
Mobile Ambients and P-Systems

Ion Petre
Turku Centre for Computer Science and

Department of Mathematics, University of Turku, Finland
ipetre@cs.utu.�

Luigia Petre
Turku Centre for Computer Science and

Department of Computer Science, �Abo Akademi University, Finland
lpetre@abo.�

Abstract: The ambient calculus and the P-systems are models developed in di�erent
areas of computer science. Still, they are based on similar concepts and structures and
are inspired from the same natural model of computation [BeBo92]. On this basis, we
point out how to transfer ideas and results from one framework to the other. We prove
that any P-system can be simulated in ambient calculus. We also introduce the notion
of mobile P-systems, suitable to model and motivate security features for membrane
computing.

Key Words: Ambient calculus, P-systems, Mobility, Secure communications

1 Introduction

The notions of membrane and membrane structure �rst appeared in a paper

of Berry and Boudol [BeBo92], where they were introduced as a new type of

abstract machine: the chemical abstract machine, intended to model concurrent

computations. The idea is to use a system like a chemical solution in which swim-

ming molecules can interact with each other, according to a given set of struc-

tural behaviour laws. When certain conditions hold, the molecules are allowed to

break into simpler molecules or conversely, to form more complex molecules. As

pointed out in [BeBo92], this model proved to be suitable to implement mobile

processes.

The idea of a machine based on a membrane structure proved to be fruitful, as

it consisted in the starting point for several di�erent models in computer science.

We are particularly interested here in two such models: the ambient calculus and

the P-systems. The ambient calculus was recently introduced in [CaGo98] as

an abstract model attempting to capture fundamental features of distribution

and mobility over wide area networks such as Internet. The central notion in

this framework is the mobile ambient which is a named, bounded place where

computation happens and which is itself mobile. Inside the ambient there can be

computations taking place in parallel and also other subambients. An ambient

can move with its entire internal structure outside and inside other ambients,

can open (dissolve) other ambients, and can be opened, all these features being

Journal of Universal Computer Science, vol. 5, no. 9 (1999), 588-598
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99  Springer Pub. Co.

enforced by local capabilities. In this way, one obtains a framework for modelling

wide area networks, in which every node is seen as an ambient, with mobile

subnodes, and processes running locally. It is particularly interesting that notions

like mobility and security, quite important for an Internet model, are very well

suited within the ambient calculus.

The P-systems have been introduced in [Pa98] as a distributed and parallel

computability model with motivations from molecular computing and based on

the same notion of membrane structure. In each membrane there are objects

placed, evolving according to some local, prioritised rules. The objects are al-

lowed to pass through membranes and to dissolve the membrane in which they

are placed at that moment. The output of the system is considered to be the col-

lection of objects entering one special output membrane (as in [Pa98]) or alterna-

tively, the collection of objects leaving the system. Several variants of the basic

model have already been considered, introducing ideas from DNA-computing,

biochemistry, etc. The model seems to be quite powerful: it is proved in [Pa99c]

that the P-systems can be used to solve NP-complete problems in polynomial

time.

The goal of this paper is to investigate the link between these models coming

from two di�erent �elds of computer science: the formal methods area and the

formal languages area. We initiate a comparative analysis between the ambient

calculus and the P-systems, based on their similar structure and common con-

cepts. We show that any P-system can be expressed in ambient calculus by a

mobile ambient having the same structure. We also de�ne the notion of mobile

P-system, well suited to model secure communications as in the case of mobile

ambients. Using this, a type system for the cells of a P-system can also be in-

troduced to ensure the soundness of communication between di�erent cells of a

P-system.

2 Ambient Calculus

The Ambient Calculus is a process calculus aimed to capture the structure of

dynamic networks and the behaviour of mobile computations. The calculus suc-

cessfully describes the movement of processes and devices, including movement

through administrative domains. A minimal version of this calculus handles only

mobility primitives and proves to be, in this restricted form, computationally

complete [CaGo98]. We use and present here this restricted form of the calcu-

lus, since it already exhibits the same structural model as the P-systems. We

describe informally the semantics of the calculus, using the reduction `P ! Q'

to denote the evolution of the process `P ' into the new process `Q'.

The elementary structure this calculus relies on is the notion of an ambient,

which is roughly a bounded place where computation happens. The border of

589Petre I., Petre L.: Mobile Ambients and P-Systems

an ambient is identi�ed by a name. If an ambient named n is bounding the

computation described by a process P , this is expressed as n[P]. In general, the

computation can be a parallel composition of many processes. An ambient can

also contain other subambients, each with its own computation inside. Thus, the

general form of an ambient is:

n[P1 j � � � j Pp j m1[: : :] j � � � j mq[: : :]];

with P1; : : : ; Pp processes running in parallel, and m1[: : :]; : : : ;mq[: : :] subambi-

ents carrying in parallel their own computations. Given this form of the ambient,

a real system is usually modelled by a hierarchical collection of ambients.

The structure of the processes running in an ambient is described by the

following primitives: the restriction, inactivity, parallel composition and replica-

tion. They have the same semantics as in any process calculus: `(�n)P ' means

the creation of a fresh name n, restricted to the scope P , `0' is the process doing

nothing, `P j Q' is the parallel composition of two processes `P ' and `Q', and

`!P ' denotes the unbounded replication of the process `P ', being equivalent to

`P j !P '.

In addition, there are primitives describing the dynamics of ambients hierar-

chy. The evolution of this tree structure is restricted by capabilities: an ambient

willing to move upwards or downwards in the hierarchy must have the permission

to do so. The capabilities to enter or to exit an ambient (mobility capabilities)

can be transmitted as values, using communication primitives which we do not

describe here but can be found in [CaGo98], or can be deducted from the name

of that ambient (for security reasons, in ambient calculus, the names of the

ambients are thought of to be secret, but they can also be subject to communi-

cations). Also, the operation of opening (dissolvation of) an ambient's border is

controlled by capabilities.

A process `M:P ' executes an action regulated by the capability `M ' (which

implies the consumption of `M '), and then continues with `P '. There are three

kinds of capabilities, and each of them reduces `M:P ' in its speci�c way, as we

describe in the following.

An entry capability `in m' is used to enter into an ambient named `m'. It can

be used in an action `in m:P ' that enables the surrounding ambient of the action,

say `n', to enter into a sibling ambient `m'. The action is performed when such an

ambient exists `nearby', i.e. both `m' and `n' are the children of the same parent

ambient. When there is no ambient `m' nearby `n', the action is blocked; when

several ambients named `m' exist nearby, one of them is non-deterministically

chosen and entered. Hence, the following reduction formally describes the entry

capability:

n[in m:P j Q] j m[R]! m[n[P j Q] j R]:

590 Petre I., Petre L.: Mobile Ambients and P-Systems

An exit capability `out m' is used to exit from an ambient named `m'. It

can be used in an action `out m:P ' that enables the surrounding ambient of the

action, say `n', to exit from its parent ambient `m'. The action is performed when

such an ambient exists i.e., `n' is the child of `m'. When the parent ambient is

not named `m', the action is blocked. This is formally described in the reduction

m[n[out m:P j Q] j R]! n[P j Q] j m[R]:

An open capability `open m' is used to dissolve an ambient named `m'. It can

be used in an action `open m:P ' that enables the dissolving of a sibling ambient

`m'. The action is performed when such an ambient exists `nearby', i.e. `m' and

`open m:P ' belong to the same parent ambient, say n. When there is no ambient

`m' nearby `open m:P ', then the action is blocked; when many ambients named

`m' exist nearby, one of them is non-deterministically chosen and dissolved. The

following reduction formally describes the open capability:

n[open m:P j m[Q]]! n[P j Q]:

These primitives are enough to encode more complex operations as renaming

of ambients, detecting the presence of a certain ambient, auto-dissolvation (the

process acid which we will use later on), iteration of processes, and even proto-

cols of authentication (for �rewalls crossings) and secure communications [Ca99,

CaGo98].

Since the ambient calculus formalises the structure and the properties of mo-

bile computations within wide area networks the main interest in this �eld is the

study of new programming methodologies and languages for global computa-

tions, based on the principles of ambients. There are also approaches to extend

the calculus by considering diverse types for ambients [CaGo99, CaGhGo99].

More theoretical aspects regarding the semantics of ambients are treated by

Gordon, Cardelli in [GoCa99].

3 P-systems

The P-systems have been recently introduced in [Pa98] as a biologically moti-

vated model for distributed parallel computing. Such a system is based on a

hierarchically arranged, �nite cell-structure. Each cell is delimited by a mem-

brane and can contain several other cells and some objects, swimming in it.

These objects evolve according to some given prioritised evolution rules, can

pass through a membrane to go to an adjacent cell, or can dissolve the mem-

brane of their current cell. In the case of this last event, all the objects in the

former membrane remain in the immediately superior cell and they will further

evolve according to this one's evolution rules. The rules of the dissolved cell are

591Petre I., Petre L.: Mobile Ambients and P-Systems

lost. The objects can evolve in dependence to each other (cooperative systems)

or independently (non cooperative systems).

More formally, consider a cell and an evolutionary rule r of it,

r : x1 : : : xk �! (y1 : : : yl; here)(z1; ini1) : : : (zm; inim)(u1 : : : up; out)�;

with k � 1, l;m; p � 0, and possibly without the �nal � (in this case we say

that r is a non-dissolving rule). If at some point of the computation, we have in

the cell some (possibly more than one) objects labelled by x1; : : : ; xk , then one

object from each type may evolve according to r. They will be erased from the

cell, and instead of them, the objects y1; : : : ; yl will be created in the same cell,

other objects u1; : : : ; up will be created and sent outside the cell, and the objects

z1; : : : ; zm will be created and sent to the cells i1; : : : ; im, respectively. Also, if r

is a dissolving rule, the cell is dissolved, its rules are lost, and its content is kept

by the parent cell.

If the cells i1; : : : ; im in which the new objects z1; : : : ; zm must enter according

to r do not exist inthe current cell, then the rule is not applicable and the

objects x1; : : : ; xk may evolve according to some other rule. The rule is also not

applicable in the current step of the computation, if some other rule with higher

priority is applicable. Finally, if an object can evolve according to more than one

rule, then the rule to be applied is chosen non-deterministically.

Such a system evolves in parallel: all the cells evolve in the same time and

moreover, all the objects inside a cell evolve in parallel. In this way, a computing

device is obtained: we start from an initial con�guration, de�ned by a cell-

structure with some initial content in each cell and let the system to evolve

until it halts. If the P-system does not halt at all, we have an unsuccessful

computation. During the evolution of the system, we observe it from outside and

we build a string by sequentially arranging the objects in the order they leave

the system (the skin cell). When several objects leave the system at the same

time, any ordering of them will be accepted. The set of �nite words obtained in

this way forms a language which is said to be generated by the P-system.

Many variants have already been considered. In [DaPa99], one considers vari-

ants of P-systems with and without cooperative rules, prioritised evolutionary

rules, and membranes dissolving, studying the computing power of each of them.

Also, in [Pe99] a normal form for one of these variants is given, proving that any

non cooperative P-system can be simulated by a P-system of depth 2.

Connections to DNA-computing are considered in [Pa98, Pa99b], where the

prioritised evolution rules are replaced by splicing rules. Thus, a new model of

membrane computing is obtained and further studied in [PaYo99a] and [PaYo99b].

P-systems, with the underlying membrane structure organised as a graph rather

than a tree, are discussed in [PaSaYo99]. Furthermore, some other ideas from

natural computing are introduced in [Pa99a], where one eliminates the labelling

592 Petre I., Petre L.: Mobile Ambients and P-Systems

of the cells and the priority relations among the evolution rules. Instead of them,

electrical charges for membranes and objects, plus a variable permeability of the

cells are considered.

Generalised P-systems, able to transfer objects and operators between cells,

are de�ned and studied in [Fr99]. Also, P-systems with a di�erent notion of

membrane structure are studied in [At99]. The division of membranes is taken

into consideration in [Pa99c]. In this framework it is proved an important result

showing that the SAT-problem (well known to be NP-complete) can be solved

in linear time using this type of P-systems.

There are many open problems in this rapidly growing area. Other ideas from

biochemistry and natural computing can be further introduced and studied in

the framework. There are also problems related to the structural complexity

of these models and to decidability questions. Moreover, there are basic tools

like necessary conditions, characterisations, and normal forms for some of the

variants, which are needed in this framework.

4 Expressing P-systems in ambient calculus

We investigate in this section the expressibility of P-systems in ambient calculus.

Although the approach adopted in the following can be further re�ned for the

general case, we consider here for simplicity the non cooperative P-systems only.

Ideas on how to model some other features considered in variants of P-systems

are, however, given in the end of this section.

Let us consider a P-system � , which we can assume that it has the working

alphabet distinct from the set of labels of its cells. We construct an ambient

� to simulate � in ambient calculus. The ambient � has basically the same

structure as � : the same nested sequence of membranes, with the same names.

Still, inside �, we create some other ambients to model the objects evolving in

� . They are empty ambients named as the objects that they stand for, and

they are manipulated throughout the calculus, similarly as in � . Obviously, we

can arrange to have in the beginning of the simulation an initialisation phase,

in which each ambient creates its local data (the empty ambients), according to

the initial content of the corresponding cell of � .

Consider then a cell i of � and an arbitrary rule r of i,

r : x! (x1; : : : xm; here)(y1 : : : yn; out)(z1; ink1) : : : (zp; inkp)�;

with m � 0, n � 0, p � 0, and possibly without the �nal �. For this rule, we

consider the following expression in ambient calculus:

Er = (x; k1; : : : ; kp) Pr);

saying that in the presence of ambients x; k1; : : : ; kp in the local ambient, the

process Pr will be allowed to run (we will call it active). These are precisely the

593Petre I., Petre L.: Mobile Ambients and P-Systems

conditions in which the rule r is applicable, ignoring for the moment the priority

relations among rules. The expression Er is a syntactically richer expression

than the ambient calculus allows (only Pr would have su�ced), but we explicitly

speci�ed which ambients should be present for the rule to be enabled for the sake

of clarity. The process Pr simulates the rule r in the ambient i of � as follows:

Pr =!(open x: ((x1[] j � � � j xm[]) j

(y1[]:mv outi y1 j � � � j yn[]:mv outi yn) j

(z1[]:mv ink1 z1 j � � � j zp[]:mv inkp zp) j

(acid)));

where the process acid is in Pr only if r contains the dissolvation symbol �. The

e�ect of Pr is that for each ambient named x, the following procedure is launched:

the ambient x is opened and then, in parallel, the ambients x1; : : : ; xm are created

in the ambient i, the new ambients y1; : : : ; yn are sent outside the ambient i, and

the new ambients z1; : : : ; zp are sent to their destinations k1; : : : ; kp according

to the rule r of � . Finally, the ambient i is opened if r is a dissolving rule.

Obviously, there may be several processes Pr1 ; : : : ; Prj attempting to open the

same ambient x. In this case, the operator open succeeds for only one process,

chosen randomly among Pr1 ; : : : ; Prj and the other processes are cancelled. This

is in accordance to the principles of P-systems: if an object x can evolve according

to several rules, the system will randomly choose the rule to be applied to x.

Hence, the result of the process Pr is precisely the same as the e�ect of the rule

r on � .

We now need an operation on ambients to simulate a prioritised choice. We

consider here a prioritised choice operator �, similar to the non-deterministic

choice operator +, already introduced in the calculus. The result of

n) P � m) Q

is that P will be executed with priority over Q, provided that an ambient n

exists. If this is not the case, then Q can be executed if an ambient m exists.

We de�ne this operator in two phases. In the �rst one, the ambients tn or fn

and tm or fm are created, standing for boolean
ags: tn is created if ambient

n exists, otherwise fn is created and similarly for the ambient m. Having these

ags, in the second phase we use the choice operator to decide which one of P

and Q is to be executed. Our operator is thus:

((in n: out n: tn[]: open fn) j fn[] j

(in m: out m: tm[]: open fm) j fm[]):

(tn) P: open tn:(tm) open tm + fm) open fm)

+

fn) open fn:(tm) Q: open tm + fm) open fm))

594 Petre I., Petre L.: Mobile Ambients and P-Systems

This operator is easily extensible to a �nite prioritised choice. The result of an

operation

m1) P1 �m2) P2 � � � � �mk) Pk

is that the process to be executed will be Pl, where l is minimal, 1 � l � k, such

that there exists an ambient named ml in the ambient i of �. In other words, the

process Pl will be executed with higher priority than the processes Pl+1; : : : ; Pk,

provided that there is an ambient ml in i.

Assume now that the priorities among the rules of the cell i are

r11 > r12 > � � � > r1l1 ;

...

rk1 > rk2 > � � � > rklk ;

with l1; : : : ; lk � 1. Then, the process running in the ambient i is constructed as

follows:

Pi = (rec T) ((�r)r[out i:in i:open r] :

(Er11 � � � � �Er1l1
j � � � j Erk1 � � � � �Erklk

) j T):

The �rst part of the recursion in Pi ensures that the process will run only as long

as the ambient i is not opened (in P-systems the rules are lost, once their home

cell is dissolved). Then, in parallel for each priority chain, the active process with

the highest priority is chosen. The procedure is then iterated in parallel in each

ambient of the system thus, fully simulating the computation of � .

There are features considered in some variants of P-systems, which can be

easily simulated in ambient calculus. We give here two ideas. The P-systems

allowing the division of cells can be easily modelled in ambient calculus by cre-

ating new ambients with the same name. Also the variant in which both the

objects and the membranes have no names, but they are provided with electri-

cal charge, can be modelled by an ambient for which all the subambients are

named either pos or neg, depending on the charge of the corresponding mem-

brane. One can even change the name of an ambient during the computation,

simulating a change in the electrical charge of a cell.

5 Mobile P-systems

As we already mentioned, a P-system is a distributed parallel system. The com-

munications in this model are possible only between adjacent cells. Thus, two

non-adjacent cells willing to communicate would have to send the message step

by step through the path between them, with the obvious danger for the message

to be detoured or modi�ed by a third party. Hence, as in any distributed model,

595Petre I., Petre L.: Mobile Ambients and P-Systems

one needs to have secure communications between any pair of components. We

propose in this section a model to accomplish this, importing an idea from the

mobile ambients to P-systems.

Perhaps the most important di�erence between an ambient and a P-system

is that the former has a dynamic structure while the latter has a rather static

one. The mobility of the ambients and the capabilities required to perform an

action are the ingredients that enable the security features in ambient calculus.

We prove here that it is enough to consider a restricted form of mobility for

P-systems in order to obtain similar features for membrane computing.

We give the following de�nition. A mobile P-system working on the �nite

alphabet � is a P-system in which new cells of a special type can be created

during the computation, using rules of the form

�! ��(key; ko; k1; : : : ; kn);

where key; ko; k1; : : : ; kn 2 �, and �! � is an evolutionary rule as described in

section 3. The e�ect of this rule is the following: if � is available in the current

cell, then a new cell is created and some new objects ko; k1; : : : ; kn are created

inside this cell. We attach to it a label Ti;kn , where i is the label of the current

cell, and we call it travelling cell from i to kn.

The travelling cell created above will have by de�nition the following rules:

d : key ! �;

i1 : k1 !move(ink1);

i2 : k2 !move(ink2);
...

im : kn !move(inkn);

o : ko ! komove(out);

(1)

with the priority relations: d � i1 � i2 � � � � � im � o. The intended meaning

of a rule ki !move(inki) is that whenever the cell labelled by ki is a sibling of

the travelling cell, then the latter one will enter the cell ki. Similarly, the e�ect

of the rule ko ! komove(out) is that the travelling cell will move outside its

current surrounding cell, whenever none of k1; : : : ; kn is nearby. We say that the

movement of the travelling cell created above is controlled by k1; : : : ; kn. The

travelling cell will know that it arrived at the proper destination when its parent

cell will introduce in it an object key. Then, according to the rule d above, the

travelling cell will be dissolved, releasing its content at the intended destination.

Using the travelling cells, any two `static' cells will be able to establish a

direct secure communication provided that they share a common key. The main

question here is how to know the current path from a cell to another, since this

may change throughout the computation, due to the dissolvation of some cells.

596 Petre I., Petre L.: Mobile Ambients and P-Systems

Consider a cell j in a mobile P-system � , and the path from the skin cell to j,

0! j1 ! � � � ! jm�1 ! j;

at the starting point of the computation. It is clear from the above de�nition that

a travelling cell with the movement controlled by j1; : : : ; jm�1; j, will eventually

arrive in the cell j, regardless of how many of the intermediate cells j1; : : : ; jm�1
are still alive in the current moment of the evolution. If the destination cell j

has been dissolved, then the travelling cell will arrive and remain in the skin

cell, which is all right: the communication fails since one of the parties has been

destroyed.

The security feature relies in fact on the dissolving key of the travelling cell.

Any cell aiming to break the carrier and to �nd out its content, must introduce a

possible key into the carrier. An important observation here is that the movement

of the travelling cell cannot be controlled by anybody else excepting itself, and

so, any `evil' cell has only one chance to break the carrier. Moreover, the name of

the travelling cell can be thought of to be secretly shared by the sender and the

destination, thus making the task of breaking the communication system even

more di�cult. A protocol that changes the key for every pair of communicating

cells can be easily imagined and in this way, a perfectly secure communication

mechanism is obtained. As a consequence, one can think that in this model

the direct communications between any two cells are possible, thus gaining more

exibility. Also the type system in which one can specify a cell to be either static

or mobile, similar as in the case of mobility types for ambients (see [CaGhGo99]),

seems to help the construction of more involved examples and techniques within

P-systems.

6 Conclusions

It is very interesting that the natural concept of membrane structure is capable

to model and simulate both the organisation of a complex network, and the

processes running in that network. This is indeed possible: one can use the

mobile ambients to describe a dynamic network, fully capturing its mobility

and security features, and one can use the P-systems to describe the processes

running in the network, using the same model of membrane structure. Thus, the

Web-computing can be thought of uniformly, both at the structural level, and

at the level of processes running in the network, based on a natural concept of

biochemical inspiration.

Although the goals and the motivations of ambient calculus and P-systems

are di�erent, we showed that the transfer of ideas and results from one model

to the other is indeed possible. It seems like an interesting research direction to

further investigate possible connections between these frameworks.

597Petre I., Petre L.: Mobile Ambients and P-Systems

The mobile P-systems o�er more
exibility than the basic variant, and they

could be used for more involved cryptographic protocols within P-systems. Their

computational power, descriptional complexity, and other properties still remain

to be investigated.

Aknowledgement

The work of the �rst author was supported by the Academy of Finland, under

grant 44087.

References

[At99] A. Atanasiu, About a class of P-systems, submitted.
[BeBo92] G. Berry, G. Boudol, The chemical abstract machine, Theoret. Comp. Sci.

96 (1992), 217{248.
[Ca99] L. Cardelli, Abstractions for mobile computation, in Secure internet program-

ming, (J. Vitek, Ch. Jensen, eds.), LNCS 1603, 1999.
[CaGo98] L. Cardelli, A. Gordon, Mobile ambients, in Proceedings of FoSSaCS'98 (M.

Nivat, ed.), LNCS 1378, 140{155.
[CaGo99] L. Cardelli, A. Gordon, Types for mobile ambients, in Proceedings of

POPL'99, ACM, 79{92.
[CaGhGo99] L. Cardelli, G. Ghelli, A. Gordon, Mobility types for mobile ambients, in

Proceedings of ICALP 1999, to appear.
[DaPa99] J. Dassow, Gh. P�aun, On the power of membrane computing, J. of Universal

Computer Sci., 5, 2 (1999), 33{49.
[Fr99] R. Freund, Generalized P-systems, Proc. of FCT'99 (G. Ciobanu, Gh. P�aun,

eds.), Lecture Notes in Computer Sience, 1684, Springer-Verlag, 1999.
[GoCa99] A. Gordon, L. Cardelli, Equational properties of mobile ambients, in Pro-

ceedings of FoSSaCS'99, to appear.
[Pa98] Gh. P�aun, Computing with membranes, summitted. Also as Turku Centre for

Computer Science Report No 208, 1998 (www.tucs.�).
[Pa99a] Gh. P�aun, Computing with membranes: a variant, submit-

ted. Also as Auckland University, CDMTCS Report No 098, 1999
(www.cs.auckland.ac.nz/CDMTCS).

[Pa99b] Gh. P�aun, Computing with membranes. An introduction, Bulletin of the
EATCS, 67 (1999), 139{152.

[Pa99c] Gh. P�aun, P Systems with Active Membranes: Attacking NP Complete
Problems, submitted. Also as Auckland University, CDMTCS Report, 1999
(www.cs.auckland.ac.nz/CDMTCS).

[PaRoSa98] Gh. P�aun, G. Rozenberg, A. Salomaa, Membrane computing with external
output, submitted. Also as Turku Centre for Computer Science-TUCS Report No
218, 1998 (www.tucs.�).

[PaSaYo99] Gh. P�aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted
forms, submitted, 1999.

[PaYo99a] Gh. P�aun, T. Yokomori, Membrane computing based on splic-
ing,Preliminary Proc. of Fifth Intern. Meeting on DNA Based Computers (E. Win-
free, D. Gi�ord, eds.), MIT, 1999, 213{217.

[PaYo99b] Gh. P�aun, T. Yokomori, Simulating H systems by P systems, Journal of
Universal Computer Science, 5 (1999), to appear.

[PaYu99] Gh. P�aun, S. Yu, On synchronization in P systems, Fundamenta Informati-
cae, 38, 4 (1999), 397-410.

[Pe99] I. Petre, A normal form for P systems, Bulletin of the EATCS, 67 (1999), 165-
172.

598 Petre I., Petre L.: Mobile Ambients and P-Systems

