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Abstract: A multi-secret sharing scheme is a protocol to share a number of (arbi-
trarily related) secrets among a set of participants in such a way that only qualified
sets of participants can recover the secrets, whereas non-qualified sets of participants
might have partial information about them.

In this paper we analyze the amount of randomness needed by multi—secret sharing
schemes. Given an m-tuple of access structures, we give a lower bound on the number
of random bits needed by multi—secret sharing schemes; the lower bound is expressed
in terms of a combinatorial parameter that depends only upon the access structures
and not on the particular multi-secret sharing scheme used.
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1 Introduction

There are many situations in cryptography in which it is important to be able to
generate random numbers, random bit strings, etc. For example, cryptographic
keys are to be generated at random from a specified keyspace, and the use
of a natural source of random bits, such as an unbiased coin, a radioactive
source or a noise diode, is absolutely essential. Since random bits are a nat-
ural computational resource, the amount of randomness used in a computa-
tion is an important issue in many applications. Therefore, considerable effort
has been devoted to reduce the number of random bits used by probabilistic
algorithms [Cohen et al. 89, Impagliazzo et al. 89], to construct different kinds
of small probability spaces (which sometimes even allow to eliminate the use
of randomness) [Koller et al. 93, Naor et al. 93], and to analyze the amount of
randomness required in order to achieve a given performance [Krizanc et al. 88,
Kushilevitz et al. 94].

A secret sharing scheme is a method to share a secret s among a set P of
participants in such a way that only qualified subsets of P, pooling together
their information, can reconstruct the secret s; whereas any other (non-qualified)
subset of P has no information on it. Secret sharing schemes were introduced by
Shamir [Shamir 79] and Blakley [Blakley 79]. They analyzed the case when only
subsets of P of cardinality at least k, for a fixed integer k < |P], can reconstruct
the secret. These schemes are called (k,n) threshold schemes, where n = |P|. The
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construction of (k,n) threshold schemes, based on polynomial interpolation, is
the following: let ¢; a prime power greater than n and let s € GF(q) be the secret
to be shared. The dealer independently and uniformly chooses k£ — 1 elements
ai,...,ar_1 in GF(q) and constructs the polynomial f(y) = s+a1y+azy?+---+
ar_1y*~!. The information distributed to the i-th participant is equal to f(i).
It is easy to see that any k participants can perform a Lagrange interpolation
on their values to recover f(y), and hence recover the secret s. On the other
hand, any k& — 1 participants have no information about the secret. Indeed, for
any value s’ € GF(q) there exists one and only one polynomial g(y) of degree
k — 1 such that ¢g(0) = s' and g¢(i) = f(i) for any participant i.

Subsequently, Ito, Saito, and Nishizeki [Ito et al. 93] and Benaloh and Leichter
[Blakley et al. 90] described a more general method of secret sharing. They
showed how to realize a secret sharing scheme for any access structure, where
the access structure is the family of all subsets of participants that are able to
reconstruct the secret. For an updated bibliography on secret sharing schemes
we refer the reader to [Stinson], while, for a detailed description of results in the
area we recommend the surveys [Simmons 91] and [Stinson 92].

Many secret sharing applications, in particular those associated to key-mana-
gement, require protection of more than one secret. As an example, consider
the following situation, described in [Simmons 91]: There is a missile battery
in which each missile has a different launch enable code. The problem is to
devise a scheme to protect these codes by using the same pieces of private in-
formation. Another scenario, in which the sharing of many secrets is important,
was considered by Franklin and Yung [Franklin et al.]. They investigated the
communication complexity of unconditionally secure multi—party computation
and its relations with various fault—tolerant models. They presented a general
technique for parallelizing non—cryptographic computation protocols, at a small
cost in fault—tolerance. Their technique replaces polynomial-based (single) se-
cret sharing with a technique allowing multiple secrets to be hidden in a single
polynomial.

The problem of sharing more than one secret was also considered by many
researchers (see [Blundo et al. 98a], [Blundo et al. 94], [Blundo et al. 93],
[De Santis et al. 99], [Ding et al. 97], [Karnin et al. 83], [Jackson et al. 93],
[Jackson et al. 94], [Jackson et al. 96], [McEliece et al. 81]). The authors of
[Blundo et al. 98a] analyzed different models for sharing many secrets, taking
into account both the “level of security” and the degrees of dependence among
the secrets to be shared. They formally defined multi—secret sharing schemes
and gave a systematic analysis for such schemes in information theoretic terms.
The best way to understand multi—secret sharing schemes is by resorting to
an example. Suppose that there are two secrets s; and s, to be shared, with
s1 € GF(q1) and sy € GF(g2), where ¢; and ¢ are prime powers. Suppose that
there are two sets Pl = {Pl, PQ, P3,P4, P5, P6} and PQ = {P3, P4, P5,P6,P7, Pg}
of participants. We want to share the secret s; among participants in P; in
such a way that the subsets of P; qualified to recover s; are {P3},{Pi, P»} and
{Ps, Ps, Ps}. Besides, we want to share the secret s among participants in P»
in such a way that the subsets of P, qualified to recover sy are {Ps, Ps, Ps},
{P7,Ps} and {P,}. Let ¢ = max{qi,g2}. The dealer uniformly chooses four
values x1,...,x4, where z1 € GF(q1), ©2 € GF(¢2), and 3,24 € GF(q), then
he distributes the shares as follows:
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Py gets 1 P, gets 1 + s1 mod 1 P3 gets (s1, x4+ s2mod q)
Py gets (s2,x4 + 51 mod q) Ps gets z3 Ps gets x3 + x4 mod ¢
P; gets x» P gets x5 + so mod go.

It is easy to see that in this scheme only the qualified subsets can recover the
secrets.

The quantitative study of the number of random bits needed by secret sharing
schemes has been initiated in [Blundo et al. 96], where the optimality of sev-
eral secret sharing schemes according to this measure has been proved. Some
other results on this topic can be found in [Blundo et al. 97, Blundo et al 98c,
Czirimaz 96].

In this paper we analyze the amount of randomness needed to set up a multi—
secret sharing scheme. We measure the randomness by the entropy of the proba-
bility space from which the shares, to be given to participants, are taken. For any
given m-tuple of access structures (an access structure is the specification of all
subsets of participants that can recover the secret), we provide a lower bound on
the randomness needed to generate the shares to distribute to participants. The
lower bound is expressed in terms of a combinatorial parameter that depends
only upon the access structures and not on the particular multi—secret sharing
scheme used.

The paper is organized as follows: In Section 2 we recall basic definitions of
multi-secret sharing schemes. In Section 3 we present some results that will be
useful to prove our limitations. In Section 4 we define and analyze a measure
for the amount of randomness needed to realize a multi—secret sharing scheme.
Moreover, we present a general lower bound on the amount of randomness in
multi-secret sharing schemes. In Sections 5 and 6 we present tight lower bounds
on the randomness in multi—secret sharing schemes for pairs of access structures.
In particular, in Section 6 we analyze the case in which at least one of the access
structures is a (k,n) threshold structure (i.e., an access structure on a set of n
participants in which any qualified set of participants has cardinality at least k).

2 Multi-Secret Sharing Schemes

A secret sharing scheme permits a secret to be shared among a set P of n
participants in such a way that only qualified subsets of P can recover the secret,
but any non-qualified subset has absolutely no information about the secret. An
access structure A is the set of all subsets of P that can recover the secret.

Definition 1. Let P be a set of participants, a monotone access structure A on
P is a subset A C 2P\{0}, such that A€ A,AC A CP= A €A
Definition 2. Let P be a set of participants and A C 27. The closure of A,
denoted by cl(A), is the set cl(A) = {C|3B € Aand B C C C P}.

For a monotone access structure A we have A = cl(A). From now on we will
consider only monotone access structures. Let .4 be an access structure, a set
C € Ais a minimal set of A if it does not contain any set in A\ {C'}. A basis Ao
of A is the family of all minimal sets of .A. We will refer to a participant P € P
as an essential participant if there exists a set X C P such that X U {P} €
Ap. If a participant P is not essential, then we can construct a secret sharing
scheme giving him\ her nothing as share. In fact, a non—essential participant does
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not need to participate “actively” in the reconstruction of the secret, since the
information he\she has is not needed by any set in P in order to recover the
shared secret. Therefore, we assume throughout this paper that all participants
are essential.

Multi—secret sharing schemes are a natural generalization of single secret sharing
schemes: we consider different access structures and in each of them we share
a secret. In a multi—secret sharing scheme, an m-tuple of secrets (s1,...,5m) €
Sp X -+- xS, is shared in an m-tuple (Ay,...,An,) of access structures on P,
where P = {Py,...,P,}, in such a way that, for each i = 1,...,m, the access
structure A; is the set of all subsets of P that can recover the secret s; € S;.
This means that only the sets A € A; can recover the secret s;, but any set
A ¢ A;, even knowing an arbitrary subset of secrets, has no more information
about s; than that already conveyed by the secrets A knows.

Let M = {1,...,m} and let S,, = S; x --- x Sy, be the set from where the
secrets are chosen. (The i-th secret to be shared is chosen from S;).

Let {PT‘SM (51:--->3m)}(S1,...,sm)eSM be a probability distribution on S,,. Let
a multi-secret sharing scheme for secrets in S,, be fixed. For any participant
P € P, let us denote by K (P) the set of all possible shares given to participant
P. Suppose a dealer D wants to share the secrets (s1,...,s,) € S,, among the
participants in P (we will assume that D ¢ P). He does this by giving each
participant P € P a share from K (P) chosen according to some, not necessarily
uniform, probability distribution.

Given a set of participants A = {F, ,..., P, } C P, where i1 < i» < ... <,
let K(A) = K(P,) x -+ x K(F, ). Moreover, for any A C P, let Z(A) C M
be the set of indices of secrets that can be recovered by A, that is Z(A4) = {i :
A € A;}. Given a set of indices T' = {i1,...,it} C M, where i} < i» < ... < iy,
let S, = 5, x--- x5, . Any multi-secret sharing scheme for secrets in S,
and a probability distribution {PTSM (s1,---, Sm)}(s1,...,sm)€SM naturally induce

probability distributions on K (A) and on S,., for any A C P and for any T C M.
Denote such probability distributions by {Pr, , (a)}.er(a) and {PT‘ST (t)}es, s
respectively. For any A C P, denote by A the random variable taking values
on K(A) according to the probability distribution {Pr, ,,(a)}ack(a)- For any
T C M, denote by S, the random variable taking values on S, according to
the probability distribution {PTST (t)}tes,. For i = 1,...m, denote by H(S;)
the entropy (for the basic properties of the entropy used in this paper consult
the Appendix) of {Pr;_(si)}s;es;, for any A C P, denote by H(A) the entropy
of {Pry,,(a)}aek(a), and for any T C M denote by H(S,) the entropy of
{PT‘ST (t)}tes, . As done in [Blundo et al. 98a], we define multi-secret sharing
schemes as follows.
Definition 3. Let (A,..., A, ) be an m-tuple of access structures on the set
of participants P. A multi-secret sharing scheme for (A1, ..., Ap) with secrets
chosen according to S,, is a sharing of secrets in S,, in such a way that, for
1=1,...,m,
1. Any subset A C P of participants enabled to recover a secret can compute
it.
For all A € A;, it holds that H(S;|A) = 0.
2. Any subset A C P of participants not enabled to recover a secret, even
knowing an arbitrary subset of secrets, has no more information on it than
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that already conveyed by the known secrets.
For all A ¢ A;, and T C M, it holds that H(S;|AS,) = H(Si[S,.,,S,),
where T(A) ={i: A € A;}.

3 Technical Lemmas

In this section we present some results that will be useful to prove our limitations.
Assume a set of participants Y C P cannot determine the secret s;, but they
can do so if another participant (or another group of participants) X would
be willing to pool its own share. The following technical lemma, proved in
[Blundo et al. 98a], gives a lower bound on the entropy of the probability space
from where the shares given to X are chosen, when the shares given to Y and a
subset of secrets are known.

Lemmad4. Let (Ay,...,A,) be an m-tuple of access structures on the set of
participants P. Let X CP and T C {1,...,m}. If there exists a set of partic-
ipants Y C P such that Y & A; and X UY € A;, then, in any multi-secret
sharing scheme for (Ay,..., An) with secrets chosen according to S,,, it holds
that

H(X|YS,) = H(Si[S,,S;) + H(X|YS,S;).

The next lemma shows a useful relation between the entropy of the probability
space from where the shares given to any subset of participants are chosen and
the size of the secrets they can recover.

Lemmab. Let (Ay,...,A,) be an m-tuple of access structures on the set of
participants P. In any multi-secret sharing scheme for (Ai, ..., An) with secrets
chosen according to S,,, for any X C P, it holds that

H(X) = H(X|S,,) + H(S,, )
Proof. From (13) of Appendix we have that

1(X;8,,) = H(X) - H(X|S,,)

= H(S,) — H(S,[X). (1)
If Z(X) = {1,...,m} (ie., S, = S,) then, from the above equation, it is

immediate to see that

H(X) = H(X|S,) + H(S, . ).

T(x)
Now, without loss of generality, assume that Z(X) = {1,...,t}, with ¢ < m.

From (12) of Appendix we obtain
H(SM |X) = H(Sz(x) |X) + H(SM\I(X)
=H(S, ,X)+H(S

{t+1,...,

|XSI(X))

..........

=2
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. from (12) of Appendix
i) (

.....

. t})+ Z H(S,'|S{1 _____ ifl}) (from Definition 3)
i1=t+2
S{1 ..... t}) (from (12) of Appendix)

Sx))- (2)

— H(S

(t+1,..., m}|

= H(S

MA\T(X) |
Therefore, we have that

H(X) = H(X[S,) + H(S,,) — H(S,,X) (from (1))
= H(X|S,) + H(S,) ~ (Syz00)Sucx,) (From (2)

= H(X|S,,) + H(S, ,) (from (12) of Appendix).

(X)

Hence, the lemma holds. O

From the next theorem we can easily derive a lower bound on the size of the
share given to each participant. The proof of the next theorem is similar to the
one of Theorem 3.2 in [Blundo et al. 98a].

Theorem 6. Let (Ay,...,Apn) be an m-tuple of access structures on the set
of participants P. Assume that there exist a participant P and m + 1 sets
Y, X1, Xo,..., X\ CP such that, for 1 <i<m:{P}UYUX;U---UX; € A4;,
and Y U Xy U---UX; € A;. Then, in any multi-secret sharing scheme for
(A1, ..., Ay) with secrets chosen according to S,,, the entropy of the share given
to P satisfies

H(P|Y) > H(S,,)+ HP|X;...X,S,,)-

Proof. For1 < i <m,since YUXjU---UX; € A; implies YUX U---UX; 1 € A;,
it is easy to see that Z(Y U X; U---U X;) C {1,...,i — 1}. The proof of the
theorem is by induction on m. Assume m = 1. We have that
H(P|Y) > H(P|YX,) (from (14) of Appendix)
= H(Sl|SI(YUX1)) + H(P|YX1 Sl) (from Lemma 4)
= H(S1) + H(P|YX;S;) (since Z(Y U X1) = 0).

Therefore, the lemma, is true for m = 1.
Now, suppose the lemma true for m — 1, that is

HPIY)>H(S, ., ) +HPIYX:...Xn1S, . 1)
From (14) of Appendix we have that
HPIYX; ... X 1S, ,._) 2 HPIYX, ... XS, )

= H(Sm|sr(yuxlu---uxm)s{1 ..... m—l}) +
H(P|YX;...X;,) (from Lemma 4)
= H(Sm|S{1 _____ m_l}) + HP|YX;...XS,)

(since ZYUX; U---UX,,)C{1,...,m—1}).
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From the above inequalities applied to the inductive hypothesis we obtain

H(P[Y) > H(S, .. )+ H(SnlS, . ) +HPYX;...X,S,)
=H(S,,)+ HP|YX,;...X,,;S,,) (from (11) of Appendix).

Thus, the theorem holds. ad
Since the entropy of the random variable P satisfies the property 0 < H(P) <
log |K(P)|, Theorem 6 gives a lower bound on the size of the shares given to
each participant.

4 Dealer’s Randomness in Multi—Secret Sharing Schemes

In this section we define and analyze a measure for the amount of randomness
needed to realize a multi—secret sharing scheme.

The Shannon entropy of the random source generating the random bits repre-
sents the most general and natural measure of randomness. Indeed, it has been
shown (see [Knuth et al. 76]) that the entropy of a random variable X (i.e., of a
memoryless random source) is approximatively equal to the average number of
tosses of an unbiased coin to simulate the outcomes of X. Let A be an algorithm
that generates the probability distribution {Pry (z)},ex using only indepen-
dent and unbiased random bits in inputs. Denote by T'(A4) the average number
of random bits used by the algorithm A and let T'(X) = miny T'(4). Knuth and
Yao [Knuth et al. 76] proved the following inequalities:

H(X) < T(X) < H(X) +2.

Thus, the entropy of a random source is very close to the average number of
independent unbiased random bits necessary to simulate the source.

The total randomness present in a multi—secret sharing scheme X for an m-tuple
of access structures (Ay,...,Ay,) on aset P ={P,...,P,} of n participants is
equal to the entropy H(P; ...P,). This takes into account also the randomness
H(S,,) of the secrets, as we will see later. The dealer’s randomness is the random-
ness needed by the dealer to set up a multi—secret sharing scheme for secrets cho-
sen according to S,,, that is, the randomness he uses to generate the shares, given
that the probability distribution IIs 2 {PT‘SM (s1,.-, Sm)}(sl,...,sm)eSM on the
secrets is known. Therefore, for an m-tuple of access structures (A, ..., Am,) and
a multi-secret sharing scheme, the amount of randomness used by the dealer is
equal to H(Py ... P,|S,,). This randomness is needed only to generate the shares
distributed to participants.

Extending Lemma 2.7 in [Blundo et al. 96] we obtain the following result, that
relates the total randomness and the dealer’s randomness in multi-secret sharing
schemes.

Lemma7. Let (Ay,..., Apn) be an m-tuple of access structures on the set of
participants P. Then, in any multi-secret sharing scheme for (Ai, ..., Ap) with
secrets chosen according to S,,, it holds that

H(P,...P,)=H(P,...P,|S,) + H(S,).
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Extending the definition of dealer’s randomness in single secret sharing schemes
given in [Blundo et al. 96], we define the dealer’s randomness in a multi-secret
sharing scheme X' for the m-tuple of access structures (A1, ..., A;), when the
secrets to be shared are chosen in S,, according to the probability distribution
IIs , as

M[(Alv te Am): HSM ) E] = H(Pl N Pn|SM)

Notice that u[(Aj, .. .,Am),HSM,E] depends also on X, since the probability
that participants receive given shares depends both on IIs —and on the dis-
tribution scheme Y. Since we are interested in the minimum amount possible
of randomness for an m-tuple of access structures (Aq,...,4,,), we give the
following definition:

Definition 8. Let (Aq,...,An) be an m-tuple of access structures on the set
of participants P. Let S,, = S1 X -+ x S, and let ¢; = |S;|, for i = 1,...,m.
The dealer’s randomness p[( A1, ..., Am),(q1,--.,qm)] of a multi-secret sharing
scheme for (Ay,..., A, ) with secrets chosen in S,,, is defined as

/’L[(Ala'"7Am)7(Q17"-7qm)] = IQH';.- u[(Ala"'aAm)aﬂsMaE]

where Q is the space of all probability distributions II5 —on the sets of secrets
S,, and 7 is the space of all multi-secret sharing schemes X for the m-tuple of
access structures (Aq, ..., Amn)-

We recall here the definition of independent sequence given in [Blundo et al. 96].
The independent sequence has been used to derive lower bounds on the random-
ness needed in single secret sharing schemes.

Definition 9. Let A be an access structure on the set of participants P. A
sequence Py, ...P,, of participants is called independent for A if the following
two properties are satisfied:
1. {P,,...,P,} ¢ A,
2. For all j < £ there exists a subset X; C P such that
(@) {Pr,..., P} UX; ¢ A,
(b) {Pr,,...,P,}UX; U{P,,, } € A

We generalize the definition of independent sequence to the case of multi—secret
sharing schemes. The independent sequence will be a useful tool to derive lower
bounds on the amount of randomness needed by the dealer to realize a multi—
secret sharing scheme.

Definition 10. Let (A4, ..., An) be an m-tuple of access structures on the set
of participants P. A sequence P, ...P,, of participants is an (a,...,am,b)-
sequence for (Ay,...,An) if the following three properties are satisfied:
1. {Py...P,}¢ AN NA,,
2. For all j < ¢:
There exist a subset X; C P and an index kji1 € {1,...,m} such that
al){P,....,P,}UX; ¢ Ap,,,,
3'2){PT1)"'7PTJ'}UXJ' u {Pf‘j+1} € Akj+1)
or there exist m subsets X},..., X" C P such that, for any h € {1,...,m}
b {Pry,..., P} UX U UXEE A,
b2){P,,...,P;}UX]U---UXIU{P,,,} € Ap,
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3. Foranyi,1<i<m,a;=|{j:1<j<l:kj=i}jandb=0—-3 " a,.

To avoid overburdening the notation, we will refer to an independent sequence (or
to an (a1, ..., am,b)-sequence) as to a set of participants, and thus we will apply
the usual set operators to it. Hence, if Z; = P, ... P, and Zs = Q1 ...Q} are
such sequences, we will denote with Z; N Z, the set {Py,..., P} N{Q1,...,Qr}
and with P\ Z; the set P\ {P,..., Py,}. Moreover, we often will write Py ... Py
rather than {P,..., Py}, and also XY rather than X UY".

The next theorem gives a lower bound on p[( A1, ..., Am), (q1,--.,qm)] when an
(a1, ..., am,b)-sequence for (Ay,...,Ap) is known.
Theorem 11. Let (Ay,...,A,) be an m-tuple of access structures on the set

of participants P. If there exists an (a1, ..., am,b)-sequence Z for (A1,..., An),
then it holds that

Pl(AL - A, (@1 )] 2 Y aiH(S]S,, ,,) +DH(S,,) — H(S,,)).
=1

Proof. For the sake of simplicity assume that Z = Py ... P is an (a1,. .., Gm, b)-
sequence for (Ai,...,Ay). For 1 < i < m, let Za, = {P; € Z : k;j = i}
and Zgp = Z \ U, Za,. From Definition 10 it follows that |Z4,| = a; and
|Zg| = € —>i", a;. Consider the participant P; € Z, for any j = 1,...,¢. We
distinguish two cases:

1. If P; € Z4,, where i € M, then there exists a subset of participants X;_;
such that P, ... Pj_1X;_1 € A; and P, ... Pj_1X;_1 P; € A;. Therefore, we
have that

H(P]|P1 . Pj—l) Z H(P]|P1 . Pj_1Xj_1) (from (14) of Appendix)

> H(Si|SI(P1...P]-_1xJ-_1))) (from Lemma 4).

Since Py ... Pj_1X;_1 ¢ Aj;, we have that Z(P,...P;_1X;_1) C M \ {i}.
Therefore, from (14) of Appendix it follows that

H(Si|sz )) > H(Si|SM\{i})'

(P1. Pj_1X;_1)
Hence, for any participant P; € Z4;, it holds that
H(P;|Py...P;_1) > H(Si[S, ;) 3)
2. If P; € Zp, then there exist m subsets of participants X;, ..., X" such that,
for any i € M, it holds P, ...P]-,lXJ1 X]’ ¢ A; and P, ...Pj,lX]1 ...X}Pj €
A;. Then, from Theorem 6 we have that

HP;P,...P;_1) > H(S,,). (4)
Hence, we have that

H(Z)y=H(P;,...Py)
=HPy)+ H(P2|P)+...+ HP¢|Py...Py_y1) (from (11) of Appendix)

> > aiH(SiIS,,,) +bH(S,) (from (3) and (4)). (5)
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Moreover, from Lemma 5 we obtain

H(Z[S,,) = H(Z) — H(S,,))- (6)
Hence, we have that
HP,...P,|S,,) > HP,...PS,,)

= H(Z|S,)

= H(Z) - H(S,,,) (from (6))

>3 wiH(SiS,,,,,,) +DH(S,,) — H(S,,,) (from (5)).

i=1

Thus, the theorem holds. O
Notice that if the access structures Aj,..., A, are equal to the same access

structure A and there exists an independent sequence Z = P, ... F,, of length
¢ for A, then Z is also a (0,...,0,¥¢)-sequence for (A;,...,Ay). Indeed, Z ¢
———r~

Ain---NA,, (e, Z(Z2) = @)mand for j < ¢, it is possible to construct the sets
Xj,..., X" as follows: Xj = X, where X is the set satisfying Property 2 of
Definition 9 for Z, and let X]’-L = (), for h = 2,...,m. Therefore, for any j < ¢
and any h = 1,...,m, it holds that {P,,..., P} UX]1 U ---UX]’-’ ¢ Ap and
{Pr,...,P;}UXU---U XJ'-‘ U{P:;,,} € An. Hence, from Theorem 11 we get
WA A (@1 )] > CH(S,).

Definition 10 can be slightly modified with a stronger assumption.

Definition 12. Let (Ajy,...,4,,) be an m-tuple of access structures on the set
of participants P. A sequence P, ...P,, of participants is an [a1,...,am,D]-
sequence for (Ay,..., Ap) ifit is an (a1, ..., am, d) sequence and if Property a.1
of Definition 10 is substituted by the following property: For all j < ¢ there
exists a subset X; C P, such that {P. ... P} UX; ¢ Ay U---UA,,.

The next theorem gives a lower bound on p[(Ai,...,Am),(q1,-..,qm)] when
an [ai,...,an,bl-sequence for (Ai,...,Ay) is known. The proof of the next
theorem goes along the lines of the proof of Theorem 11, so we omit, it.

Theorem 13. Let (Ay,...,A,) be an m-tuple of access structures on the set
of participants P. If there exists an [ay, ..., am,b]-sequence Z for (A1, ..., An),
then, it holds that

m

pl(Ar, . Am), (@ am)] 2 ) aiH(S:) +bH(S,,) — H(S,,)-

i=1

Notice that if the secrets are statistically independent, i.e., H(S,,)=>""" H(S;),
then Theorems 11 and 13 lead to the same lower bound.
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4.1 Threshold Structures

In this section we consider the problem of sharing many secrets in different
threshold structures. More precisely, we analyze the case in which the secret s;,
where i € M, is shared according to the access structure A, p,), consisting of all
subsets of participants in P; C P of cardinality at least k;. The access structure
A(k;,p;) 1s referred to as threshold structure. We prove tight lower bounds on
the dealer’s randomness needed by multi—secret sharing schemes for threshold
structures. [De Santis et al. 99] considered the case P; = Py = --- = P, and
ky SkQ Sgkm

Theorem 14. Let (Ak,p,), - -, Aw,p,.)) be an m-tuple of threshold structures.
In any multi-secret sharing scheme for (A, p,) - - -, Ak,p,.)) with secrets chosen
according to S,,, if P1 C P2 C ... C Py, then it holds that

/'L[(A(k,'P1)a s 7-/4(k,'Pm))7 (‘h: sy qm)] Z (k - I)H(SM)

Proof. Let X = {P;,,..., P, } be a set of k participants in P;. It is easy to see
that Z = Pj, ... P;,_, isa (0,...,0,k — 1)-sequence for (Ai,..., Ap). Indeed,
———

m
fori=1,...,k—2, the m sets X},..., X" satisfying Definition 10 are all equal
to {P; Pj, }. Since Z(Z) = 0, the bound follows from Theorem 11. O

429t
If each secret s; is uniformly chosen in S; = GF(g;), with g; a prime power greater
than n, then it is possible to realize a multi—secret sharing scheme meeting
the above bound. To accomplish this it is enough to combine m independent
threshold schemes, say Shamir’s schemes [Shamir 79], one for each threshold
structure.

Multi-Threshold Algorithm
Input: s1 € GF(q1),...,8m € GF(qm), k,and Py CP2C--- C Pp, C{P1,..., Pp}.
For1<i<m
Let Fj_,[z] be the set of all k—1 degree polynomials with coefficients in GF(g;).
Choose randomly a polynomial f;(z) € Fj_,[z] such that f;(0) = s.
For any P; € P;
Let i ; = fi(j) be the share of P; when the secret s; is shared in A p,).
For1<j<n
Let Z(Pj) ={i€[l,...,m]: P; € Pi} ={h1...,h,} and let
W;j = (4, s>, ;) be the share of participant P;.

Output: The shares wi,ws, ..., w, of participants Pi, P», ..., P, respectively.

It is easy to see that the previous protocol realizes a multi—secret sharing scheme
for the m-tuple of threshold structures (A p,),---, Awk,»,,))- The protocol is
optimal with respect to the number of random bits needed by the dealer to set
up the scheme.
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5 Randomness for Pairs of Access Structures

In this section we consider multi—secret sharing schemes for pairs of access struc-
tures. More precisely, we prove tight lower bounds on the dealer’s randomness for
any pair of access structures (A;,.A2) when two independent sequences Z; and
Zy, for A; and As, respectively, are known. This assumption is not restrictive
at all, since it is easy to find an independent sequence for any access structure.
Indeed, let X € A be a minimal set for the access structure A. It is easy to see
that any subset ¥ C X is an independent sequence for 4. On the other hand,
computing the length of the longest independent sequence for an access structure
is a hard computational problem. In [Blundo et al. 96] the authors proved that
even computing an approzimation to it is hard.

Theorem 15. Let Ay and As be two access structures on the sets of participants
Py and P2, respectively. Let Zy (resp., Zs) be an independent sequence of length
a (resp., B) for Ay (resp., As). Finally, assume that Z1NPy = O and ZyNPy £ ().
Then, it holds that

u[(Ar, A2), (g1, 2)] > aH (S1]S2) + BH (S2[S1). (7)

Moreover, if the secrets are statistically independent, or if Z; U (P N Pa) ¢
A1 U Ay, then it holds that

pl(Ar, Az), (g1, q2)] 2 aH (S1) + SH(S2). (8)

Proof. For the sake of simplicity, assume that Z; = P, ... Pyand Z> = Q1 ...Qg,
where P;,...,P, € P; and Q1,...,Q3 € P2, are two independent sequences for
A; and A, respectively. From Definition 9 we have that Z; ¢ Aj;, and that for
all i < a there exists a subset U; C P; such that

P ...PU; ¢ Ay and Py ... PU; Py € Ay

Similarly, we have that Z, ¢ As, and that for all ¢ < /3 there exists a subset
Vi C P2 such that

Qr...QiVi¢ Ay and Q1 ... Q;ViQit1 € As.

Consider the sequence Z1Z> = Ry ... Ry43, where R; = Py, fori =1,...,a, and
Ri=Qi_n,fori=a+1,...,a+ . Since Zy ¢ Ay and Z; C P; \ Ps, it holds
that Z1Z> ¢ As. We distinguish two cases: Z1Z, ¢ Ay and Z, 7, € A;.

Case Z175 ¢ Ay, i.e., Z(Z1Z5) = 0. We prove that Z; Z, is an (a, (8, 0)-sequence
for the pair of access structures (A1, .4s). It is easy to see that, fori =1,..., a—1,
the set X; = U; satisfies

R, ... R;X; ¢ Ai and Ry ... R; X;R;+1 € Ay
and, fori =a,...,a+ [ — 1, the set Y; = V;_441 satisfies
R, ...R}Y; ¢ As and Ry .. .R;Y;R;y1 € As.

Therefore, from Definition 10 we have that Z;Z, is an («, 8,0)-sequence for
(A1, Az). Since Z(Z1Z2) = 0, the bound follows from Theorem 11.
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Case Z1Z» € Ay, ie., Z(Z1Z>) = {1}. We prove that Z;Z5 is an (o, — 1,1)-
sequence for (A;, As). Since Z; ¢ Ajp, then there exists an index i € [, ..., a+/f]
such that Ry ... R; ¢ Ay and Ry ... R;41 € Ay. Hence, there exist two subsets
X! =0 and X? = V;_a41 such that

Rl...RiXil ¢A1, Rl...RiXilRH_l E.A1,
RleleXf ¢ As, and Ry RlelXZZRZ+1 € As.

Therefore, Z1Z5 is an («, 8 — 1, 1)-sequence for (A;, As). Hence, from Theorem
11, we get
ul(Ar, A2), (q1,42)] > aH(S1[S2) + (8 — 1)H(S2[S1) + H(S1S2) — H(S,,, ,,,)

= CKH(SHSQ) + ﬂH(S2|Sl) - H(SQ|Sl) + H(Slsg) - H(Sl)
(since Z(Z1Z>) = {1})
= aH(S;|S2) + BH(S2|S1) (from (11) of Appendix).

Thus, inequality (7) is satisfied. If the secrets are independent, then inequality
(8) directly follows from inequality (7). Inequality (8) is satisfied also when
Zy U (PLNPsy) ¢ A U As. Indeed since, for i = 1,...,a — 1, it holds that
(Ry...RU)NP2=U;NPy =P NPy C Z1 U(P1NPs), we have

Ry ...R;U; ¢ A1 UAs and Ry .. RzUzRH-l e A;.

Fori=q,...,a+8—1, we get (Rl . RZ’V;'_DH_l)I’TPl = Z1U(Ra+1 R Viiaan
Py) = Z; U (P NPy) and it holds that

Ry...R;Vi_o11 ¢ AiUAs and Ry .. RVi_gt1Riy1 € As.

Therefore, Z; Z5 is an [«, (3, 0]-sequence for (Aj, As) and since Z(Z1Z>) = 0, the
inequality (8) follows from Theorem 13. O

Notice that if Z; NP2 = @) and Zs NP2 = ), then we have that Z;Z> ¢ A; and
Z1Z5 ¢ A, and, analogously to Theorem 15, we can prove that

u[(Ar, A2), (g1, 2)] > aH (S1]S2) + BH (S2[S1).

Ezample 1. Let Py = {P1, Py, P5,Ps} and P> = {Py, Ps, Ps, P;} be two sets
of participants. Let Ay = {PP2P3, PsPs} and As = {PyPsPs, PsP;} be two
access structures on P; and P, respectively. It is easy to see that Z; = P, Py
and Z» = P,Ps are independent sequences for A; and As, respectively. From
Theorem 15, it holds that p[(A1, A2), (¢1,¢2)] > 2H(S1) + 2H(S2). This bound
is tight. Indeed, to realize a multi—secret sharing scheme meeting this bound it
is enough to combine two independent single secret sharing schemes for A; and
A, as follows: To share the secret s; € GF(q;) the dealer randomly chooses two
values z; and z3 in GF(q), then he distributes the shares as follows:

P, gets ©1 P> gets ©1 + x3 + s1 mod ¢
P; gets x3 Ps5 gets s; + x3 mod q;.-
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The number of random bits needed by the dealer to set up this scheme is 2log ¢; .
To share the secret so € GF(g2) the dealer randomly chooses two values x4 and
x6 in GF(q2), then he distributes the shares as follows:

Py gets x4 Ps gets ©4 + x5 + S2 mod g2
Py gets xg Pr gets sy + x5 mod go.

The number of random bits needed by the dealer to set up this scheme is 2log ¢5.
Hence, if we combine two independent copies of these single secret sharing
schemes for A; and A,, the number of random bits needed by the dealer is
2log q1 + 2log qo. Therefore, the bound provided by Theorem 16 is tight.

A

Theorem 16. Let A; and Az be two access structures on the sets of participants
Py and P, respectively. Let Zy (resp., Zs) be an independent sequence of length «
(resp., B) for Ay (resp., As). Finally, assume that |Z1NP2| = a and |ZoNPy| = b.
If the secrets are independent, then it holds that

nl(Ar, A2), (@1, ¢2)] = aH(S1) + SH(S2) — min{aH (Sy),bH(S2)}-

Proof. Let Z{ = Zy \ P2 and let Z), = Z5 \ P1. It is easy to see that Z{ (resp.,
Z%) is an independent sequence of length o — a (resp., 8 —b) for A; (resp., As).
Since the secrets are independent, applying Theorem 15 twice with (Z], Z3) and
(Zl) Zé): respectively, we get p‘[(Al)AQ)) (QI;q2)] > (a - a)H(Sl) + ﬁH(Sz) and
wl(A1, As), (q1,q2)] > aH(S1) + (8 — b)H(S2). Thus, the theorem holds. O

E':I:ample,?. LetPl = {Pl,PQ,Pg,P4,P5,P6} andPQ = {P3,P4,P5,P6,P7,P8} be
two sets of participants. Let ./41 :{P3, P1P2, P4P5P6} and.A2 :{P3P5P6, P7P8, P4}
be two access structures on P; and Ps, respectively. It is easy to see that Z; =
Py Ps Py, and Zy = P3 P5 P; are independent sequences for A; and As, respectively.
From Theorem 16, it holds that

u[(A1,./42), (q1,QQ)] >3H(Sy) + 3H(S2) — Qmin{H(Sl),H(Sg)}.

This bound is tight. Indeed, the scheme presented on page 2 uses exactly logq; +
log g2 + 2log g random bits. A

Corollary 17. Let Ay and Ay be two access structures on the sets of participants
Py and P2, respectively. Let Z, (resp., Zs) be an independent sequence of length
a (resp., B) for Ay (resp., As). Finally, assume that Py NPy = (). Then, it holds
that

u[(Ar, A2), (q1,42)] > aH(S1) + BH(S2).

Proof. The corollary follows from Theorem 15, as Z; U (P1 N P2) = Z; and
Al g_f A U As. O

E':I:ample 3. Let Pl = {Pl,PQ,P3,P4,P5} and PQ = {PS,P7,P8,P9} be two sets
of participants. Let A; = {P, Py, P,Ps, P3Ps} and Ay = {PsP;Ps, PsPr Py} be
two access structures on P; and P, respectively. It is easy to see that Z; = P, P,
and Zy = P;Ps are independent sequences for A; and As, respectively. From
Corollary 17, it holds that u[(A1, A2), (¢1,¢2)] > 2H(S1) +2H(S2). This bound
is tight.
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Indeed, to realize a multi—secret sharing scheme meeting this bound it is enough
to combine two independent single secret sharing schemes for 4; and A,, as
follows: To share the secret s1 € GF(¢q1) the dealer randomly chooses three
values z1,z4 and x5 in GF(q1), then he distributes the shares as follows:

P, gets 1 P, gets x1 + sy mod ¢1 Ps gets s;
Py gets x4 P5 gets x5 Ps gets ¢4 + x5 + s1 mod q; -

The number of random bits needed by the dealer to set up this scheme is 3logq; .
To share the secret so € GF(g2) the dealer randomly chooses three values z3, x5
and z7 in GF(qz), then he distributes the shares as follows:

P5 gets x3 P, gets so P5 gets x5
Py gets x3 + x5 + so mod g2 Pr gets ©7 Py gets 7 + s3.

The number of random bits needed by the dealer to set up this scheme is 3 log ¢5.
Hence, if we combine two independent copies of these single secret sharing
schemes for A; and As, the number of random bits needed by the dealer is
3logq; + 3logqs. Therefore, the bound provided by Corollary 17 is tight.

A

6 Randomness for Threshold Structures

In this section we derive bounds on the dealer’s randomness for pairs of access
structures. More precisely, we analyze the case in which at least one of the access
structures A; and A; is a threshold structure. We denote by A, »,) the access
structure consisting of all subsets of participants in P; of cardinality at least k;.

Theorem 18. Let A p,) be a threshold structure on the set of participants Py
and let As be an access structure on the set of participants Ps. Let Z be an
independent sequence of length B for As. Finally, assume that the secrets are
independent. Then, it holds that

Pl(Ak, Py, A2),s (q1,92)] > (K — 1)H(S1) + BH(S2).

Proof. Assume that Z = @) ...Qg, where Q1,...,Q3 € P2, is an independent
sequence for A and let |Z N Py| = t. For the sake of simplicity assume that
ZNPr=Q1...Q¢ We distinguish two cases: t < k and ¢t > k.

Case t < k.

Let Pi,...,P,_+—1 € P1\Z. Consider the sequence W = Ry ... Rgyr_t—1, where
Ri=Q;,fori=1,...,8,and R; =FP,_g,fori=p+1,...,+k—t—1. Since
[W NPy =k—1, we have that W ¢ A;. Since Z is an independent sequence
for Az, from Definition 9 it holds that, for alli = 1,...,3 — 1, there exists a set
Vi C Ps, such that

Q1 .. Qsz ¢ Ao and Ql . QszQerl € A,.

Fori=1,...;t =1, let T; = {Q1,...,Q:} UV;, and let A\; = |T; N Py|. We
distinguish two cases: A\; < k and A\; > k.
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If A\; < k, then there exists a subset X; C P; \ Z such that |(T;X;)NPy| =k —1.
This implies that

Ry...R;V; ¢ A3,
Rl . Rl‘/;Rz+1 € -/427 (9)
R1 . Rl‘/;Xz ¢ -/417

R;... RZV;XZRZ+1 e A;.

On the other hand, if A; > k, then there exists a subset W; C V; NPy, such that
[(Q1...Q:W;)NPy| =k — 1. This implies that

Ry...R;W; ¢ Ai,
Ry...RiW;R;41 € Ai,
Ri...RWiViX; ¢ As,
Ry...RW;V;X;R;11 € As.

(10)

Moreover, for i = t,...,3 — 1, it holds that
Ry...R;V; ¢ Ay and R; .. .RiViRi+1 e As.

Finally, if W ¢ As, (i.e., Z(W) = @), then, for i = 8,...,8+ k —t — 2, there
exists the set YV; = Ri1o... Rg4r—t C P1\ Z such that

R, ...R;Y; ¢ Ay and R; ...RiYiRi+1 e A;.

Hence, W is a (k —t — 1,8 — t,t)-sequence for (A p,), A2). Since Z(W) = 0,
the bound follows from Theorem 11.

W e Ay (ie., Z(W) = {2}), then, for i = 3,...,8+ k —t — 2, there exists the
set Vi = Rita...Rptr—t C P1\ Z such that

Ry...R; €A2, Rl...RiRi+1 €A2,

Ry ...R;Y; ¢ Ay and R; ...RiYiRi+1 e A;.

Hence, W is a (k—t—2, 8—t,t+1)-sequence for (A p,), A2). Since Z(W) = {2},
the bound follows from Theorem 11.

Caset > k.

Since Z € A1 \ A2 (ie, Z(Z) = {1}), for i = 1,...,t, the participant R;;;
satisfies either (9) or (10). Hence, Z is a (0, 8 — k, k)-sequence for (A p,), Az).
Since Z(W') = {1}, the theorem follows from Theorem 11. O

Ezample 4. Let A; be the access structure of a (4, 5)-threshold scheme on P;=
{Py, Py, P3, Py, Ps} and let Ay = {P;Ps;Ps,Ps;P;} be an access structure on
Py = {Py, P5,Ps,P;}. It is easy to see that Z; = PiPP; and Zy = PP
are independent sequences for A; and As, respectively. From Theorem 18, it
holds that u[(Ai1,As),(q1,q2)] > 3H(S1) + 2H(S,). This bound is tight.
Indeed, to realize a multi—secret sharing scheme meeting this bound it is enough
to combine two independent single secret sharing schemes for A; and As, as fol-
lows: To share the secret s; € GF(q1) the dealer uses a (4,5) Shamir’s threshold
scheme, so the number of random bits he uses is 3loggq; . To share the secret
s2 € GF(q2) the dealer randomly chooses two values x4 and xg in GF(gz), then
he distributes the shares as follows:
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P, gets x4 Ps gets x4 + x6 + S2 mod g2
Ps gets xg Pr gets xg + so mod go.

The number of random bits needed by the dealer to set up this scheme is 2log ¢5.
Hence, if we combine two independent copies of these single secret sharing
schemes for A; and As, the number of random bits needed by the dealer is
3logq; + 2log qo. Therefore, the bound provided by Theorem 18 is tight. A

In the following theorem we consider a pair of threshold structures on different
sets of participants. Notice that this situation is different from that considered in
Section 4.1, in which we analyze many threshold structures with the same thresh-
old where the sets of participants are such that P; C P;yq fori=1,...,m — 1.

Theorem 19. Let A, p,) and Ay, p,) be two threshold structures on the sets
of participants Py and P2, respectively. Assume k1 < ko and let |Py N'Pa| = t.
If t < ky, then it holds that

II(Aky 1y Alka,Ps))s (01,92)] > (k1 —t—=1)H (S1)+ (k2 —t—1)H(S2)+1H (S:S2);
if ki <t < ko or,t> ke and ki # ko, then it holds that
B{(Aky,Pr)s Aka,Pa))s (01, 62)] > (k1 = 1)H(S182) + (k2 — k1) H(S2[S1);
otherwise, it holds that
1l(Aky Pr)s Ak, Po))s (@1, @2)] > (k2 = 1)H(S:1S2).
Finally, if the secrets are independent, then it holds that
1[(Akr, Py Aka,pa))s (@1, 2)] > (kr = 1)H(S1) + (k2 — 1) H(S2).

Proof. For the sake of simplicity, denote by .4; and A, the threshold structures
A(ky,p) and Ar,,p,), respectively. Let Py = {Ri,..., R, Piy1,..., Pp,|} and
P2 :{Rl, ceey Rt, Qt-i-l: ceey Q‘fp2|}, and recall that ky < ko.

If t < Ky, then consider the sequence Z = Zy ... Zg, +k,—t—2 wWhere Z; = R;,
fori =1,...,t, Z; = P, fori =t+1,...,k — 1, and Z; = Qit¢—k,+1, for
i=ki,...., k1 + ks —t— 2. Tt is easy to see that Z ¢ A; U As (i.e., Z(Z) = 0).
Fori=1,...,t — 1, we have that

Zy ... 4; X; ¢ ./41, Al ---ZiXiZi—H S ./41,

Z1 A ZZXZY; ¢ ./42, and Z1 N ZzXz}/;Zz—i-l € ./42,

where Xi = ZZ'J'_Q . Zk1 and Y; = Zk1+1 . Zk2.
Fori=t,..., k1 — 2, we have that

Zy ... 4;V; ¢ A U.AQ, and Zl...Zi‘/;Zi+1 S ./41,

where V; = Zjyo ... Zy,.
Finally, for i = k; — 1,...,k; + k2 —t — 3, we have that

Zy ... 4;W; ¢ AL UAy and Z; .. -ZiWiZi+1 S AQ,

where I/VZ = ZZ'J'_Q Ce Zk1+k2—t—1-
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Therefore, Z is a [k; —t — 1, ks —t — 1, t]-sequence for (A, .As). Since Z(Z) = 0,
the bound follows from Theorem 13.

Assume now that k; <t < ky and consider the sequence Z = Z; ... Zy,_1, where
Zi=Ri,fori=1,... t,and Z; = Q;, fori =t +1,...,ky — 1. Since k; <t, we
have that Z(Z) = {1}.
Fori=1,...,k — 1, we have that
Zy ... 4;X; ¢ Av, Zv... 2 X Ziv1 € Ay,
Z1...2; X;Y; ¢ Az, and Z; ... Z;X:YiZi11 € As,
where Xi = ZZ'J'_Q . Zk1 and Y; = Zk1+1 . Zk2_1Qk2.
For i = ky,...,t — 1, we have that
Z1...2;U; ¢ Ay and Z; ... Z;UiZiyq € As,

where Ul = ZZ'J'_Q ce Zkz_le2.
Finally, for i = ¢,..., ks — 1, we have that

Z1 ZZV; ¢ ./42 and Z1 Zz‘/zZz—i-l S AQ,

where ‘/z = Zi+2 N Zszlez-
Hence, Z is a (0,ky — k1 — 1, k1)-sequence for (A, As). Since Z(Z) = {1}, the
bound follows from Theorem 11.

Assume now that ¢ > ks and k; # ks. Consider the sequence Z = Ry ... Rp,_1.
Since |Z| > k1, we have that Z(Z) = {1}.
Fori=1,...,k — 1, we have that

R, ...R;X; ¢ A1, Ry. L RiX;Ri4q € Ai,

R, ... R;X;Y; ¢ As, and Ry ... R;X;Y;R;y € As,
where Xi = RZ’J'_Q . Rk1 and Y; = Rk1+1 . Rk2.
For i = ky,..., ks — 1, it holds that
Ry...R;U; ¢ Ay and R; .. .RiUiRi+1 S Az,

where Ul = RZ’J'_Q . Rk2 .

Hence, Z is a (0,ky — k1 — 1, k1)-sequence for (A, As). Since Z(Z) = {1}, the
bound follows from Theorem 11.

Assume now that ¢ > ks and k; = ky. Consider the sequence Z = Ry ... Rp,_1.
Notice that Z(Z) = 0.

Fori=1,..., ks — 1, we have that

Ry ...R;V; ¢ ./41, Rl...RiViRi+1 S ./41,

Ry...R;V; ¢ ./42, and R; .. .RiViRiJrl S Az,

where V; = Ri1o ... Rg,.
Hence, Z is a (0,0, ks — 1)-sequence for (A, Ay). Since Z(Z) = 0, the bound
follows from Theorem 11.

Finally, if the secrets are independent, then the bound follows from Theorem
18. O
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The bounds provided by Theorem 19 are tight, as shown in the following exam-
ples. The following setting is common to all examples: Suppose that the secrets
51 and sy are chosen from S; and S», respectively, where S; = Sy = GF(¢?) and
q is a prime power. We first consider the case of independent secrets. Moreover,
we consider the case s; = uowv and s, = wow, where x oy denotes the concate-
nation of z and y, and u,v and w are uniformly chosen from GF(q). It is easy
to see that H(S1|S2) = H(S2|S1) =0.5H(S;) = 0.5H(S2) = loggq.

Ezample 5 (Case t < ky). Let P = {Py, P»} and P2 = {P;, P;} be two sets of
participants. Let .4; and A be the access structures of a (2, 2) threshold scheme
on Py and on Ps, respectively. If the secrets are independent, then from Theorem
19 we get p[(A1, A2), (q1,42)] > H(S1) + H(S2). This bound is tight. Indeed, to
realize a multi—secret sharing scheme meeting this bound it is enough to combine
two independent single secret sharing schemes for A; and As. If the secrets are
dependent, then from Theorem 19 it holds that u[(A1, A2), (g1, g2)] > H(S1S2).
If H(S1|S2) = H(S2|S1) = 0.5H(S;) = 0.5H(S2), then this bound is tight.
Indeed, to realize a multi—secret sharing scheme meeting this bound we share
the value v among participants in P; by using a (2, 2) threshold scheme; whereas,
we share the value w among participants in P by using a (2, 2) threshold scheme.
Finally, we share the value u according to the access structure A = { P, P, P, P; }.
It is easy to see that the number of random bits needed by the dealer to set up
the scheme is 3logq = H(S;S2). Therefore, the bound provided by Theorem 19
is tight. A

Ezxample 6 (Case ky <t < k). Let A; be the access structure of a (2,3) thr-
eshold scheme on Py = {P;, P», P3} and let A3 be the access structure of a (5, 6)
threshold scheme on Py = { Py, P>, P, Py, P5, Ps}. If the secrets are independent,
then from Theorem 19 we have that p[(A1,A2), (¢1,q2)] > H(S1)+4H(S2). This
bound is tight. Indeed, to realize a multi-secret sharing scheme meeting this
bound it is enough to combine two independent single secret sharing schemes
for A; and As, respectively. If the secrets are dependent, then from Theorem
19 it holds that ,U,[(.Al,AQ), ((]1,Q2)] > H(Sls2) + 3H(SQ|Sl) If H(Sl|82) =
H(S3|S1) = 0.5H(S;) = 0.5H(S>), then this bound is tight. Indeed, to realize
a multi—secret sharing scheme meeting this bound we share the value v among
participants in P; by using a (2,3) threshold scheme; whereas, we share the
value v among participants in P; by using a (2, 3) threshold scheme. Finally, we
share the value w among participants in P, by using a (5, 6) threshold scheme.
It is easy to see that the number of random bits needed by the dealer to set up
the scheme is 6logq = H(S1S2)+ 3H (S2|S1). Therefore, the bound provided by
Theorem 19 is tight. A

Ezample 7 (Case t > ko and k1 # k2). Let A; be the access structure of a (2, 3)
threshold scheme on P; = {P;, P>, P3} and let A be the access structure of a
(3,4) threshold scheme on Py = {Py, P>, P5, P, }. If the secrets are independent,
then from Theorem 19 we have that p[(A1, A2), (¢1,¢2)] > H(S1)+2H(S2). This
bound is tight. Indeed, to realize a multi-secret sharing scheme meeting this
bound it is enough to combine two independent single secret sharing schemes
for A; and As, respectively. If the secrets are dependent, then from Theorem
19 it holds that ,U[(Al,AQ),(Ql,QQ)] > H(Slsg) + H(SQ|Sl) If H(Sl|82) =
H(S3|S1) = 0.5H(S;) = 0.5H(S>), then this bound is tight. Indeed, to realize
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a multi-secret sharing scheme meeting this bound we share the value v among
participants in P; by using a (2,3) threshold scheme; whereas, we share the
value v among participants in P; by using a (2, 3) threshold scheme. Finally, we
share the value w among participants in P, by using a (3,4) threshold scheme.
It is easy to see that the number of random bits needed by the dealer to set up
the scheme is 4logq = H(S1S2) + H(S2|S1). Therefore, the bound provided by
Theorem 19 is tight. A

Ezample 8 (Case t > ko and k1 = k2 ). Let A; be the access structure of a (2,4)
threshold scheme on Py ={P;, P2, P3, P,} and let A, be the access structure of
a (2,5) threshold scheme on Py ={P;, P2, P5, Py, Ps}. If the secrets are indepen-
dent, then from Theorem 19 we get p[(A1, A2), (q1,¢2)] > H(S1) + H(S2). This
bound is tight. Indeed, to realize a multi-secret sharing scheme meeting this
bound it is enough to combine two independent single secret sharing schemes
for A; and Aj,, respectively. If the secrets are dependent, then from Theorem 19
we get I,L[(Al,AQ), ((J1,QQ)] Z H(Sls2) If H(Sl|SQ) = H(SQ|Sl) = 05H(Sl) =
0.5H(S2), then this bound is tight. Indeed, to realize a multi-secret sharing
scheme meeting this bound we share the value v among participants in P; by
using a (2,4) threshold scheme; whereas, we share the value v among partici-
pants in P; by using a (2,4) threshold scheme. Finally, we share the value w
among participants in Py by using a (2,5) threshold scheme. It is easy to see
that the number of random bits needed by the dealer to set up the scheme is
3logq = H(S1S2). Therefore, the bound provided by Theorem 19 is tight. A
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Appendix
Information Theory Background

In this Appendix we review the basic concepts of Information Theory used in
our definitions and proofs. For a complete treatment of the subject the reader
is advised to consult [Cover et al. 91].
Given a probability distribution {Pry (z)}.cx on a set X, the Shannon entropy
of X, denoted by H(X), is defined as

ZPr ) log Pry (z)
reX

(all logarithms in this paper are to the base 2). Given two sets X and Y and a
joint probability distribution on their cartesian product, the conditional entropy
H(X]Y), is defined as

H(X|Y) = Z Z Pr, (y)Pr(z|y) log Pr(z|y).
yeY zeX

From the definition of conditional entropy it is easy to see that H(X]|Y) > 0.
Given n + 1 sets Xi,...,X,,,Y and a joint probability distribution on their
cartesian product, the entropy of X; ...X,, satisfies

H(X1 .. Xn) = H(Xl) + H(X2|X1) +---+ H(Xn|X1 .. -Xn—1)§ (11)
whereas, the entropy of X; ...X,, given Y can be expressed as
H(X;...X,|Y) = HX[Y) + Y HXi|X;...X;,Y). (12)
=2
The mutual information I(X;Y) between X and Y is defined by
I(X;Y) = HX) - HX|Y) = H(Y) — H(Y|X)

and satisfies I(X;Y) > 0, from which one gets H(X) > H(X]|Y).

Given n + 2 sets X,Y, Z1,...,Z, and a joint probability distribution on their
cartesian product, the conditional mutual information I(X;Y|Z;...Z,) be-
tween X and Y given Z,,...,Z, can be written as

I(X;Y|Zy...2,) = HX|Z, ... Z,) — HX|Z: ... Z,Y) (13)
=H(Y|Z:...Z,) — HY|Z, ...Z,X).

Since the conditional mutual information is always non negative we get

H(X|Zy...Zy) > HX|Z: ... Z,Y). (14)
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