −1, ζm +1(i) < ζm(i).

ii) ζ∞(i) = ti /4i , where tm is the number of m-leaf binary trees as given in
expression (4.9) above.

iii) Λ(m +1, r) < Λ(m, r).

iv)
r → ∞
lim

i =1
Σ
r

ζ∞(i) = 0.5

Proof: For (i) we have by definition that

ζm +1(i) =
tm +1

ti tm +1−i
; ζm(i) =

tm

ti tm −i

In order to prove (i), it is sufficient to establish that ζm +1(i)/ζm(i) < 1.

ζm(i)

ζm +1(i)
=

tm +1 tm −i

tm tm +1−i =
2m 2 − 2im + m − i − 1

2m 2 − 2im + m − 2i − 1

and this is less than 1, so proving part (i).

For part (ii)

ζ∞(i) =
m → ∞
lim ζm(i)

=
m → ∞
lim

tm

ti tm −i

301Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

= ti
m → ∞
lim

(4m −4i −2) (2m)! ((m −i)!)2

(4m −2) (2m −2i)! (m !)2

From Stirling’s approximation,
n → ∞
lim n ! = (n/e)n (2πn)0.5 , the right-hand side of

this is

=
4i

ti

m → ∞
lim





m −i

m



0.5

=
4i

ti

as required.

Part (iii) is immediate from (i) and the definition of Λ(m,r).

For part (iv), we first observe that Z (r) =
i =1
Σ
r

ζ∞(i) is a strictly monotone increas-

ing function of r and thus any limit as r tends to ∞ is approached from below. To

establish this part of the Lemma, it suffices to show that
n =1
Σ
∞

ζ∞(n) = 0.5.

Let An =def 4−n




n
2n



. From part (ii) of the Lemma,

n =1
Σ
∞

ζ∞(n) =
n =1
Σ
∞

4n

tn =
n =1
Σ
∞

2(2n −1)

An

=
n =1
Σ
∞

4n 2−1

An +
2

1

n =1
Σ
∞

2n +1

An = 1 −
4

π +
2

1





2

π − 1




= 0.5

The sums of the two infinite series may be found in [Jolly 1961] (series nos. 387
and 388) from which our notation An is taken.

Theorem 4.3 Let Ω be such that σ > 0, i.e. Ω contains some ∧-type functions.
Let g : N → N be any strictly monotone increasing function that satisfies
g (n) ≥ n +1. Then for any such function g (n), under the uniform distribution the
following holds of S (m, Ω):

∀ 0 < ε <
2(4ω−σ)

σ
, ∃ R ε ∈N, such that ∀ m ≥ g (R ε)

S (m, Ω) <
σ−2ε(4ω−σ)

4ω





1 +
2ω

4ω−σ Λ(g (R ε), R ε)




+ o (1)

S (m, Ω) >
σ

4ω





1 +
2ω

4ω−σ Λ(∞, R ε)




− o (1)

Proof: For the upper bound, we have

S (m, Ω) = 1 + τ
i =1
Σ

m −1

ζm(i) S (i, Ω)

= (1 + τ Λ(m,r)) + τ
i =r +1
Σ

m −1

ζm(i) S (i)

≤ (1 + τ Λ(m,r)) + τ (1 −
i =1
Σ
r

ζ∞(i)) S (m −1)

302 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

From part (iv) of Lemma 4.3, ∀ ε > 0, ∃ R ε , such that ∀ r ≥ R ε ,
i =1
Σ
r

ζ∞(i) ≥ 0.5−ε.

Thus if m ≥ g (R ε) > R ε

S (m, Ω) ≤ (1 + τ Λ(m,R ε)) + τ (0.5 + ε) S (m −1)

< (1 + τ Λ(g (R ε), R ε)) + τ(0.5 + ε) S (m −1)

from part (iii) of Lemma 4.3.

The term 1 + τ Λ(g (R ε), R ε) is a constant depending only on the value ε. Further-
more if ε is chosen so that ε < σ/(8ω−2σ) then

λε =def τ (0.5 + ε)

is less than 1. In which case we obtain the recurrence,

S (m, Ω) < (1 + τ Λ(g (R ε), R ε)) + λε S (m −1)

which is valid for all m ≥ g (R ε). Solving this recurrence gives,

S (m, Ω) < (1 + τ Λ(g (R ε), R ε))




1−λε

1 − λε
m −g (R ε)





+ λε
m −g (R ε)

S (g (R ε), Ω)

Substituting λε = τ(0.5+ε), τ = (4ω−σ)/2ω and simplifying this expression, we
obtain

S (m, Ω) <
σ − 2ε (4ω−σ)

4ω





1 +
2ω

4ω−σ Λ(g (R ε), R ε)




+ o (1)

For the lower bound,

S (m, Ω) = 1 + τ
i =1
Σ

m −1

ζm(i) S (i, Ω)

> (1 + τ Λ(m,R ε)) +
2

τ
S





2

m −1





> (1 + τ Λ(∞,R ε)) +
2

τ
S





2

m −1





>
σ

4ω





1 +
2ω

4ω−σ Λ(∞, R ε)




− o (1)

With the basis Ω = { ∧, ∨, ¬∧, ¬∨ }, for which ω = σ = 4, by explicit calculation we
obtain the following table:

m ε Λ(m 2 , m) Upper Lower S (m 2)
10 0.08810 0.36269 13.10148 6.00959 8.79662
20 0.06269 0.48628 11.08798 6.83040 9.65762
30 0.05129 0.55672 10.60334 7.28271 9.84362
40 0.04446 0.60396 10.39771 7.58155 9.91116

Table 1: Behaviour of S (m, { ∧,∨,¬∧,¬∨ }) in the Uniform Distribution.

Similarly, with the basis Ω = B̂ 2 , for which ω = 10 and σ = 8, we get

303Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

m ε Λ(m 2 , m) Upper Lower S (m 2)
10 0.08810 0.38701 27.42472 7.85423 12.21727
20 0.06269 0.53554 18.62393 9.15125 14.14229
30 0.05129 0.62424 16.94783 9.90333 14.60016
40 0.04446 0.68545 16.27163 10.41578 14.77108

Table 2: Behaviour of S (m, B̂ 2) in the Uniform Distribution.

From which we conclude,

Corollary 4.2: ∀ m ≥ 1600, under the uniform distribution over m-leaf binary
trees, the expected evaluation complexity of Ω-formula of size m satisfies:

i. 9.91116 < S (m, Ω) < 10.39771, if Ω = { ∧,∨,¬∧,¬∨ }.

ii. 14.77108 < S (m, Ω) < 16.27163, if Ω = B̂ 2 .

Proof: Immediate from Theorem 4.3, and the two tables above. The lower bounds
being taken from the final column of each table.

5 Discussion and Further Work

Our principal aim in this paper has been to present an analytic study of the typi-
cal behaviour of a particular paradigm for digital simulation: demand driven lazy
evaluation. In this section we discuss the limitations of these results and outline
potential ideas for their development.

We can identify two immediate limitations as regards the general applicabil-
ity of our analyses: the condition S1 which sets quite stringent conditions on the
set of operations considered for gates, and the fact that we deal with formulae
rather than logic circuits, i.e. gates have fanout restricted to 1.

As regards the restriction on gate operations, while this appears to rule out
rather more complex structures, e.g. multiplexors, in practice these could be simu-
lated at the level of some 2-input gate realisation: the restriction does not exclude
a logically complete basis such as { NAND, NOR }. Of course, such an approach
would mean that a realisation is considered at a lower level of granularity than
might be considered in a ‘standard’ simulation environment, however, giv en that
some form of restriction will be inevitable in formulating an analytically tractable
model, it may well be the case that similar objections can be raised for other con-
ditions. It should be noted that the condition used does admit the set of all 2-input
Boolean operations.

Extending the analytic approach to general circuits presents significant tech-
nical problems in view of the fact that the model of information flow existing in
formulae, i.e. that each gate provides an input for exactly one other gate, is not
valid in a circuit context. This is not a problem in terms of a practical implemen-
tation of the paradigm but it is unclear to what extent the analysis of formulae
extends to consideration of circuits. Experimental implementation of the demand-
driven paradigm with randomly generated circuits, albeit in a multiprocessor dis-
tributed context, do provide some support for the analytic study, e.g. [Gittings,
1992], [Dunne, et al., 1997].

Finally, it is worth considering to what extent similar methods can be
employed in formulating a detailed analytic study of event-driven methods. The
specific drawbacks of such approaches, in terms of redundant calculation, have
been noted by, among others, [Smith et al., 1987] and [Jennings, 1991]. The range
of event-scheduling mechanisms that could be employed in implementing a

304 Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

specific approach, creates difficulties in attempting sensibly to define an event-
driven model.

6 Conclusions

In this paper we have considered various performance characteristics of the
demand-driven simulation paradigm. We hav e analysed how a specific algorithm
within this class, performs on average when evaluating Boolean formulae of size
m. Among the features of interest arising from these analyses, are that the perfor-
mance measures obtained depend only on the logical bases from which formulae
operations are chosen and the probability distribution used to determining the like-
lihood of particular m-leaf binary trees defining the graph-structure of a formula
occurring. Two such distributions have been examined: the binary search tree dis-
tribution, for which an average case evaluation complexity bound of O (m 0.5) was
obtained in the case of logical bases containing only ∧-type operations; and the
uniform distribution over binary trees, for which it has been demonstrated that the
av erage case evaluation complexity of size m Ω-formulae is bounded above by a
constant depending only on Ω, provided that Ω contains some ∧-type functions.
These results provide analytic quantification of the performance achievable with
the demand-driven approach.

References

[Baeza-Yates et al. 1992] Baeza-Yates, R., Casas, R., Díaz, J., and Martínez, J. "On the
av erage size of the intersection of binary trees," SIAM Jnl. of Computing, vol. 21, no. 1,
pp. 24-32, 1992

[Brent et al. 1973] Brent, R., Kuck, D.J., Maruyama, K. "The parallel evaluation of arith-
metic expressions without division", IEEE Trans. Comp., C-22, pp. 532-534, 1973

[Charlton et al. 1991] Charlton, C.C., Jackson, D., and Leng, P.H. "Lazy simulation of dig-
ital logic," Computer Aided Design, vol. 23, no. 7, pp. 506-513, 1991

[Dunne and Leng 1992] Dunne, P.E., and Leng, P.H. "An algorithm for optimising signal
selection in demand-driven circuit simulation," Tr ansactions of the Society for Computer
Simulation, vol. 8, no.4, pp. 269-280, 1992

[Dunne et al. 1995] Dunne, P.E., Gittings, C.J., and Leng, P.H. "Multiprocessor simulation
strategies with optimal speed-up," Inf. Proc. Letters, vol. 54, no. 1, pp. 23-33, April 1995

[Dunne et al. 1997] Dunne, P.E, Leng, P.H., and Nwana, G. "Demand-driven logic simula-
tion using a network of loosely coupled processors", (submitted)

[Flajolet and Odlyzko 1982] Flajolet, P. and Odlyzko, A. "The average height of binary
trees and other simple trees," Jnl. of Comp. and Syst. Sci., vol. 25, pp. 171-213, 1982

[Gittings, 1992] Gittings, C.J. "Parallel demand-driven simulation of logic networks", Ph.D.
Dissertation, Univ. of Liv erpool, 1992

[Henderson and Morris 1976] Henderson, P. and Morris, J. "A lazy evaluator," Proc. 3rd
ACM Symp. on Principles of Programming Languages, pp. 95-103, 1976

[Jackson 1986] Jackson, D. "The generation of systems for microarchitectural simulation,"
Ph.D Dissertation, Univ. of Liv erpool, 1986

[Jackson et al. 1987] Jackson, D., Charlton, C.C., and Leng, P.H. "Modelling and simula-
tion of digital logic: an alternative approach," Proc. 16th IASTED Int. Symp., ‘Identifica-
tion, Modelling and Simulation’, pp. 86-90, Paris, 1987

305Dunne P.E., Leng P.H.: The Average Case Performance ...

-- --

[Jakoby et al. 1994] Jakoby, A., Reischuk, R., and Schindelhauer, C. "Circuit Complexity:
from the Worst Case to the Average Case," Proc. 26th ACM Symp. on Theory of Comp.,
pp. 58-67, 1994

[Jennings 1991] Jenning, G. "A case against event-driven simulation for digital system
design", Proc. 24th IEEE Annual Simulation Symposium, IEEE, pp. 170-176, 1991

[Jolley 1961] Jolley, L.B.W. "Summation of series", (2nd revised edition), Dover Publica-
tions, New York, 1961

[Knuth 1973] Knuth, D.E. "The Art of Computer Programming: Sorting and Searching",
Addison-Wesley, 1973

[McColl, 1978] McColl, W.F. "The circuit depth of symmetric Boolean functions", Jnl. of
Comp. and Syst. Sci., vol. 17, pp. 108-115, 1978

[Robson 1979] Robson, J.M. "The height of binary search trees," Austral. Comput. Jnl.,
vol. 11, pp. 151-153, 1979

[Smith et al. 1987] Smith, S.P., Mercer, M.R., and Brock, B. "Demand driven simulation:
BACKSIM," Proc. 24th ACM/IEEE Design Automation Conference, pp. 181-187, 1987

[Szygenda and Thompson 1975] Szygenda S.A. and Thompson, E.W. "Digital logic simula-
tion in a time-based, table-driven environment, Part 1: Design verification," Computer, pp.
24-36, 1975

[Ulrich 1969] Ulrich, E.G. "Exclusive simulation of activity in digital networks," Comm.
ACM, vol. 12, no. 2, pp. 102-110, 1969

-- --

306 Dunne P.E., Leng P.H.: The Average Case Performance ...

