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Abstract: Logic gates with three input bits and three output bits have a privileged

position within fundamental computer science: they are a su�cient building block

for constructing arbitrary reversible boolean networks and therefore are the key to

reversible digital computers. Such computers can, in principle, operate without heat

production. As there exist as many as 8! = 40,320 di�erent 3-bit reversible truth tables,

the question arises as to which ones to choose as building blocks. Because these gates

form a group with respect to the operation `cascading', we can apply group theoretical

tools, in order to make such a choice.

Key Words: reversible computing, group theory, permutations

Category: B.6.1

1 Introduction

Conventional computers are built from basic building blocks, such as the AND,

NAND, OR, NOR, and XOR gates. See Table 1. Such tables are logically irreversible.

This means that, if we forget the value of the input (A, B), knowledge of the out-

put P is not su�cient to calculate backwards and to recover the value of (A, B).

According to Landauer's principle [1] [2] [14] [15] [18], logic computations that

are not reversible, necessarily generate heat, i.e. kT log(2), for every bit of infor-

mation that is lost. Here k is Boltzmann's constant and T the temperature. For

T equal room temperature, this package of heat is small, i.e. 2.9 � 10

�21

joule,

but non-negligible. In order to produce zero heat, a computer is only allowed to

perform reversible computations. Such a logically reversible computation can be

`undone': the value of the output su�ces to recover what the value of the input

`has been'. The hardware of such a reversible computer cannot be constructed

from the conventional gates of Table 1. On the contrary, it consists exclusively
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Table 1: Classical truth tables: (a) AND , (b) NAND , (c) OR , (d) NOR , (e) XOR.

AB P

0 0 0

0 1 0

1 0 0

1 1 1

(a)

AB P

0 0 1

0 1 1

1 0 1

1 1 0

(b)

AB P

0 0 0

0 1 1

1 0 1

1 1 1

(c)

AB P

0 0 1

0 1 0

1 0 0

1 1 0

(d)

AB P

0 0 0

0 1 1

1 0 1

1 1 0

(e)

of logically reversible building blocks. The number of output bits of a reversible

logic gate necessarily equals its number of input bits. We will call this number

the `logic width' of the gate. Fredkin and To�oli [10] [19] have demonstrated that

three inputs and three outputs is necessary and su�cient in order to construct a

reversible implementation of an arbitrary boolean function of a �nite number of

logic variables. Thus, from the fundamental point of view, reversible logic gates

with a width equal to three have a privileged position.

The truth table of a logic gate of width w consists of 2

w

lines, each containing

two w-bit numbers: the w-bit input (A, B, C, ...) and the w-bit output (P , Q,

R, ...). For convenience, all possible inputs, ranging from (0, 0, 0, ...) to (1, 1,

1, ...), are ordered arithmetically. Such a gate is reversible if-and-only-if all 2

w

output numbers form a permutation of the 2

w

input numbers. Hence, there exist

exactly (2

w

)! di�erent reversible gates of width w. In particular, there are 8! =

40,320 reversible gates with 3-bit width.

The present paper investigates which of these 40,320 gates ful�l the role of

universal building block, and which ful�l this job more e�ciently than the others.

In order to tackle the problem, we will successively study the reversible gates

with w = 1, w = 2, and w = 3.

2 Calculation with a single bit

There exist only four di�erent truth tables with one bit input and one bit output.

Two of them are logically irreversible: the resetter (P = 0) and the setter (P =

1). The two others are reversible: the follower (P = A) and the inverter (P =

NOT A). If, for example, we have `forgotten' the value of A, knowledge of the

value of the inverter's output P su�ces to recover it.

Note that among the 1-bit reversible gates, the NOT gate is a `generator'. This

means we can make any reversible gate of width 1 by combining a �nite number

of this particular gate. Indeed, a follower can be fabricated by the sequence

of two inverters. The opposite is not true: one cannot fabricate an inverter by

cascading followers.

308 Storme L., De Vos A., Jacobs G.: Group Theoretical Aspects ...



3 Calculation with two bits

There are 4

4

= 256 di�erent truth tables with two inputs (A;B) and two outputs

(P;Q). Among them, only 4! = 24 are reversible. However, some of these twenty-

four truth tables fall apart into two separate 1-bit reversible tables. E.g. Table

2a decomposes into one follower Q = A (Table 2b) and one inverter P = NOT B

(Table 2c). On the contrary, truth Table 3b is an example of a 2-bit reversible

table that cannot be reduced to two separate 1-bit reversible tables, and therefore

is called a true two-bit reversible gate. Among the 24 reversible 2-bit tables, only

16 are true 2-bit tables.

Table 2: Falling apart of a truth table.

AB PQ

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 1

(a)

=

A Q

0 0

1 1

(b)

&

B P

0 1

1 0

(c)

All reversible true 2-bit gates can be fabricated from the same building block,

combined with an inverter before and/or an inverter after. Indeed, Table 3b

together with the inverter (Table 3a) forms a set of two building blocks with

which we can synthetize an arbitrary reversible 2-bit gate. Truth Table 3b is

called the CONTROLLED NOT by Feynman [8] [9]. Its logic operation looks like

this:

P = A

Q = A XOR B ;

where XOR is the abbreviation of the EXCLUSIVE OR function. The gate is the

reversible form of the classical (irreversible) XOR gate. The latter is represented

in Table 1e.

Figure 1 gives a representative example of a 2-bit reversible gate, realized by

combining NOT and CONTROLLED NOT gates. Whereas output Q simply equals

input B, output P can be described in three di�erent ways:

P = NOT (A XOR B)

P = A XOR ( NOT B)

P = ( NOT A) XOR B :
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Table 3: Feynman's truth tables: (a) NOT, (b) CONTROLLED NOT, (c) CONTROLLED

CONTROLLED NOT.

A P

0 1

1 0

(a)

AB PQ

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

(b)

ABC P QR

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

(c)

These three boolean expressions are identical, but lead to di�erent physical re-

alizations. We note, however, that these implementations not only make use

of the 1-bit NOT function and the 2-bit CONTROLLED NOT function, but also of

the 2-bit exchanger, i.e. the gate that interchanges two logic variables (realiz-

ing P = B as well as Q = A). This is an example of a general property: the

EXCHANGER, the NOT, and the CONTROLLED NOT form a natural `generating set'

for the twenty-four 2-bit reversible gates. More precisely, each reversible 2-bit

gate can be synthetized by taking one or zero CONTROLLED NOTs and adding one

or zero EXCHANGERs and one or zero NOTs to the left and to the right of it. Note

that neither the EXCHANGER nor the NOT is a true 2-bit gate, but the CONTROLLED

NOT is one. See Table 4.

4 Calculation with three bits

There exist 8

8

= 16; 777; 216 di�erent truth tables with 3 inputs and 3 outputs.

Among them, only 8! = 40; 320 are reversible. However, 48 of these truth tables

fall apart into three separate 1-bit reversible tables and another 288 fall apart

into one 1-bit and one (true) 2-bit reversible gate. Thus, among the 40,320

reversible 3-bit gates, only 39,984 are true 3-bit gates.

Two notorious examples are the Fredkin gate [10] [19] and Feynman's CON-

TROLLED CONTROLLED NOT gate [8] [9]. The truth table of the latter is given in

Table 3c. The former is shown in Table 5a. Both have a particular property:

each is a universal primitive. This means that any boolean function of any �nite

number of logic input variables can be implementedby combining a �nite number

of such building blocks. The proof consists of two steps [19]: one �rst proves that

the building block su�ces to implement the NAND function (Table 1b), then one

refers to the fact that the NAND function is a universal primitive. The latter
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AB PQ

0 0 1 0

0 1 0 1

1 0 0 0

1 1 1 1

(a)

Figure 1: The synthesis of a 2-bit reversible gate: (a) truth table, (b) three

di�erent implementations combining NOTs and CONTROLLED NOT.

Table 4: The three generators of the 2-bit reversible gates: (a) EXCHANGER,

(b) NOT, (c) CONTROLLED NOT.

AB PQ

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

(a)

AB PQ

0 0 0 1

0 1 0 0

1 0 1 1

1 1 1 0

(b)

AB PQ

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

(c)

step is a well-known theorem. The former step is demonstrated by introducing a

so-called preset: we keep one or two inputs �xed and look how the three outputs

are function of the remaining input(s). Among the 39,984 reversible true 3-bit

gates, many have the universality property. It is clear, however, that the number

39,984 is too large to allow `manual' inspection. We have to recur to computer-

algebra software specially dedicated to group theory, such as GAP [11] [17] and

Magma [3] [12]. In the present study, we have chosen the GAP approach, because

of GAP's built-in commands DoubleCoset and DoubleCosets.
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Table 5: Truth tables: (a) Fredkin's conservative gate, (b) a `pseudo-inverting'

gate.

ABC P QR

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

(2,3)

(a)

ABC P QR

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 1 0 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 0 1 0

1 1 0 1 1 0

1 1 1 1 1 1

(3,6)(4,5)

(b)

5 Groups and subgroups

Because of the universality property of some of the 3-bit reversible gates, we now

continue the w = 3 case in more detail.

When a reversible 3-bit gate x is cascaded by a reversible 3-bit gate y (i.e.

when the P output of gate x is connected to the A input of y, etc.), then a new

reversible 3-bit gate is formed, denoted xy. The 40,320 reversible truth tables of

width 3 therefore form a group [16], sayR, which is isomorphic to the symmetric

group S

8

. The identity element of the group is the 3-bit follower (P = A, Q = B,

and R = C). In GAP, each element of R is denoted by its permutation notation.

E.g. the follower is denoted (), whereas the CONTROLLED CONTROLLED NOT is

written (7,8), because the seventh and the eighth line of the truth table (i.e.

Table 3c) are interchanged.

In order to classify the large number of elements of the group R, we will in-

troduce in the following paragraphs three di�erent important subgroups, namely

E with 6 elements,F with 48 elements, and �nallyG with 1,344 elements. They

are ordered as

E < F < G < R ;

where < denotes `is proper subgroup of'. By means of each of these three sub-

groups, we will partition R into double cosets, which will serve as equivalence

classes in the application of Section 6.

An important subgroup of R is formed by the follower together with the �ve

elements representing mere relabellings. Table 6a shows the example e

1

, satis-

fying P = A, Q = C, and R = B, i.e. performing an exchange of B and C. In
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permutation notation, gate e

1

is written (2,3)(6,7). A second example is e

2

or (3,5)(4,6). See Table 6b. Together these two elements generate the whole

subgroup of exchangers. The importance of this subgroup E comes from the fact

that these gates are trivial to implement in any technology. E.g. in electronics,

they consist merely of cross-overs of metal lines. The subgroup E of exchange

gates contains six elements. It is denoted G

6

(SW) by Rayner and Newman [16]

and is isomorphic to the symmetric group S

3

. Results from GAP show us that E

partitions the full group R into 1,172 distinct double cosets. A double coset of

an element g consists of all elements e

0

ge

00

, where both e

0

and e

00

are elements

of the subgroup E. This means that, although there exist 40,320 di�erent re-

versible gates, there are only 1,172 `really di�erent' ones, as soon as we consider

exchangers as `for free'. From these 1,172 gates, all other 39,148 gates can be

fabricated by merely adding one relabelling gate to the left and one to the right.

In a next step, we can enlarge the above subgroup E, by introducing the

inverter or NOT gate. One can either invert A (i.e. realize the gate P = NOT A,

Q = B, and R = C), or invert B (i.e. realize P = A, Q = NOT B , and R = C),

or invert C (P = A, Q = B, and R = NOT C ). As an example, the cycle notation

of the last gate is (1,2)(3,4)(5,6)(7,8). These three inverters (denoted i

1

,

i

2

, and i

3

) generate a subgroup of order 2

3

= 8, isomorphic to Z

3

2

, where Z

2

is the cyclic group of order 2. Together, the subgroup E of exchangers and the

subgroup I of inverters generate a new subgroup F of order 48, isomorphic to

S

3

:Z

3

2

, the semi-direct product of S

3

and Z

3

2

. The elements of F are exactly the

48 gates mentioned in Section 4, i.e. the 3-bit gates that fall apart into three

distinct 1-bit gates.

Using GAP, we �nd that the subgroup F partitions the full group R into 52

distinct double cosets. This means that, although there exist 40,320 di�erent

reversible gates, there are only 52 `really di�erent' ones, if we consider both

exchangers and inverters as `for free'. From these 52 gates, corresponding to

representatives of the 52 distinct double cosets of F, all other 40,268 gates can

be fabricated by merely adding one free gate to the left and one to the right.

Table 7 gives a list of all 52 double cosets k

i

. Note that GAP gives them in

a speci�c order, which has no a priori meaning for the user. We also get a

representative r

i

of class k

i

. Again GAP's way of choosing this representative

is not transparent to the user. The di�erent double cosets constructed with F

sometimes have di�erent size. Table 7 gives n

i

, i.e. the number of elements in

the double coset. At �rst sight, it may be a surprise that a double coset may

contain less than 48

2

= 2,304 members. This is caused by the fact that di�erent

products f

0

gf

00

(with g a member of R and both f

0

and f

00

members of F) can

lead to equal results. It is possible to prove that each double coset contains a

number of elements which is a multiple of 48. Double coset k

1

is the subgroup

F itself, with the follower () as representative r

1

. We remark that Feynman's

gate (7,8) is the representative r

4

of class k

4

.

If we take the elements of subgroup F and add the representative r

i

of k

i

,

then these 49 elements together generate a subgroup. Such a subgroup is called

the closure of F and r

i

. Its order we denote by m

i

in Table 7. From GAP, we

learn that

{ Sometimes m

i

is as large as 40,320, meaning that the closure of F and r

i

is

the full group R. In other words, any element of R can then be written as

a �nite product of form f

0

r

i

f

00

r

i

f

000

r

i

f

0000

:::, i.e. a �nite cascade of r

i

gates
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separated by merely exchangers and/or inverters. In this case, we call r

i

universal.

{ Sometimesm

i

is as small as n

i

+48, meaning that k

i

together with k

1

forms a

subgroup. Any product of the form f

0

r

i

f

00

r

i

f

000

r

i

f

0000

::: then generates either

an element of k

1

or an element of k

i

. The only double cosets with this

property are k

3

and k

31

.

In order to get more insight into the 52 double cosets in which R is divided,

we construct the lattice of all subgroups containing F and contained in R. This

yields a set of partially ordered subgroups: Figure 2. We note ten di�erent sub-

groups:

{ k

1

= F

{ k

1

[ k

3

of order 192 = 4 � 48

{ k

1

[ k

31

of order 192 = 4 � 48

{ k

1

[ k

2

[ k

3

of order 384 = 8 � 48

{ k

1

[ k

31

[ k

40

of order 576 = 12 � 48

{ k

1

[ k

8

[ k

31

[ k

40

[ k

49

of order 1,152 = 24 � 48

{ k

1

[ k

3

[ k

36

[ k

38

of order 1,344 = 28 � 48

{ k

1

[ k

3

[ k

19

[ k

21

[ k

31

[ k

33

[ k

34

of order 1,344 = 28 � 48

{ k

1

[ k

3

[ k

5

[ k

7

[ k

9

[ k

11

[ k

13

[ k

15

[ k

18

[ k

19

[ k

21

[ k

23

[ k

25

[ k

28

[

k

31

[ k

33

[ k

34

[ k

36

[ k

38

[ k

40

[ k

41

[ k

43

[ k

45

[ k

46

[ k

48

[ k

50

, forming the

subgroup of all even permutations and thus isomorphic to the alternating

group A

8

of order 20,160

{ the whole group R of order 40,320 itself.

Some of these subgroups have a particular interpretation. E.g. the subgroup

k

1

[ k

8

[ k

31

[ k

40

[ k

49

is the closure of subgroup F and the subgroup of the

36 conservative gates. A conservative gate [10] is a gate where the output (P ,

Q, R) always has the same number of 1's as the input (A, B, C). Fredkin's

gate (2,3) is an example. The subgroup k

1

[ k

2

[ k

3

is the closure of F and

the subgroup of the 16 pseudo-inverting gates. We call a `pseudo-inverting' gate

a gate where the output (P , Q, R) always is equal to either the input (A, B,

C) or to (NOT A, NOT B, NOT C). Its permutation notation consists merely

of transpositions (i,9-i). Table 5b shows an example. The meaning of the

subgroup k

1

[ k

3

[ k

19

[ k

21

[ k

31

[ k

33

[ k

34

will become clear below.

In a �nal step, we can enlarge subgroup F, by adding a Feynman CONTROLLED

NOT. See Table 6d. The resultingG is a subgroup of R and a supergroup of F. It

is isomorphic to 2

3

:L

3

(2), the semi-direct product of 2

3

, i.e. the additive group of

all binary vectors of length 3, and L

3

(2), i.e. the multiplicative group of all non-

singular binary 3 � 3 matrices. In detail, G is isomorphic to the multiplicative

group of all non-singular binary 4 � 4 matrices of the form

0

B

@

a

1

A a

2

a

3

0 0 0 1

1

C

A

with det(A) 6= 0 and with a

1

; a

2

; a

3

2 f0; 1g. See Reference [4]. It is of order

1,344 and divides the full group R into four double cosets: see Table 8. Double

coset K

1

is the subgroup G itself, represented by representative R

1

= (). It is
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Figure 2: The lattice.

identical to the subgroup k

1

[ k

3

[ k

19

[ k

21

[ k

31

[ k

33

[ k

34

encountered above.

It contains

{ all 48 reversible 3-bit gates that fall apart into three distinct 1-bit gates,

{ all 288 reversible 3-bit gates that fall apart into one 1-bit gate and one true

2-bit gate,

{ another 1,008 gates, which are true 3-bit gates, but can be constructed by

cascading two (or more) non-true 3-bit gates.

One can easily check that none of the 1,344 elements of G is universal and that

all 38,976 members of the three other double cosets, i.e. K

2

, K

3

, and K

4

are

universal.
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Table 6: The subgroup generators: (a) EXCHANGER, (b) EXCHANGER, (c) NOT,

(d) CONTROLLED NOT. From top to bottom, four di�erent representations:

schematic, set of logic equations, truth table, and permutation. Gates (a) and

(b) together generate subgroup E; Gates (a), (b), and (c) together generate

subgroup F; Gates (a), (b), (c), and (d) together generate subgroup G.

P = A

Q = C

R = B

ABC P QR

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

(2,3)(6,7)

(a)

P = B

Q = A

R = C

ABC P QR

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1

(3,5)(4,6)

(b)

P = A

Q = B

R = NOT C

ABC P QR

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 1 0

1 0 0 1 0 1

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 1 1 0

(1,2)(3,4)

(5,6)(7,8)

(c)

P = A

Q = B

R = B XOR C

ABC P QR

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

(3,4)(7,8)

(d)
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Table 7: The double cosets k

i

of F in R.

i n

i

m

i

r

i

1 48 = 48 � 1 48 = 48 � 1 ()

2 192 = 48 � 4 384 = 48 � 8 (4,5)

3 144 = 48 � 3 192 = 48 � 4 (3,4)(5,6)

4 576 = 48 � 12 40320 = 48 � 840 (7,8)

5 576 = 48 � 12 20160 = 48 � 420 (4,5)(7,8)

6 576 = 48 � 12 40320 = 48 � 840 (2,3,4)(5,8,7,6)

7 576 = 48 � 12 20160 = 48 � 420 (2,3,5,8,7,6,4)

8 288 = 48 � 6 1152 = 48 � 24 (6,7)

9 576 = 48 � 12 20160 = 48 � 420 (4,5)(6,7)

10 576 = 48 � 12 40320 = 48 � 840 (3,4)(5,7,6)

11 576 = 48 � 12 20160 = 48 � 420 (3,5,7,6,4)

12 288 = 48 � 6 40320 = 48 � 840 (2,5,7,4,3,6)

13 2304 = 48 � 48 20160 = 48 � 420 (6,7,8)

14 2304 = 48 � 48 40320 = 48 � 840 (4,5)(6,7,8)

15 1152 = 48 � 24 20160 = 48 � 420 (2,3,4)(5,8,6)

16 1152 = 48 � 24 40320 = 48 � 840 (2,3,5,8,6,4)

17 1152 = 48 � 24 40320 = 48 � 840 (2,4)(3,7,5,8,6)

18 1152 = 48 � 24 20160 = 48 � 420 (2,5,8,6,3,7,4)

19 288 = 48 � 6 1344 = 48 � 28 (5,6)(7,8)

20 576 = 48 � 12 40320 = 48 � 840 (4,6,5)(7,8)

21 288 = 48 � 6 1344 = 48 � 28 (2,3,4)(5,8,7)

22 1152 = 48 � 24 40320 = 48 � 840 (5,6,7,8)

23 1152 = 48 � 24 20160 = 48 � 420 (4,6,7,8,5)

24 576 = 48 � 12 40320 = 48 � 840 (3,4)(5,7,8)

25 1152 = 48 � 24 20160 = 48 � 420 (3,6,4)(5,7,8)

26 576 = 48 � 12 40320 = 48 � 840 (2,6,3,7,4)(5,8)

27 288 = 48 � 6 40320 = 48 � 840 (5,6,8,7)

28 1152 = 48 � 24 20160 = 48 � 420 (4,6,8,7,5)

29 576 = 48 � 12 40320 = 48 � 840 (3,4)(5,8,7)

30 288 = 48 � 6 40320 = 48 � 840 (2,5,8,7)(3,6,4)

31 144 = 48 � 3 192 = 48 � 4 (5,8)(6,7)

32 576 = 48 � 12 40320 = 48 � 840 (4,8,5)(6,7)

33 288 = 48 � 6 1344 = 48 � 28 (3,4)(5,7,6,8)

34 144 = 48 � 3 1344 = 48 � 28 (2,6,3,7)(5,8)

35 576 = 48 � 12 40320 = 48 � 840 (4,5,6)(7,8)

36 576 = 48 � 12 1344 = 48 � 28 (4,6)(7,8)

37 576 = 48 � 12 40320 = 48 � 840 (2,3,5,8,7,4)

38 576 = 48 � 12 1344 = 48 � 28 (2,3,6,5,8,7,4)

39 1152 = 48 � 24 40320 = 48 � 840 (4,5,6,7)

40 384 = 48 � 8 576 = 48 � 12 (4,6,7)
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Table 7: The double cosets k

i

of F in R (continued).

i n

i

m

i

r

i

41 1152 = 48 � 24 20160 = 48 � 420 (3,6,5,7,4)

42 384 = 48 � 8 40320 = 48 � 840 (2,4,3,6,5,7)

43 1152 = 48 � 24 20160 = 48 � 420 (4,5,6,7,8)

44 2304 = 48 � 48 40320 = 48 � 840 (4,6,7,8)

45 1152 = 48 � 24 20160 = 48 � 420 (3,5,7,8,4)

46 1152 = 48 � 24 20160 = 48 � 420 (2,3,5,8,4)

47 2304 = 48 � 48 40320 = 48 � 840 (2,3,6,5,8,4)

48 1152 = 48 � 24 20160 = 48 � 420 (2,6,3,7,5,8,4)

49 288 = 48 � 6 1152 = 48 � 24 (4,6,7)(5,8)

50 1152 = 48 � 24 20160 = 48 � 420 (4,8,5,6,7)

51 576 = 48 � 12 40320 = 48 � 840 (3,6,8,5,7,4)

52 288 = 48 � 6 40320 = 48 � 840 (2,3,4,8,5,6)

6 Application

Which of R's three subgroups (E, F, or G) is of importance, depends on the

technological circumstances. In almost each technology the exchangers are `for

free'. E.g. in electronics, they are implemented by a mere metal cross-over. In

the special case of dual-line electronics, each logic variable is represented by two

metal lines of opposite logic value, e.g. A together with NOT A. Therefore, in

dual-rail electronics, also an inverter is `free of charge': we only need a metal

cross-over to exchange A with NOT A. In this technology, the CONTROLLED NOT

is not for free. Thus we are in the case of the free subgroup F [5] [6] [7].

The following question arises [13]. We like to be able to synthetize any arbi-

trary member ofR with the help of a limitednumber of generators. In electronics,

we say: we like to implement any arbitrary reversible 3-bit gate with the help

of a library with a limited number of standard cells. If we denote by s

1

, s

2

, ...,

s

m

the di�erent members of the library, then an arbitrary member r of R must

satisfy

r = f

0

s

0

f

00

s

00

f

000

:::s

(n)

f

(n+1)

; (1)

where s

0

, s

00

, ..., s

(n)

are elements of the library fs

1

; s

2

; :::; s

m

g and f

0

, f

00

, f

000

,

..., f

(n+1)

are elements of F = ff

1

; f

2

; :::; f

48

g. The number n is called the `logic

depth' of the implementation. In order to minimize the number of standard

cells, we have to choose them from di�erent double cosets and not from double

coset k

1

. Thus the library will be a subset of the representatives r

2

, r

3

, ..., r

52

.

From Table 7, it follows that a library with a single building block is su�cient:

each of the representatives r

4

, r

6

, r

10

, r

12

, r

14

, r

16

, r

17

, r

20

, r

22

, r

24

, r

26

, r

27

,

r

29

, r

30

, r

32

, r

35

, r

37

, r

39

, r

42

, r

44

, r

47

, r

51

, and r

52

have m

i

= 40; 320 and are

thus su�cient to generate the whole group R. But, these 23 solutions are not
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equivalent. Indeed, we not only want to limit the number p of di�erent building

blocks in the library, we also like to limit the number of times we have to use the

blocks, i.e. we like to minimize the depth n of the products (1). It turns out that

with building block r

14

all elements of R can be synthetized with n � 4. The

elements of k

1

need no r

14

block (i.e. n = 0); the elements of k

14

need only one

r

14

block (i.e. n = 1); most elements of R need n = 2 or n = 3; only the elements

of k

34

need four cascaded r

14

blocks (n = 4); on the average an arbitrary class

of R needs 32/13 = 2.46 building blocks in cascade. Exactly the same results

apply to the building block r

44

and to r

47

. Table 9 compares these three optimal

choices to the other twenty, i.e. less e�cient, choices. In particular, we see in

the 18 th line that Feynman's gate r

4

needs 0 � n � 6 (with expectation value

97/26 = 3.73) in order to generate all R.

None of the double cosets k

14

, k

44

, and k

47

appears in the lattice of Fig-

ure 2, except at the top, in the parent group R itself. Indeed, any element of

any subgroup of Figure 2 can only generate other elements of that particular

subgroup. The underlying reason is clear: such elements show `too much sym-

metry'. E.g. conservative gates (such as Fredkin's gate) can, by cascading, only

generate elements of k

1

[ k

8

[ k

31

[ k

40

[ k

49

, such that no �nite depth n can

generate the other elements of R. Finally, it is remarkable that the optimum

double cosets k

14

, k

44

, and k

47

are among the largest double cosets of Table 7:

n

14

= n

44

= n

47

= 2; 304.

If we consider depth n = 4 as too deep a cascade (too much silicon surface

area), we can construct a larger library. If we choose an p = 2 library, there are

four equivalent optimal combinations: r

14

together with r

18

, r

14

together with

r

41

, r

44

together with r

48

, and r

44

together with r

50

. Now we have n � 3, with

expectation value 101/52 = 1.94. Enlarging the library to p = 3 yields n � 2

and average cascade depth 99/52 = 1.90.

Table 8: The double cosets K

i

of G in R.

i N

i

M

i

R

i

1 1344 = 1344 � 1 1344 = 1344 � 1 ()

2 9408 = 1344 � 7 40320 = 1344 � 30 (7,8)

3 18816 = 1344 � 14 20160 = 1344 � 15 (6,7,8)

4 10752 = 1344 � 8 40320 = 1344 � 30 (4,5)(6,7,8)

7 Conclusion

The reversible gates of width w form a group, isomorphic to the symmetric

group S

2

w

. Group theory in general, and double cosets in particular, are well
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Table 9: Cascade depth n.

k

i

n

max

n

ave

k

14

4 2.46

k

44

4 2.46

k

47

4 2.46

k

22

4 2.88

k

17

4 2.92

k

39

4 2.92

k

16

5 3.44

k

6

5 3.54

k

10

5 3.54

k

20

5 3.54

k

35

5 3.54

k

24

5 3.58

k

26

5 3.58

k

29

5 3.58

k

32

5 3.58

k

37

5 3.58

k

51

5 3.58

k

4

6 3.73

k

30

6 4.23

k

52

6 4.23

k

42

7 4.35

k

27

7 4.77

k

12

8 5.71

suited to detect di�erent classes within the (2

w

)! elements of the group. This

can lead to an optimized choice of a set of generators. In electronics, this means

an optimal set of hardware building blocks. With the help of GAP, we identi�ed

optimal gates g that are able to generate all other elements of R by means of a

product of the form f

0

gf

00

gf

000

::: of minimal length.

Acknowledgement

Leo Storme is research associate of the Fund for Scienti�c Research { Flanders

(Belgium).

320 Storme L., De Vos A., Jacobs G.: Group Theoretical Aspects ...



References

[1] Bennett, C.: \Logical reversibility of computation"; I.B.M. Journal of Research

and Development 17 (1973), 525-532.

[2] Bennett, C., Landauer, R.: \The fundamental physical limits of computation";

Scienti�c American 253 (July 1985), 38-46.

[3] Bosma, W., Cannon, J., Playoust, C.: \The Magma Algebra System I: the user

language"; Journal of Symbolic Computation 3-4 (1997), 235-265.

[4] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: \Atlas of

�nite groups"; Oxford University Press, New York (1985), p. 22.

[5] De Vos, A.: \Introduction to r-MOS systems"; Proc. 4 th Workshop on Physics

and Computation, Boston (1996), 92-96.

[6] De Vos, A.: \Towards reversible digital computers"; Proc. European Conference

on Circuit Theory and Design, Budapest (1997), 923-931.

[7] De Vos, A.: \Reversible computing"; Progress in Quantum Electronics 23 (1999),

1-49.

[8] Feynman, R.: \Quantum mechanical computers"; Optics News 11 (1985), 11-20.

[9] Feynman, R.: \Feynman lectures on computation" (A. Hey and R. Allen, eds);

Addison-Wesley, Reading (1996).

[10] Fredkin, E., To�oli, T.: \Conservative logic"; International Journal of Theoretical

Physics 21 (1982), 219-253.

[11] http://www.can.nl/SystemsOverview/Special/GroupTheory/GAP/index.html

[12] http://www.maths.usyd.edu.au:8000/u/magma/index.html

[13] Jacobs, G.: \Algebra der reversibele logische schakelingen"; M.Sc. thesis, Univer-

siteit Gent, Gent (1998).

[14] Keyes, R., Landauer, R.: \Minimal energy dissipation in logic"; I.B.M. Journal of

Research and Development 14 (1970), 153-157.

[15] Landauer, R.: \Irreversibility and heat generation in the computational process";

I.B.M. Journal of Research and Development 5 (1961), 183-191.

[16] Rayner, M., Newman, D.: \On the symmetry of logic"; Journal of Physics A:

Mathematical and General 28 (1995), 5623-5631.

[17] Sch�onert, M.: \GAP"; Computer Algebra Nederland Nieuwsbrief 9 (1992), 19-28.

[18] Stix, G.: \Riding the back of electrons"; Scienti�c American 279 (September

1998), 20-21.

[19] To�oli, T.: \Reversible computing"; in: \Automata, languages and programming"

(J. De Bakker and J. Van Leeuwen, eds); Springer, New York (1980), pp. 632{644.

321Storme L., De Vos A., Jacobs G.: Group Theoretical Aspects ...


