Journal of Universal Computer Science, vol. 5, no. 10 (1999), 668-692
submitted: 16/4/99, accepted: 21/9/99, appeared: 28/10/99 [Springer Pub. Co.

Transformational Approaches to the Specification and
Verification of Fault-Tolerant Systems:
Formal Background and Classification

Felix C. Gértner
(Darmstadt University of Technology, Germany
felix@informatik.tu-darmstadt.de)

Abstract: Proving that a program suits its specification and thus can be called cor-
rect has been a research subject for many years resulting in a wide range of methods
and formalisms. However, it is a common experience that even systems which have
been proven correct can fail due to physical faults occurring in the system. As com-
puter programs control an increasing part of todays critical infrastructure, the notion
of correctness has been extended to fault tolerance, meaning correctness in the pres-
ence of a certain amount of faulty behavior of the environment. Formalisms to verify
fault-tolerant systems must model faults and faulty behavior in some form or another.
Common ways to do this are based on a notion of transformation either at the pro-
gram or the specification level. We survey the wide range of formal methods to verify
fault-tolerant systems which are based on some form of transformation. Our aim is to
classify these methods, relate them to one another and, thus, structure the area. We
hope that this might faciliate the involvement of researchers into this interesting field
of computer science.

Key Words: fault tolerance, specification, verification, transformation, fault model,
failure model

Category: C.4 (fault tolerance; modeling techniques), F.3.1 (mechanical verification;
specification techniques)

1 Introduction

As our daily life increasingly depends on the well-functioning of computer sys-
tems, a system failure due to a programming or design mistake can have catas-
trophic consequences. It is a well-known fact in modern software engineering
that software systems of a certain size almost definitely contain such errors;
much design experience and programming discipline are necessary to minimize
their number.

A complementary approach which is sometimes taken is the use of formal
methods in software development. With this approach it is possible to prove
that some system is free of such errors. This results in a very strong notion of
correctness. One drawback of this approach is that the system requirements must
be formulated very precisely; in fact they must be formulated unambiguously in
some mathematical formalism so that the question of whether or not a system
suits its requirements can be reduced to the question whether or not an assertion
is provable in some mathematical system [33]. The formal version of the system
requirements is usually called a (formal) specification. The process of proving
that a given program suits its formal specification is called wverification.

Even if computer systems are proved correct, they might fail in practice.
This is mostly due to physical faults in the underlying hardware which cannot

Gaertner F.C.: Transformational Approaches to the Specification ... 669

be avoided. Critical systems must suit their specification even in the presence of
such faults. Systems with this type of property are called fault tolerant. Methods
to prove fault-tolerant systems correct must necessarily explicitly or implicitly
deal with faulty behavior. In this article, we are interested in such formal methods
to verify fault-tolerant systems. More specifically, we study those methods which
are based on the notion of a transformation.

A transformation is a very general concept. Usually it means the change of
appearance, form or character of something, especially in a way that improves
its properties. A program transformation for example changes a given program
P into a transformed program P’. While P’ may still have some similarities to
P, it will usually have different properties. Mathematically, a program trans-
formation is a function which maps one element of the program domain into
another element of the program domain. Transformations can be defined over
arbitrary domains: numbers, sets, programs, systems, formulas of some logic,
even specifications.

A system is usually defined as a “thing” that interacts with its environment
in a discrete fashion across a well-defined boundary (called the interface) [33].
If such interaction takes place, then it is called an open system. If it does not
interact with its environment, then it is called closed. It is usually helpful to think
of a system as being built in a hierarchical manner, i.e. a system is composed of
many subsystems [50]. Each subsystem (sometimes also called a component) can
interact with the other subsystems and the original system interface through its
own interface (see Fig. 1).

interface
——
 E—

/ \nteraetion
|1
subsystem subsystem

system

Figure 1: System, subsystem, interface and interaction.

The use of transformations in fault tolerance usually builds on the view that
a fault-tolerant systems is composed of a basic, fault-intolerant system together
with a set of special fault-tolerance components [53, 7]. As transformations are
often understood as improving properties, adding such components to a sys-
tem which improve on performance or robustness can be viewed as a system
transformation. This can refer to hardware (e.g. adding more main memory or
redundant processors), software (e.g. installing a new replication software) and
thus also to system properties (e.g. robustness or processing speed).

But because transformations also change the properties of an object, it is
not surprising that the concept of a transformation has been adapted in formal

670 Gaertner F.C.: Transformational Approaches to the Specification ...

methods dealing with fault tolerance. As the occurrence of faults obstruct the
normal execution of programs, the effects of a faulty environment can be mod-
eled as a transformation at the program level. Equally, faults obviously change
program properties, so the effects of faults can be modeled as a transformation
of a specification.

There is a wide range of research literature in fault-tolerant computing which
builds on these ideas. In this article we attempt to classify these methods and,
by doing this, survey the area. The classification is based on the following three
distinctive features:

— Do the ideas refer to transformations on the system level or on the subsystem
level?

— Do the ideas refer to transformations of programs or of specifications?

— Do the transformations introduce “good” properties (e.g., fault-tolerance
components) or “bad” properties (e.g., effects of faults)?

The resulting eight classes are treated in Sect. 3 and Sect. 4. We start with
transformations on the subsystem level (Sect. 3) followed by transformations
on the system level (Sect.4). We always treat program transformations first
and then specification transformations. This organization might seem a little
overwhelming at first sight, but we have chosen this form of presentation because,
from our experience, it is best suited to incrementally present the multiple ideas
of this area in a fashion that clearly separates the concerns involved. In Sect. 5 we
will take up many of the seemingly loose ends of the beforementioned exposition
and present the methodologies and proof techniques in a concise manner.

Sect. 6 will summarize the main points touched in the course of the exposi-
tion, and Sect. 7 concludes this paper and sketches directions for future work.

We assume the reader is an interested novice in the field and has some basic
knowledge of logic and formal systems. This assumption allows us to present the
formal preliminaries (e.g. the system model, definitions of terms) in a rather con-
densed manner in Sect. 2. If necessary, introductory texts on formal specification
(like the “interview” of Lamport [33]) should be consulted prior to reading this
article. However, as complementary reading, we suggest Rushby’s well-written
survey of critical system properties [57].

2 Definition of Terms

Many refined formalisms have been introduced to specify distributed systems.
Instead of following such a particular formalism, we will try to argue at a se-
mantic level on the basis of temporal logic [56, 33]. Briefly spoken, in temporal
logic a program is viewed as a generator of behaviors. Arguing at a semantic
level means that we will discuss the properties of programs on the basis of the
generated state sequences rather than using a particular specification language
to express them.

2.1 States and Behaviors

Assume there is a non-empty set of variables V' = {vy,...,v,}. Each variable v;
can store a value from a fixed value domain D;. The set of all possible combi-
nations of value assignments to variables is called the state space. A state is one

Gaertner F.C.: Transformational Approaches to the Specification ... 671

element from the state space. Consequently, a state predicate (which is usually
expressed as a first order logical formula) is a set of states, i.e. a subset of the
state space.

A behavior (or execution) over V is an infinite sequence o = sq, S1, S2, . . .
of states from V. Finite state sequences are technically turned into infinite se-
quences by infinitely repeating the final state. Sometimes we explicitly deal with
finite state sequences. We will call them behavior prefizes or simply prefizes. The
transition from one state to the next state is called a step. If (s;, s;41) is a step
and s; = s;4+1, then we say that this step is a stuttering step.

Stuttering is an important concept to model program refinement. Informally
spoken, state transitions at a lower level of abstraction appear in high level
behaviors as stuttering steps. A behavior o is equivalent to a behavior o5 if they
contain the identical sequence of states. Two behaviors o1 and o9 are equivalent
under stuttering (or stuttering equivalent) if oy is equivalent to oy after removing
all stuttering steps from both oy and 2. A property is a set of behaviors. We will
assume that a property is always closed under stuttering, i.e. if P is a property
and o € P, then P also contains all behaviors which are stuttering equivalent
to 0. Note, however, that a property can obviously contain two behaviors which
are not stuttering equivalent.

There are two main types of properties called safety and liveness. Informally,
a safety property states that some “bad” thing never happens. Thus, a safety
property rules out a set of unwanted behavior prefixes. In general, if a property
is finitely refutable, then it is a safety property. Formally, a property P is a safety
property iff (if and only if), taken any behavior o € P, every prefix of ¢ is also
in P.

Liveness properties informally state that some “good” thing will eventually
happen. Formally, a property P is a liveness property iff every finite sequence of
states is a prefix of a behavior in P. In contrast to safety properties, a liveness
property cannot be refuted by inspecting only a finite prefix of a behavior; infinite
state sequences must be inspected.

As an example, consider a road intersection with a set of traffic lights. A safety
property S of the system might be: “at all times no two traffic lights will show
green”. This property rules out “bad” things, i.e. unsafe states; the occurrence
of an unsafe state within an execution o disqualifies o from belonging to S. This
relates to the formal definition as follows: for any given “safe” execution o € S
we thus conclude that no unsafe state occurs in ¢. Thus, every prefix of ¢ is
safe. So the definition of safety can be seen as ruling out a set of “unwanted”
prefixes, i.e. all prefixes that end in an unsafe state.

A simple liveness property of the traffic light example could state: “every
arriving car will eventually receive a green signal and cross the intersection”. The
“good” thing here is the crossing of the intersection, and the term “eventually”
refers to a fixed, finite but unknown time period. This relates to the formal
definition of liveness as follows: consider the final state of some behavior prefix.
In every such state it must still be possible to extend the execution so that this
extension contains a “good” state (i.e., one in which the waiting car has passed).

Other examples of safety properties are partial correctness, mutual exclusion
and deadlock freedom. Conversely, examples of liveness properties comprise ter-
mination, eventual message delivery and starvation freedom. Safety properties
state “whenever the system performs a step, it is a good step”, while liveness
properties can capture notions of progress (“the system will eventually perform a

672 Gaertner F.C.: Transformational Approaches to the Specification ...

step”). A state predicate) implicitly defines a safety property denoted Prop(Q)
which consists of all behaviors that start in a state satisfying Q.

2.2 Programs and Specifications

As noted above, a program A is viewed as a generator of behaviors. It consists
of

— a set of variables V,

— a state predicate I,

— a state transition relation §, and
— a liveness property L.

The set of variables defines the state space of the program and state predicate
I describes the set of possible initial states. The state transition relation is
usually specified by a set of actions. An action is often written in the form
(guard) — (command) which is called a guarded command [13]. The guard is a
state predicate and the command is an atomic assignment, of values to a subset
of variables from V. If in some state s the guard of an action evaluates to true,
then we say the action is enabled. A state transition starting from some state s
occurs in the following way:

1. the guards of all actions are evaluated in parallel,
2. one enabled action is chosen,
3. the assignment of this action is executed resulting in the next state.

Note that this execution model also encompasses the usual one-processor serial
type of executions, where the program counter ensures that only one or (in case
of a conditional statement) two actions are enabled. It has been generalized to
also cover parallel and distributed systems.

Formally, an action is a set of pairs of states and a set of actions completely
defines the state transition relation §. A state transition relation § implicitly
defines a property denoted Prop(d) which is the set of behaviors constructable
using only steps specified by .

The liveness property L of the program defines what must eventually happen
in a system execution. This will usually comprise some form of fairness meaning
for example that every continuously enabled action must eventually appear as a
state transition in an execution.

Finally note that the set of behaviors generatable by a program A calculates
to:

Prop(A) = Prop(I) N Prop(6) N L

A program A satisfies a property p iff Prop(A) C p (in this case we sometimes
say that p holds for A). A specification is a property which defines a set of
“intended” behaviors of a program. A program A is correct with respect to a
specification S if A satisfies S.

Gaertner F.C.: Transformational Approaches to the Specification ... 673

2.3 Refinement

In a specification we would like to abstract away from the low level implemen-
tation details of the underlying machine architecture. Thus, we want state tran-
sitions of low level variables to appear as stuttering steps in a high level speci-
fication. This leads to the notion of internal and external variables. Think of V'
as being divided into two disjoint sets V; and V, of variables called internal and
external variables, respectively. Now let the internal variables be hidden from
the state by a projection function =, i.e. for a state s, w(s) denotes the part of
the state which refers to V, only. We can extend 7 to behaviors by defining 7 (o)
to be the sequence of states obtained by applying 7 to every successive state in
o. Thus, changes to internal variables appear in 7(0) as stuttering steps. Con-
sequently, 7(o) is that part of o which is “externally visible”. The projection 7
can naturally be extended to properties by applying 7 to every element of that
property. Thus, for a property p, m(p) is called the set of external behaviors.

This leads to the central concept of refinement. A program As refines a
program A; for function 7 (denoted A; C, As or simply A; C As) if 7(As)
satisfies A;. Here, A5 can be viewed as a “lower level program” implementing a
“higher level program” A;. The lower level program A» can contain new internal
variables which are necessary at the lower level of abstraction. In such cases the
function 7 is usually called a refinement mapping [1]. Naturally, As can further
be refined to some program As. The distinction between internal and external
variables may be different at lower levels; an internal variable v of As is not
visible to program A;, but must be an external variable of As.

2.4 Processes and Communication

When modeling a distributed system we must in some form deal with the notion
of a process. This can be done by partitioning the set of variables of a program
at a given level of abstraction into n subsets, one for every process pi,.-.,pn-
Usually this is done in such a way that for each pair of processes there exists a
“shared” variable which is part of the state of both processes. Variables which
are not shared are commonly called internal variables which is an indication
that the abstraction of a process is closely related to the notion of refinement.
(Consequently, shared variables are external variables of both processes.) Shared
variables can be read by both processes. However, shared variables are further
divided into input variables and output variables: a variable v shared between
two processes p; and p; is an input variable of p; if it is only written by pj;
equally, if v is only written by p; we call it an output variable of p;. Intuitively,
what is an input variable for p; is an output variable for p;. This usually signifies
the direction of information flow between two processes.

If a process is viewed as a subsystem in the sense defined in the introduction,
then input and output variables form the interface of this subsystem. Commu-
nication is achieved between two processes by assigning/reading values to/from
the output/input variables, respectively. This basic form is known under the
name of synchronous communication. Using processes to model channels it is
easy to see that also asynchronous communication (i.e. message passing) can be
modeled.

674 Gaertner F.C.: Transformational Approaches to the Specification ...

2.5 Detection, Correction and Fault Tolerance

When it comes to fault-tolerance issues, there is some ambiguity in the liter-
ature on the meaning of the central terms fault, error and failure. Usually, a
fault refers to a “low-level” defect in the system which may be physical (e.g. a
bad memory cell which always returns a “0”) or somewhat accidental (e.g. a
programming mistake). A fault can cause an error which is a term of the system
state, i.e. whenever a fault results in an abnormal change of the system state,
an error occurs. Finally, we speak of a failure if a system deviates from its cor-
rectness specification [38, 28, 22]. Failures at some lower level of abstraction can
again be faults on a higher level.

There is strong evidence [19, 6, 7] that all fault tolerance mechanisms can
be structured along the two distinct notions of detection and correction. Briefly
spoken, detection means to observe a detection predicate P on the system state,
and correction means to impose a correction predicate () on the system (both no-
tions seem to be formal equivalents of what is usually called error detection and
error processing [38]). The abstract components used to achieve this function-
ality are called detectors and correctors (they are analogous to modules usually
known as sensors and actuators). In fact it can be shown [6] that special forms
of detectors and correctors are necessary and sufficient to achieve the usual types
of fault tolerance.

We will not define the term fault tolerance yet because there are various no-
tions of fault tolerance. An intuitive understanding of fault tolerance as “main-
taining some form of correctness in the presence of faults” suffices for the un-
derstanding of the following sections. In them, we will show how enhancing an
originally fault-intolerant program with fault-tolerance components, as well as
modeling the effects of physical faults can be seen and formulated as a transfor-
mation.

3 Transformations at the Subsystem Level

In our context we will think of subsystems as being processes at a given level of
abstraction that interact through their interface with other processes.

3.1 Program Transformation for Detection/Correction

First we look at programs and investigate how adding fault-tolerance components
for detection and correction can be viewed as a program transformation. The
starting point for all these methods is that a fault-tolerant program can be always
separated into a basic (i.e. fault intolerant) program and a set of fault-tolerance
components or modules.

Early work on transformations for fault tolerance have focused on correction
mechanisms, most notably the method of checkpointing with forward or back-
ward recovery [41, 42, 53]. It was assumed that detection was done by “lower-
level” hardware mechanisms that indicated a fault by raising a boolean flag.
Upon fault detection, a recovery procedure would eventually be invoked which
acted as a “fault handler”.

First, a program A must be transformed into a program that periodically
takes checkpoints, i.e. it stores its state onto a form of available stable storage.

Gaertner F.C.: Transformational Approaches to the Specification ... 675

This can be done easily by doubling (or tripling) the variables and adding a timer
to the program (such a timer can be implemented by reference to a real-time
clock or by simply decrementing a counter after every state transition). When
the timer expires, a subroutine is executed which stores the important parts
of the program state into the replicated variables, and subsequently resumes
normal operation of A.

A checkpointing transformation C' is given formally by Liu and Joseph [42,
p. 154]. The checkpointing subroutine is an atomic action added to a program
A. Due to the fair but nondeterministic choice of actions, the resulting program
C(A) will take checkpoints after a finite time.

In a different paper, Peled and Joseph [53] explicitly superimpose an interrupt
mechanism and implement a “timer interrupt handler” that takes checkpoints
at periodic intervals indicated by a lower-level timer component. They use two
distinct sets of checkpointing variables to which the timer interrupt handler al-
ternately writes its checkpoints. They also give a straightforward implementation
of the handler procedure [53, p. 109].

As mentioned above, recovery is invoked when a boolean flag f indicating a
fault is raised. Similar to the checkpointing transformation, a recovery action [42,
p. 155] or a failure interrupt handler [53, p. 109] is invoked which restores the
program state to the last checkpoint. The associated recovery transformation R
adds the relevant recovery actions to the original program A and augments the
liveness property of A in such a way that upon setting f, the recovery actions are
eventually executed. Usually, the checkpointing/recovery variables are internal
variables of the process and so they are not visible at the interface.

While not naming it a transformation, Arora and Kulkarni [6] have explored
similar approaches and have extended them also to fault detection. A detector d
is an abstract (program) component which signals that some predicate P holds
on the system state. Obviously, the precise implementation of d depends on P
and so a general detection transformation must also depend on P. Analogously,
the implementation of a corrector depends on the correction predicate 2 which
is to be imposed on the system state.

Application of concrete program transformations using detectors and correc-
tors appear in various case studies [8, 32, 7]. In general, these papers do not focus
so much on the transformation aspect but rather on questions of completeness
and modularity of the methodology. Also they stress that detectors and correc-
tors must be designed in an interference-free way, i.e. that they to not obstruct
the “normal” behavior of the underlying program. Applications of detector and
corrector transformations in the context of program synthesis have been studied
by Arora, Attie and Emerson [4], where solutions to the mutual exclusion and
the barrier synchronization problem are derived. This is done by deriving the
necessary program transformations from the faults which are assumed to be in
the system. Similar approaches which focus on a well-chosen failure assumption
are, for example, described by Schlichting and Schneider [60], Schneider [61],
Neiger and Toueg [48] and by Katz and Perry [31]. This shows, how important
it is to have a detailed description of the faults that are deemed possible in the
system. Ways of describing this in a transformational manner are described next.

676 Gaertner F.C.: Transformational Approaches to the Specification ...

3.2 Program Transformation for Fault Modeling

As noted above, some formalisms assume that the occurrence of a fault is signaled
by raising a boolean flag f. This can be done by lower-level detection mechanism
or (as also discussed above) by using a specific detector component at the same
level of abstraction. If f is truthified by an underlying hardware detection mech-
anism, the change of f can also be viewed as the direct result of a fault together
with its other (mostly unknown) effects on the program state. This leads to a
formal approach to model faults and their effects in a transformational way. The
idea behind this method is based on the observation that systems change their
state as a result of two quite different event classes: normal system operation
and fault occurrences [11]. Thus, a fault can be modeled as an unwanted but
nevertheless possible state transition of a process. This state transition can be
viewed as an additional action initiated by a (malicious) environment.

As an example, consider a process which runs on a processor employed in
some form of spacecraft. A problem influencing such objects in orbit is the radi-
ation of cosmic rays which have a direct effect on electronic devices, especially
volatile memory. In general, such rays can upset the contents of volatile memory
and cause a transition to an arbitrary state. This is the classic example of a
transient fault. It can be modeled by adding a state transition of the form

true — state := (random state)

We call such an action a fault action.

The idea of fault actions is usually attributed to Cristian [11] but similar ideas
appear also in a not so widely circulated paper by Echtle [14]. The method has
been incorporated into a transformational approach by Liu and Joseph [41, 42].
In these approaches, the error flag f does not only signal a fault, but it also
disables all regular program actions of the program A (not its recovery actions
of course). This can be done by adding —f as an additional conjunct to the
guards of all these actions. As long as f = true, only actions from an additional
set of fault actions are active and can be executed.

This results in a fault transformation F' as follows: a new “error” variable f
is added to the set of variables of A and a special set of fault actions is added to
the set of actions. The guards of all previously present (regular) program actions
is augmented to contain —f as an additional conjunct. Also, the fault actions
are built in such a way that they always truthify f once they are executed. So
if A is a program, then F(A) resembles the program running under the fault
assumption encoded in F. The program A’ = F(A) is called the fault-affected
version of A (in general, the F'-affected version of A). Note that f may or may not
be part of the observable system state: if lower-level detection mechanisms exist,
f is usually assumed to be a regular program variable. But f may also simply
be a variable of the mathematical formalism used to reason about fault-affected
processes, as described next.

The transformational approach has been generalized by Arora and Gouda
[5], Liu and Joseph [44, 45], and Géartner [17]. In these approaches, the fault-
affected version of A results from simply adding a set of fault actions to the set
of actions of A. This can be seen as the parallel execution of regular program
actions of A with fault actions. In contrast to Liu and Joseph [44], it is argued
by Arora and Kulkarni [7] and by Gértner [17] that the introduction of auxiliary
error variables into the state of A is necessary to be able to model all of the

Gaertner F.C.: Transformational Approaches to the Specification ... 677

common failure models from distributed systems theory (such as fail-stop [60],
crash [21], general omission [55] or Byzantine [37]).
As an example consider a process consisting of a single variable v and an
action
v>0—=v:i=v-—-1

We want to derive a version of this process under the crash fault assumption. This
means that the process fails by simply stopping to execute steps forever. This can
be modeled by introducing an additional boolean variable up and augmenting
the process’s code as follows:

v>0Aup svi=v—1
true — up := false

Obviously, such a transformation can be formalized. However, the generality
of this type of fault transformation must usually be restricted by additional
“global” assumptions at the system level. As we are presently acting on the
subsystem level, we will pick up this aspect again later (in Sect. 4.2).

Formal examples of other fault transformations are given by Gértner [17].
It should be noted that equivalent methods to model the effects of faults have
also appeared using the formalism of Petri nets. For example, Girault [20] and
Vélzer [63] both describe how to model faulty behavior and reason about it by
superimposing a special Petri net onto the representation of a program.

3.3 From Program to Specification Transformations

Program transformations for detection, correction or fault modeling are not very
useful on their own. Usually we want to reason about the transformed program
and prove it correct with respect to some specification. It should be clear by
now that this is in fact possible: explicitly incorporating faults into the program
makes it possible to easily adapt the usual formalisms for reasoning about fault-
free programs to now reason about their fault-affected counterparts.

However, we need a specification to prove correctness. If we perform a pro-
gram transformation onto a low-level program A, often the externally visible
behavior will change. For example, if a process fault occurs and its execution
has to be reset to the most recent checkpoint, all output operations at the in-
terface that were performed after the checkpoint was taken will be repeated.

We can obviously transfer the concepts of a transformation to the specifi-
cation level. However, since we are at a different level of abstraction, there are
different issues involved in this process. Peled and Joseph [53, Def. 3.2] have in-
troduced the useful notion of correspondence between a program transformation
and a specification transformation. A specification transformation U corresponds
to program transformation 7' if U satisfies the following condition: for all pro-
grams P, if P has a property ¢, then T'(P) has the property U(¢). This definition
is visualized in Fig. 2. If some property ¢ holds for a program P, then this rela-
tion must also hold after the transformation.

678 Gaertner F.C.: Transformational Approaches to the Specification ...

has property
P —

transformation 7 J'transformation U

) has property U Q§)

=
e

Figure 2: Definition of correspondence between U and T

3.4 Specification Transformation for Detection/Correction

As mentioned above, detection and correction mechanisms will usually be hidden
from outside observers by declaring their variables as being internal ones to the
process. Also, it is often noted that fault-tolerance mechanisms within a process
should be totally transparent to the other processes when no faults occur. This
means that the work of detection and correction mechanisms will usually appear
as stuttering steps at the process interface.

Sometimes it will be necessary to make detection mechanisms visible at the
interface, for example when a process crashes and has been restarted, it is often
useful for neighboring processes to know of this fact [3]. Thus, the specification of
a process will then contain an additional “epoch” variable. Generally, detection
and correction mechanisms must be reflected within the specifications of pro-
cesses if they are part of “larger” detection and correction mechanisms, possibly
at a higher level of abstraction. This is discussed in more detail when dealing
with specification transformations at the system level in Sect. 4.

But even if the detection/correction mechanisms do not appear at the pro-
cess interface, introducing them will obviously transform a lower level process
specification. At this level, detectors and correctors will appear in the form of
their abstract specifications (as presented by Arora and Kulkarni [6]). Peled and
Joseph [53, p. 111] give an example of such a transformation for the case of a
backward recovery algorithm. The transformation can be divided into a fized
part Ry and a specification dependent part R4. The fixed part Ry describes
those properties of the added recovery module which are independent of the
program to which they are added, so they do not directly alter its specification.
The specification dependent part Ry of the transformation describes the inter-
action between the original program and the recovery module. (Note that the
transformation does not refer to a particular program but to its specification.)

For example, consider a simple database server. It’s job is to receive query
request messages sent by clients and respond to these messages by sending the
requested item back to the client. The specification S of this server could be
described as follows:

— (safety) a server response is never wrong, i.e. it always reflects an uncor-
rupted state of the database.
— (liveness) the server will eventually respond to every request.

Assume there are faults that once in a while corrupt the state of the database,
but these faults are detected by some lower level mechanism by raising some flag

Gaertner F.C.: Transformational Approaches to the Specification ... 679

f (i.e. we are only looking at the specification transformation for correction, not
detection). How do the fixed part Ry and specification dependent part R4 of a
checkpointing/recovery mechanism look like?

The fixed part Ry will add to S something like the following two properties:

— (liveness) a checkpoint will eventually be taken.

— (safety) checkpoints are taken “correctly” (i.e. there always exists a correct
checkpoint, and the checkpointing procedure installs a new checkpoint unless
f holds).

Note that these two properties are independent of S, i.e. they specify the speci-
fication independent part of R.

As assumed, faults can lead to program states in which the integrity of the
database has been destroyed. As this is detected immediately, there will be no
“incorrect” responses of the server. However, any state specified by S may be
“wasted” because a fault may occur before the next checkpoint is taken. The
state is wasted because actions taken in this step must be re-performed. Also,
in case of faults, a state may be delayed by recovery actions. This leads to the
specification dependent part Ry of R. It states that any program state of S can
be “delayed” by wasted states or recovery states. In general, Ry ensures that
(after taking away the checkpointing states) the transformed program acts like
the original program when wasted or recovery states are removed. (Formally, R,
is defined recursively on formulas of the specification language [53, p. 111].)

Overall, the transformation R can thus be designated as

S"=R(S) = Ry N Ry(S)

The effect of such a transformation on the visible behavior p of the process can
be evaluated when inspecting m(p). As discussed in Sect. 2 this is the projection
of the behaviors to the external variables (Peled and Joseph call this concealment
[53]). In general, if (after applying a transformation R for detection/correction
to a process) these mechanisms become visible at the interface of a process
with specification S, then S’ = R(S) will contain more behaviors. Thus, the
specification transformation will make S weaker.

3.5 Specification Transformation for Fault Modeling

The effects of faults on process specifications have been studied more widely
than the effects of transformations for detection and correction. This is possibly
due to the fact that the description of possible process failures is the starting
point for any fault-tolerance consideration. Like in specification transformations
for detection/correction, transformations for fault modeling will usually weaken
the specification of a process. We call this the enlargening behavior property of
faults. Nordahl [50, p. 69] calls the resulting process specification a failure mode,
others call it fault assumption [16], failure semantics [41, 12] or (in analogy to the
term ‘fault-affected version’) simply fault-affected behavior [42]. A failure mode
may be formulated at design time (i.e. when discussing the anticipated fault
scenarios) or at runtime (i.e. when engineers want to describe the observation of
some faulty component). In many papers [50, 24] it is implicitly assumed that
a failure mode is readily available. Obtaining a failure mode, i.e. specifying the
specification transformation F', is however not easy.

680 Gaertner F.C.: Transformational Approaches to the Specification ...

But there are again obvious analogies to specification transformations for
detection and correction. For example, Gértner [18] presents a high level speci-
fication of the crash failure mode for processes p; as:

— there is an additional “crashed state” ¢ in the state space,

— (safety) p; operates according to its original specification as long as it has
not reached c,

(safety) once p; has reached ¢, the successor state is always ¢ again (i.e. p;
cannot leave ¢),

— (liveness) eventually p; will reach c.

Like the specification transformations of Sect. 3.4, this describes a transforma-
tion F' which can be separated into a fixed part and a specification-dependent
part. Obviously F' does not influence any safety properties of the original pro-
gram A, but it will “destroy” all liveness properties.

Others have described these transformations as proof rules in a verification
calculus. For example, Joseph et al. [30] present a rule [30, rule R10] which makes
it possible to derive an assertion about the “failure-prone process execution” in
the fail-stop-recover failure model. However, this proof rule only covers the safety
properties of a process.

Schepers [58, 59] also describes the notion of a specification transformation
and calls it a fault hypothesis [58, p. 95]. A fault hypothesis is a reflexive relation
x on process behaviors. Whenever a pair of behaviors oy and o5 is in y, then o5
is defined to be the fault-affected version of o1. The specification transformation
F(S) can then be easily defined as

F(S) = {0’2|0’1 €SA (0’1,0’2) € X}

Note that the reflexivity of x ensures the enlargening behavior property of F.

4 Transformations at the System Level

After studying transformations at the process level, we will now turn to “larger”
systems. However, as a process may be composed of many smaller components
we can expect that many of the issues discussed in Sect. 3 will re-appear in this
section. However, the systems we will consider now can be thought of to be
large and complex distributed systems consisting of many processes, and in fact
there are several “new” issues which are of importance here. These are mainly
concerned with compositionality. This means that for instance we would like
to derive properties at the system level from properties at the subsystem level.
(This should also count for transformations.)

4.1 Program Transformation for Detection/Correction

In large distributed systems without a common global time frame, different ob-
servers can come to different conclusions whether a predicate over the system
state holds or not [62]. For simplicity (and for the sentence “P holds globally”
to make sense), we will assume that there is a hypothetical global observer who
can determine the truth of general state predicates instantaneously. But even if
such an observer is postulated, practically imposing a correction predicate @) on

Gaertner F.C.: Transformational Approaches to the Specification ... 681

the system state or even detecting a predicate P is usually difficult and cannot
be done atomically.

Returning to the checkpointing/recovery transformations of Liu and Joseph
[42] and of Peled and Joseph [53], this problem manifests itself in multi-page ex-
positions of the distributed recovery algorithms. In the distributed case, a global
checkpoint must be constructed from multiple local checkpoints and the recovery
algorithm must determine the most recent global checkpoint by piecing together
local checkpoints. The concept that helps piece together local checkpoints and
prove their usefulness is that of a consistent cut [9, 62]. Briefly spoken, a con-
sistent cut is a collection of checkpoints describing a global state that does not
violate causality (e.g. in which every message received has also been sent etc.).
The local modules must engage in some form of correction protocol to reach
agreement on the set of local checkpoints to use. The problems and complica-
tions encountered signify the intricacies faced when composing local concepts to
global ones. But in general, this example shows that the local transformations
of Sect. 3.1 can be composed to system-wide transformations.

4.2 Program Transformation for Fault Modeling

Local transformations of programs for fault modeling can also be generalized to
global transformations in the obvious way that a local transformation is applied
to every process of the system. However, this models only the local fault assump-
tion which is not useful on its own. To see this, consider a distributed system
with n processes running under the crash fault assumption. To model the effects
of this assumption, the local crash transformation is applied to every process.
Now obviously, this is a system in which all processes may crash; but if all pro-
cesses may crash, the system cannot guarantee any liveness property. Thus, a
global fault assumption is necessary that restricts the local transformations in a
certain way.

The terms local and global fault assumption were coined by Nordahl [49],
but they have appeared before in many different shades. For example, it is often
assumed that faults are restricted to a limited number of fault regions [22] (or
fault locations). In practice these are assumptions like “at most ¢ < n processes
may crash” or “at most one third of the processes goes Byzantine”. In general,
it is necessary to have a finite error behavior assumption [40, p. 27], meaning
one of the following requirements:

— For a fault action f, there exists an upper bound on the number of times f
may be executed.

— For a fault action f, once f has occurred, there exists a lower bound on the
number of other state transitions which must take place before f is allowed to
occur again (this is especially important for real-time fault-tolerant systems).

For example, the assumption that “at most one third of the processes goes
Byzantine” assumes that

1. turning a process into a Byzantine processes can be done only finitely many
times (here: at most n/3 times). This is captured by the first requirement.
It is also assumed that

682 Gaertner F.C.: Transformational Approaches to the Specification ...

2. the fault actions of a Byzantine process cannot monopolize the system (i.e.,
the “rest” of the system must be able to perform state transitions and thus
make progress while a Byzantine process is executing). This is covered by
the second requirement.

Without a finite error behavior assumption it is easy to show that achieving
fault tolerance is impossible.

Vélzer [63] calls local fault assumptions the impact model of faults, and the
global fault assumption the rely specification. The fundamental difference be-
tween both types of assumptions is that the former effectively adds behavior to
a given system, while the latter restricts the additional behavior again. Both
fault assumptions are always needed and must be applicable in the verification
process to prevent unsolvability (like in the crash example from above).

4.3 Specification Transformation for Detection/Correction

Naturally, the distinction between local and global requirements re-appears also
at the specification level. A composed low-level program transformation has
the same notion of correspondence to a high-level specification transformation
at the system level as at the subsystem level (cf. Sect. 3.3). However, global
requirements are reflected in the way how the local processes are connected or
interact. Nordahl [50] introduces the concept of a design [50, p. 68]. For example,
take a ring of processes which can pass a token via shared variables. Every
process has a specification S; and the token ring has an overall specification S.
The design of the token ring is the way in which the individual processes are
connected (how input and output variables interact) to overall satisfy S, given
that every process satisfies S;.

Formally, a design for an n-process system is a tuple consisting of n process
specifications Si,...,S, and a function C' from S™ to S, where S denotes the
set of all specifications. The mapping C is a combinator in the sense of CSP
[25], e.g. parallel composition, union, or some composed construct. Note that C
is not a specification transformation in the sense used throughout this article; it
is merely a means to derive a global specification from local specifications.

4.4 Specification Transformation for Fault Modeling

As mentioned above, a specification S of a (fault-intolerant) system may not
be solvable under a sufficiently hostile fault assumption. However, adding fault
tolerance components and some well-chosen design may result in a system which
satisfies a property close or equal to S. A specification transformation F' should
reflect this and preferably be able to derive the strongest specification S’ = F'(S)
which is solvable under the fault assumption encoded in F'.

Again, local transformations can be composed to global transformations. But
we have discussed already in Sect. 4.2 that the global fault assumption needs to
be encoded within the transformation as well. Recall that the set of behaviors
of a system A can be described as

Prop(A) = Prop(I) N Prop(§) N L

where I is the initial predicate, J is the transition relation and L is the system’s
liveness property. The local fault assumptions, encoded as additional actions,

Gaertner F.C.: Transformational Approaches to the Specification ... 683

will usually add state transitions and augment § to some J¢. In general, the
global fault assumption could be any property of the system, i.e. a conjunction
of a safety property G5 and a liveness property (G; which must hold and thus
are simply conjoined. Thus the properties of the transformed program F(A)
calculate to:

Prop(F(A)) = Prop(I) N Prop(d;) NGs NG, NL

A result of Abadi and Lamport [2, Theorem 1] states, that G; can be (and usually
is already) incorporated into the system’s liveness property L, so the global fault
assumption will always be describeable as a safety property (this is conjectured
by Gértner [18] and implicitly assumed by Liu et al. [43, 44, 42, 45]). In result,
the global specification transformation F' can be characterized by the following
equation:

Prop(F(A)) = Prop(I) N Prop(dy) NGsNL

As an example, consider a system consisting of n processes under the crash
fault assumption. Every process p; has a local specification S;. We will assume
that S; is a safety property and that the process’s liveness properties L; are
encoded in the system’s liveness property L. In fault-free executions the system
is guaranteed to satisfy a specification S, which is the composition L N[, S; [2].
As we have argued above, the local fault assumption of crash will transform any
local liveness property L; of process p; into L; U L; where L; is the property
describing that p; will eventually crash (this is encoded in §; and Ly). The
global fault assumption G is the safety property “at most ¢ processes crash”.
The transformed specification S’ under the crash fault assumption then results
to

S" = F(S) = Prop(I) N Prop(d;) NGN Ly

An implementation of a crash action within d; could look something like

true — up := false

and G would contain all behaviors where this action is executed on at most ¢
processes.

It is argued by Liu and Joseph [43, 44] (and more generally discussed by
Abadi and Lamport [2, p. 94]) that the global fault assumption G can also be
incorporated into the system’s state transition relation d¢. This seems clear since
the alternative implementation of, for example, the crash action of a process
could look like this:

“less than t processes have crashed” — up := false

This implementation incorporates G into dy. However, separation of the fault
assumption into a local and a global one seems to separate concerns better and
thus makes the fault transformation easier to describe. Before doing calculations
in mechanical correctness proofs, it will probably be more convenient to trans-
form the formula into the simpler version, where G is contained in 6, [43, 44].

684 Gaertner F.C.: Transformational Approaches to the Specification ...

5 Fault-Tolerance Specification and Verification Techniques

The previous sections have presented several different notions of transformations.
This section now tries to answer the central question, how these transformations
can help in the specification and verification of fault-tolerant systems. First
we will present some general definitions of fault tolerance and then consider
specification and proof methodologies.

5.1 Definitions of Fault Tolerance

A widely cited formal definition of fault tolerance was presented by Arora and
Gouda [5]. It assumes that faults are modeled as a program transformation F.
A system A is fault tolerant for a specification S if F(A) satisfies S. People
confronted with this definition usually object and say that given some system A
which satisfies S, F/(A) will usually not satisfy S anymore due to the introduced
faults. But this is exactly the decisive point of the definition: for S to hold for
F(A), A must already contain fault tolerance mechanisms; faults from F are
tolerated.

The definition of Arora and Gouda [5] (which conforms with those of Liu and
Joseph [41, 42] and Weber [64]) always refer to a complete system at a given
level of abstraction. They do not explicitly deal with components and their in-
teraction with each other. The distinction between the fault-tolerance properties
of subsystems and the fault tolerance of a design is made by Nordahl [50]. In
his approach, a system is explicitly composed of n subsystems and a design. As
mentioned in Sect. 4.3, a design is a description of how the components interact.
A design C is called fault tolerant for a system specification S and a combi-
nation of subsystem specifications Si,...,S, if C(Si,...,S,) satisfies S. This
means that a fault-tolerant design guarantees S if each component guarantees
S;. (The definition is also implicitly used by Schepers [58].) Note that a design
is fault tolerant with respect to a single combination of subsystem specifications
S1,-.-,Sp. The individual S; can be an original subsystem specification or the
weakened specification of a subsystem running under a fault assumption. To say
that a design is fault tolerant with respect to a general fault assumption F', one
must show that it is fault tolerant with respect to any possible combination of
subsystem specifications allowed by F'.

For example, consider a “hot-standby” system consisting of two replicated
servers A; and A which each are able to provide a service according to some
specification S to the outside world. Usually, server A; runs and provides the
service, but our fault assumption F' states that at most one of the two servers
may crash. If A crashed, service can continue normally. But to tolerate the crash
of Ay, a coordination component is introduced which, after detecting the crash,
will instruct A, to take over the role of A;. This is documented in the design
of the hot standby system. Proving that the hot standby design is fault tolerant
means to show that the composed system satisfies S in the three cases where
(1) A; and A, satisfy S, (2) only A, satisfies S and As has crashed, and (3)
only A, satisfies S and A; has crashed. Note that the design is independent of
the particular service which A; and A, are delivering so this approach makes it
possible to abstract from a particular implementation of subsystems and restrict
the attention to, e.g., the recovery protocol or redundancy mechanism used by
the components.

Gaertner F.C.: Transformational Approaches to the Specification ... 685

Rushby [57] calls the approaches of the first type (i.e. Arora and Gouda [5]
and others) calculational and those of the second type (i.e. Nordahl [50] and
others) specification approaches. Both approaches define fault tolerance with
respect to a specification S’, which is called the tolerance specification [18]. In
many cases the specification S’ is equal to the original correctness specification S;
this is usually referred to as masking fault tolerance [50, 58, 7]. But sometimes,
S’ is some acceptably degraded (i.e., weaker) version of S [39]; this is called
fail-softness [50] or graceful degradation [24].

5.2 Specification and Proof Methodologies

To rigorously prove that a system A is fault tolerant with respect to a spec-
ification S, we need a precise fault assumption (in the form of a program or
specification transformation) and must check the validity of one of the defini-
tions above by using some (formal) verification system. In the literature, there
exist a variety of alternative methodologies to do that.

5.2.1 Using Traditional Methods

As the effects of faults are modeled as regular program actions, the calculational
approaches to the definition of fault tolerance [5] can use the same methods for
the verification of fault-tolerant systems than those used to reason about fault-
intolerant systems. This means that the approach will work independently of the
underlying formalism. In the literature, TLA [34] (used by Liu and Joseph [44,
45]), CCS (used by Janowski [29]), and variations of UNITY [10] (see Arora and
Kulkarni [7] and Liu and Joseph [41]) have been applied. Specification methods
can derive the validity of their proof rules from sound composition rules of the
underlying formalism. Examples exist which build on CSP [25] (used by Joseph
et al. [30], Nordahl [50] and Peleska [54]).

The traditional methods have the advantage that they are well understood,
people are well-customized with their application and so existing verification
tools can be re-used in the context of fault tolerance. However, it is a well-known
fact that introducing faults and fault-tolerance mechanisms increases the com-
plexity of the verification task substantially. And so specialized proof methods
can be of use, as explained next.

5.2.2 Compositionally Complete Specification Transformations

Peled and Joseph [53] have introduced an interesting proof method which builds
on their definition of correspondence between program and specification trans-
formations. Recall that a program transformation 7" and a specification trans-
formation U correspond, if all properties ¢ of some program P re-appear at
the transformed level, i.e. T'(P) has property U(¢) (recall Fig. 2). The idea be-
hind the proof method is depicted in Fig. 3, which is a slight adaption of Fig. 2.
The proof rule states that (1) if a property ¢ holds for a program P, and (2)
U(¢) implies 1, then ¢ holds for T'(P). For this rule to be valid, T' and U must
correspond.

Although Peled and Joseph only discuss recovery transformations in this
context, the proof rule can also be useful if T and U are transformations for

686 Gaertner F.C.: Transformational Approaches to the Specification ...

Figure 3: Idea behind Peled and Joseph’s proof rule.

fault modeling. For example, assume that T is some fault transformation and
U is the corresponding specification transformation. It is now quite easy to see
which properties of P are maintained under the fault assumption by applying U
to them. It is not necessary anymore to “calculate” them from inspecting T'(P).

Analogously, assume T' is some complicated recovery transformation. Then
we can first prove that P has a property ¢, apply the transformation U to ¢
and the derive properties of T'(P) without looking at its code. The advantage
lies mainly in the fact that reasoning at the specification level can be automated
more easily than reasoning at the program level (because it is at a higher level
of abstraction). There is no need to consider the complicated code of T'(P).
If we can derive all existing properties of T'(P) in this way, the specification
transformation U is called compositionally complete [53, p. 104]. However, the
drawback of this method is that you first have to prove that two transformations
T and U correspond (which even in small cases is rather difficult) and that not
every specification transformation is compositionally complete.

5.2.3 Fault-Tolerant Refinement

In the definition of Arora and Gouda [5], the fault transformation F' is under-
stood as a transformation at the program level. Liu and Joseph [41, 42] view F'
as a general formula transformation on a given level of abstraction. This makes
it possible to extend the definition of fault tolerance to that of a fault-tolerant
refinement relation.

This has resulted in a well-developed method for constructing provably fault-
tolerant programs. Let A; and As be two systems and F' a fault transformation
describing the faults possible in A;. Then A, is an F'-tolerant refinement of
Ay (denoted A; Cr As) if F(As) refines Ay. Hence, Ay can be viewed as a
“fault-tolerant version” of A; with respect to F.

Using the regular notion of refinement together with fault transformations
at different levels of abstraction, one can use a refinement calculus [1] to derive
fault-tolerant programs from tolerance specifications as follows: we start with a
top level (tolerance) specification of some program Ay. We must then refine A4,
into a suitable program A; such that Ay Cp, Ay, i.e. Ag C Fi (A1), where F} is
a fault transformation at that level of abstraction. (Remember that a refinement
step may introduce new internal variables and actions.) This process can be
repeated until a program Ay, is derived which is detailed enough to be turned
into executable code.

Gaertner F.C.: Transformational Approaches to the Specification ... 687

At every level of abstraction, F; will either change nothing (in the case of
masking fault tolerance) or add an indication of faulty behavior (for example by
weakening a component specification). If the latter takes place, we have reached
a level of abstraction in which faults have a visible effect. At this point the
refinement process must introduce measures which ensure that the refinement
relation still holds, i.e. apply a transformation for detection/correction at that
level.

The methodology of fault-tolerant refinement is very attractive since it trans-
fers the paradigm of stepwise refinement [65] to the fault-tolerance domain. This
means that the complexity of proving fault tolerance is broken down into a lot
of small and more manageable steps (see, for example, the case studies by Lam-
port and Merz [36] and by Peleska [54]). However, besides having to specify the
fault assumption at many different levels of abstraction, we are faced with the
same problems that usual refinement methods have to deal with, namely the
cumbersome task of finding refinements and proving the refinement relation [1].

5.2.4 Multitolerance

The concept of multitolerance was developed by Arora and Kulkarni [7] in con-
nection with their theory of detectors and correctors [6]. The idea of multitoler-
ance is to divide the global fault assumption F' into multiple and smaller fault
assumptions F; and handle them independently.

For example, let F' be the composition of two fault transformations F; and F5,
i.e. F(A) = F5(Fi(A)). Now considering F; we can transform A into a suitable
F-tolerant Ay, which is obtained by applying an appropriate detector/corrector
transformation 77 to A. The same transformation can be done to A; regarding
F, resulting in an Fs-tolerant As = T5(T1(A)). The construction process will
guarantee certain properties of As dependent on the concrete realization of T
and T5. Additional proof obligations arise from the necessity to show the inter-
ference freedom of 7} and 7>, i.e. to show that 75 does not destroy properties
introduced by 77 and vice versa. Formally, T} and 75 must be shown to commute.

6 Discussion

Many of the techniques presented in the previous section use various different
notions of transformations. Their exposition should have shown, that the dis-
tinction between system and subsystem level, as well as the distinction between
program and specification was only made for expository purposes: systems are
subsystems at higher levels of abstraction; equally, programs are specifications at
lower levels of abstraction. Transformations can appear at any level in suitable
forms.

This is the first main point of this article: transformations are a general
concept which is useful independently of the level of abstraction and the type
of behavior which should be modeled. To separate concerns, transformations
should be partitioned into a fixed part (which is independent of the transformed
object) and a dependent part. Concerning compositionality, an aspect is to dis-
tinguish between the local part of a transformation (used for reasoning about
components) and a global part (used to reason about the composition of subsys-
tems). When applied to systems, the local part will be a general property and

688 Gaertner F.C.: Transformational Approaches to the Specification ...

the global part only a safety property. Generally, all notions of fault tolerance
can be characterized by the statement, that a transformed version of a program
must satisfy a transformed version of a specification.

In calculational approaches, the effect of a fault transformation F' onto the
behavior of a system must be “calculated”. This is sometimes difficult since a
fault may only affect some small part of the system and the changes to the
global behavior might not be evident. In specification approaches, these calcu-
lations are avoided by assuming a specification transformation which gives the
fault-affected behavior of a component directly. Then, by compositional reason-
ing, the properties of the complete system can be derived. Hence, both methods
can be combined: the calculational approach to derive degraded specifications of
components, and the specification approach to reason about composed systems.
However, it should be noted that research in reasoning about composed specifi-
cations has mostly only handled safety properties [58, 59, 30]. Trying to compose
specifications that also contain liveness properties involves many intricacies and
appears far from trivial [2].

Despite their obvious advantages, the difficulty of applying the methods de-
scribed in the previous sections in practice must not be underestimated. This
counts no matter whether mechanical verification is the goal or whether hierar-
chically structured, hand-written proofs are used [36, 35]. The examples which
have been presented in the literature [50, 41, 42, 44, 45, 54, 36] have been small
and academic. While the specialized methods of Sect. 5 may allow to lessen
the complexity burden of fault-tolerance considerations, they always impose ad-
ditional proof obligations. Furthermore, it has been repeatedly underlined by
Rushby [57] that formal methods (including those described in this survey) give
no real evidence for attaching some reliability numbers to a system. Even if an
algorithm has been verified to have a specific fault-tolerance property, it is dif-
ficult to say actually how reliable the resulting system is. Also, fault-tolerance
properties are often jeopardized by malfunctions of the underlying operating
system. Thus, formal methods can only be seen in complement with the usual
methods of testing and fault injection [15, 26].

However, tools exists today which offer the possibility to realize the proof
methodologies in practice. Most notably there are PVS [52], and recently also
VSE [27], which seems especially useful because of its refinement mechanism.

7 Conclusions and Future Work

We have presented a survey of methods to specify and verify fault-tolerant sys-
tems which are based on a notion of transformations. Transformations are a
general concept and almost anything where there is a notion of “change” can
be formulated as a transformation. So it has been interesting to formulate fault
tolerance methodologies which do not directly refer to the notion of a transfor-
mation (e.g. multitolerance [7]) within this framework. This seems to be an indi-
cation as if every verifiable fault-tolerance method (e.g. fail-stop processors [60]
or the state machine approach [61]) can be formulated in this way. Transforma-
tions offer the potential of being automated and often a transformation makes it
possible to re-use many parts of an existing proof within a new (fault-tolerance)
context. Thus, transformational formulations can help aid the mechanical ver-
ification of fault-tolerant systems. However, more case studies and experiences

Gaertner F.C.: Transformational Approaches to the Specification ... 689

are needed.

Open problems stated by other authors are the effects of choosing open or
closed systems on recovery transformations [53, p. 113] the problems of conjoin-
ing/transforming liveness properties [2, 53] and incorporating real-time into the
formalisms and proof methods [44, 45, 36, 51]. How to systematically derive
fault-tolerance specifications from fault assumptions has also been described as
difficult [50] and, despite general attempts [24] and case studies [18] has remained
unsolved.

Weber [64] noted in 1989 that the area of security might benefit from results
in the fault-tolerance domain, since the properties which have to be ensured
seem similar. However, it has been argued [47] that many security properties
are “higher-order” properties meaning that they cannot be expressed as sets of
traces and thus fall outside of the safety/liveness domain. It is unclear whether
there also exist similarly sensible higher-order properties in the domain of fault
tolerance.

Answers to all these questions are important, since they can potentially im-
prove our understanding of the fundamental methods necessary to build depend-
able distributed systems.

Acknowledgments

We wish to thank Marc Theisen for clarifying discussions on specification trans-
formations for fault modeling, and Henning Pagnia for reading an earlier version
of this paper. Support by a grant from the Deutsche Forschungsgemeinschaft
(DFG) as part of the “Graduiertenkolleg ISTA” at Darmstadt University of Tech-
nology is also gratefully acknowledged.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, May 1991.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 15(1):73-132, Jan. 1993.

[3] M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a timeout-free failure detector
for quiescent reliable communication. In Proceedings of the 11th International
Workshop on Distributed Algorithms (WDAG97), pages 126-140, Sept. 1997.

[4] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. In Proceedings of the 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC’98), pages 173-182, 1998.

[6] A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015-1027, 1993.

[6] A. Arora and S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In Proceedings of the 18th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS98), May 1998.

[7] A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.
IEEFE Transactions on Software Engineering, 24(1):63-78, Jan. 1998.

[8] A. Arora and S. S. Kulkarni. Designing masking fault tolerance via nonmasking
fault tolerance. IEEE Transactions on Software Engineering, 24(6), June 1998.

[9] O. Babaoglu and K. Marzullo. Consistent global states of distributed systems:
Fundamental concepts and mechanisms. In S. Mullender, editor, Distributed Sys-
tems, chapter 4, pages 55—-96. Addison-Wesley, second edition, 1993.

690 Gaertner F.C.: Transformational Approaches to the Specification ...

[10] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading, Mass., 1988.

[11] F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Transac-
tions on Software Engineering, 11(1):23-31, Jan. 1985.

[12] F. Cristian. Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56-78, Feb. 1991.

[13] E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(8):453-457, Aug. 1975.

[14] K. Echtle. Fehlermodellierung bei Simulation und Verifikation von Fehlertoleranz-
Algorithmen fiir Verteilte Systeme. In F. Belli, S. Pfleger, and M. Seifert,
editors, Software-Fehlertoleranz und -Zuverlissigkeit, number 83 in Informatik-
Fachberichte, pages 73-88. Springer-Verlag, 1984.

[15] K. Echtle and M. Leu. Test of fault tolerant distributed systems by fault injection.
In D. Pradhan and D. Avresky, editors, Fault-Tolerant Parallel and Distributed
Systems, pages 244-251. IEEE Computer Society Press, 1995.

[16] K. Echtle and J. G. Silva. Fehlerinjektion — ein Mittel zur Bewertung der
Mafinahmen gegen Fehler in komplexen Rechnersystemen. Informatik Spektrum,
21(6):328-336, Dec. 1998.

[17] F. C. Gértner. Specifications for fault tolerance: A comedy of failures. Tech-
nical Report TUD-BS-1998-03, Darmstadt University of Technology, Darmstadst,
Germany, Oct. 1998.

[18] F. C. Gértner. An exercise in systematically deriving fault-tolerance specifica-
tions. In Proceedings of the Third European Research Seminar on Advances in
Distributed Systems (ERSADS), Madeira Island, Portugal, Apr. 1999.

[19] F. C. Gértner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31(1):1-26, Mar. 1999.

[20] C. Girault. Proof of protocols in the case of failures. In J. Evans, editor, Paral-
lel processing systems. An advanced course, pages 121-139. Cambridge University
Press, 1982.

[21] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, Cornell University, Computer
Science Department, May 1994.

[22] W. L. Heimerdinger and C. B. Weinstock. A conceptual framework for system
fault tolerance. Technical Report CMU/SEI-92-TR-33, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA, Oct. 1992.

[23] M. P. Herlihy and J. M. Wing. Reasoning about atomic objects. In M. Joseph,
editor, Proceedings of the Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 331 of Lecture Notes in Computer Science, pages
193-208. Springer-Verlag, Sept. 1988.

[24] M. P. Herlihy and J. M. Wing. Specifying graceful degradation. IEEE Transac-
tions on Parallel and Distributed Systems, 2(1):93-104, Jan. 1991.

[25] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[26] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.
IEEE Computer, 30(4):75-82, Apr. 1997.

[27] D. Hutter, H. Mantel, G. Rock, W. Stephan, A. Wolpers, M. Balser, W. Reif,
G. Schellhorn, and K. Stenzel. VSE: Controlling the complexity in formal software
developments. In Proceedings of the International Workshop on Applied Formal
Methods, Boppard, Germany, 1998.

[28] P. Jalote. Fault tolerance in distributed systems. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1994.

[29] T. Janowski. Bisimulation and Fault-Tolerance. Thesis, Department of Computer
Science, University of Warwick, Coventry, UK, February 1996. Also University of
Warwick Department of Computer Science Research Report CS-RR-300.

[30] M. Joseph, A. Moitra, and N. Soundararajan. Proof rules for fault tolerant dis-
tributed programs. Science of Computer Programming, 8(1):43—-67, Feb. 1987.

Gaertner F.C.: Transformational Approaches to the Specification ... 691

[31] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7:17-26, 1993.

[32] S.S. Kulkarni and A. Arora. Compositional design of multitolerant repetitive
Byzantine agreement. In Proceedings of the 18th International Conference on the
Foundations of Software Technology and Theoretical Computer Science, Kharag-
pur, India, 1997.

[33] L. Lamport. A simple approach to specifying concurrent systems. Communica-
tions of the ACM, 32(1):32-45, Jan. 1989.

[34] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, May 1994.

[35] L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600—-
608, Aug./Sept. 1995.

[36] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In H.
Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-
Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Sci-
ence, pages 41-76, Liibeck, Germany, Sept. 1994. Springer-Verlag.

[37] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382—401, July 1982.

[38] J.-C. Laprie, editor. Dependability: Basic concepts and Terminology, volume 5 of
Dependable Computing and Fault-Tolerant Systems. Springer-Verlag, 1992.

[39] B. Liskov and W. Weihl. Specifications of distributed programs. Distributed Com-
puting, 1:102-118, 1986.

[40] Z. Liu. Fault-tolerant programming by transformations. PhD thesis, University of
Warwick, Department of Computer Science, 1991.

[41] Z. Liu and M. Joseph. Transformation of programs for fault-tolerance. Formal
Aspects of Computing, 4(5):442-469, 1992.

[42] Z. Liu and M. Joseph. Specification and verification of recovery in asynchronous
communicating systems. In J. Vytopil, editor, Formal Techniques in Real-time and
Fault-tolerant Systems, chapter 6, pages 137-165. Kluwer, 1993.

[43] Z. Liu and M. Joseph. A formal framework for fault-tolerant programs. In C. M.
Mitchell and V. Stavridou, editors, Mathematics of Dependable Computing, pages
131-148. Oxford University Press, 1995.

[44] Z. Liu and M. Joseph. Verification of fault tolerance and real time. In Proceedings
of the 26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26),
pages 220-229, Sendai, Japan, June 1996. IEEE.

[45] Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and
scheduling. Technical Report 1998/5, Department of Mathematics and Computer
Science, University of Leicester, U.K., 1998.

[46] L. V. Mancini and G. Pappalardo. Towards a theory of replicated processing. In
M. J. Warick, editor, Formal techniques in real-time and fault-tolerant systems,
volume 331 of Lecture Notes in Computer Science. Springer-Verlag, 1988.

[47] J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proceedings of the 1994 IEEE Symposium on Research
in Security and Privacy, pages 79-93, Oakland, CA, 1994.

[48] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of dis-
tributed algorithms. Journal of Algorithms, 11(3):374-419, 1990.

[49] J. Nordahl. Specification and Design of Dependable Communicating Systems.
PhD thesis, Department of Computer Science, Technical University of Denmark,
1992.

[50] J. Nordahl. Design for dependability. In C. E. Landwehr, editor, Proceedings of
the third IFIP International Working Conference on Dependable Computing for
Critical Applications (DCCA-3), pages 29-38. Springer-Verlag, 1993.

[61] J. S. Ostroff. Survey of Formal Methods for the Specification and Design of Real-
Time Systems. Journal of Systems and Software, 18(2):33-60, Apr. 1992.

692 Gaertner F.C.: Transformational Approaches to the Specification ...

[62] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining spec-
ification, proof checking, and model checking. In R. Alur and T. A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in Lecture Notes
in Computer Science, pages 411-414, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

[63] D. Peled and M. Joseph. A compositional framework for fault-tolerance by spec-
ification transformation. Theoretical Computer Science, 128:99-125, 1994.

[64] J. Peleska. Design and verification of fault tolerant systems with CSP. Distributed
Computing, 5(2):95-106, 1991.

[65] K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Transactions on Software Engineering, 12(3):477—
482, Mar. 1986.

[66] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46-57,
Providence, Rhode Island, Oct. 31-Nov. 2 1977. IEEE, IEEE Computer Society
Press.

[67] J. Rushby. Critical system properties: Survey and taxonomy. Reliability Engi-
neering and System Safety, 43(2):189-219, 1994.

[68] H. Schepers. Tracing fault tolerance. In C. E. Landwehr, editor, Proceedings of
the third IFIP International Working Conference on Dependable Computing for
Critical Applications (DCCA-3), pages 39-48. Springer-Verlag, 1993.

[69] H. Schepers and J. Hooman. A trace-based compositional proof theory for fault
tolerant distributed systems. Theoretical Computer Science, 128(1-2):127-157,
June 1994.

[60] R. D. Schlichting and F. B. Schneider. Fail stop processors: An approach to de-
signing fault-tolerant computing systems. ACM Transactions on Computer Sys-
tems, 1(3):222-238, Aug. 1983.

[61] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, Dec. 1990.

[62] R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-
tations: in search of the holy grail. Distributed Computing, 7:149-174, 1994.

[63] H. Volzer. Verifying fault tolerance of distributed algorithms formally: An exam-
ple. In Proceedings of the International Conference on Application of Concurrency
to System Design (CSD98), pages 187-197, Fukushima, Japan, Mar. 1998. IEEE
Computer Society Press.

[64] D. G. Weber. Formal specification of fault-tolerance ad its relation to computer
security. In S. Greenspan, editor, Proceedings of the 5th International Workshop
on Software Specification and Design, pages 273-277, Pittsburgh, PA, May 1989.
IEEE Computer Society Press.

[65] N. Wirth. Program development by stepwise refinement. Communications of the
Association for Computing Machinery, 26(1):70-74, Jan. 1983.

