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Abstract: A matrix method is extended to include the detection of logic hazards in
combinational logic circuits involving EX-OR gates. Essentially, the method generates 0- and
1-sets, or P- and S-sets, of all nodes in each gate level of a circuit progressively until it reaches
the output of the circuit. The sets generated are subsequently used to determine the existence of
static or dynamic hazards.
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1  Introduction

Hazards are unwanted switching transients which may appear at the output of a
combinational circuit and are caused by propagation delays of the input signals. There
are two types of hazards, viz., function and logic hazards, if we classify them by
specific causes. A function hazard is associated with multiple-input changes while a
logic hazard is caused by a single- input change. This paper will only deal with logic
hazards. We can further classify hazards as being static or dynamic by their output
waveforms. The presence of undesirable glitches at the output during the transition of
two input states that have the same steady-state output is called a static hazard. It is a
static 0 (1)-hazard if the steady-state output is 0 (1). Dynamic hazard occurs when the
steady-state output values of two input states are different and the output experiences
more than one change.

The study of hazards in combinational logic circuits in the past [Beister 1974,
McCluskey 1986, Tinder 1991, Almaini 1994, Wakerly 1994, Nelson et al. 1995] has
mainly focused on logic elements other than exclusive-OR (EX-OR) gates.
Comparing to the traditional AND/OR formulation of Boolean functions, the
alternative AND/EX-OR logic approach based on Reed-Muller (RM) expansions
[Green 1986, Almaini 1994] has advantages in certain types of realisations. For
examples, RM circuits have desirable features of ease of complementing and testing
[Reddy 1972], and AND/EX-OR PLAs often require fewer product terms than
corresponding AND/OR PLAs [Sasao and Besslich 1990]. In addition, logic functions
that do not minimise well in the Boolean domain can be reduced substantially if
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implemented in RM logic [Green 1986]. Although the Karnaugh map can be used to
detect hazards for all types of digital gates, it is limited to functions with no more than
six variables. The techniques of exhaustive testing (an extension of the graphical map
method) and compatibility evaluation of the product terms of a modulo-2 sum have
been proposed [Ouyang and Tran 1994] for hazard detection of EX-OR gates.
However, the procedures are unwieldy.

A matrix method for detecting hazards in logic circuits has been reported [Heal
and Page 1993]. However, it only describes the generations of 0- and 1-sets
[McCluskey 1986] for detecting static hazards in combinational circuits with
AND/OR/NAND/NOR gates. This paper has two purposes. It will show how to adopt
and modify the matrix method to accommodate EX-OR gates also in combinational
circuits, and to incorporate the generation of P- and S-sets [McCluskey 1986] for
detecting dynamic hazards. The advantage of the matrix method is that it starts with
the circuit inputs and then follows signals through the circuit one element level at a
time, inspecting each element output along the way to locate hazards.

2 Set Generation

Static logic hazards are caused by two signals (such as x and x’) with opposite steady-
state values taking on the same value when the network signals are changing
[McCluskey 1986]. In analyzing such hazards, literals such as such as x and x’ must
be taken as two different variables rather than complements of the same variable. The
relations xx’ = 0, x + x’ = 1 and other theorems based on these two relations must not
be used to rewrite expressions. The procedure to analyze static logic hazards starts by
forming either a sum-of-products (SOP) or a product-of-sums (POS) expression for
the network function. The Boolean relations x + xy = x and x(x + y) = x are used to
eliminate redundant product terms or sum factors. Each product term in a SOP
expression formed by this procedure corresponds to a "1-set" of the network. For
example, if the SOP expression is f = a’ab + abb’ + abc + b’d, the corresponding 1-
sets are {a’, a, b}, {a, b, b’}, {a, b, c} and {b’, d}. Similarly, each sum factor in a POS
expression obtained by this procedure corresponds to a "0-set" of the network. For
example, if the POS expression is f = (a + b’)(a + d)(b + b’)(b + d)(c + a’ + b’), the
corresponding 0-sets are {a, b’}, {a, d}, {b, b’}, {b, d} and {c, a’, b’}.

In terms of gate behaviour, a set of variables (with or without complement
symbols) is a 0 (1)-set of an element output if (i) whenever all of the variables are
equal to 0 (1), the element output is equal to 0 (1); and (ii) if any variable is removed,
condition (i) no longer holds [McCluskey 1986]. The existence of a static logic hazard
at an element output can be determined by analyzing the 0-sets and 1-sets of the
output signal. To facilitate the generation of these sets at input nodes, the matrix
method [Heal and Page 1993] requires that any AND and NAND gates in a given
combinational circuit are first converted to augmented-OR gates, where an
augmented-OR gate [Nelson 1995] is an OR gate with inverters incorporated into one
or more of its inputs (see Figs. 1 and 2). Any OR gates in the circuit remain
unchanged, and the output bubble of a NOR gate can be cancelled out at any input
where a bubble already exists.
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Rules for 0-set and 1-set generation using an augmented-OR gate can be
formulated [Heal and Page 1993] from Fig.1. The output f = 0 if i1 = … = im = 0 and
c1 = … = cn = 1. The condition for setting i (c) input equal to 0 (1) is defined by its 0
(1)-sets. For example, if the 0-sets for i1 are {U} and {V, W}, then i1 can be set to 0
either by making U = 0 or by making V = W = 0; if the 1-sets for c1 are {X} and {Y,
Z} then c1 can be set to 1 either by making X = 1 or by making Y = Z = 1. A 0-set or
1-set is said to be unstable if it contains at least one pair of complementary variables.
A 1(0)-set is said to be active if all its variables are equal to 1(0).

Figure 1.  Generalized augmented-OR gate

                        (a)                                     (b)                                              (c)

Figure 2.  (a) OR gate  (b) Augmented-OR gate (1 inverted input)
                                  (c) Augmented-OR gate (2 inverted inputs)

Let (0-set)m and (1-set)m be the 0-set and 1-set respectively at node m (where m is
an integer), ' × ' the Cartesian product, and '∪' the set union. The above set-generation
rules can be more compactly defined as follows. For Fig. 2(a),

(0-set)3 = (0-set)1 ×  (0-set)2 (1)
(1-set)3 = (1-set)1 ∪ (1-set)2 (2)

For Fig. 2(b),

(0-set)3 = [(1-set)1]' ×  [(1-set)2]' (3)
(1-set)3 = [(0-set)1]' ∪ (1-set)2 (4)

For Fig. 2(c),

(0-set)3 = [(1-set)1]' ×  [(1-set)2]' (5)
(1-set)3 = [(0-set)1]' ∪ [(1-set)2]' (6)
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3  EX-OR Gate

Let us consider an EX-OR gate (Fig. 3(a)). If we use the Boolean relation, y = x1’x2 +
x1x2’, to convert it into the augmented-OR form as in Fig. 3(b), we have (0-set)7 =
({x1, x1’}{x1, x2}{x1’, x2’}{x2, x2’}) and (1-set)7 = ({x1’, x2}{x1, x2}). From the 0-set, we
have two unstable sets, {x1, x1’} and {x2, x2’}. Since the EX-OR gate is built as a
monolithic chip, the two unstable sets should not be there. Thus in a network, we
cannot replace an EX-OR gate with its augmented-OR form as shown in Fig. 3(b).
However, we can treat an EX-OR gate as an autonomous gate and define the set
generation rule of the EX-OR gate in Fig. 3(a) as

(0-set)3 = {[(1-set)1]’ ×  [(1-set)2]’} ∪ {(0-set)1 ×  (0-set)2} (7)
(1-set)3 = {[(0-set)1]’ ×  (1-set)2} ∪ {(1-set)1 ×  [(0-set)2]’} (8)

If the input of an EX-OR gate has an inverter, simply replace the 0-set at that node by
the complement of its 1-set, and vice versa.

    x2

                 (a)                                                       (b)

Figure 3. (a) EX-OR gate   (b) Its augmented-OR form

4  Static Hazards

To determine both the static logic 1-hazards and 0-hazards from the network 1-sets or
0-sets, we use the following theorem from [McCluskey 1986]:

Theorem: A static logic 1(0)-hazard exists at an element output if and only if (a)
There is a pair of input states that both produce a 1(0)-state at the element output, and
(b) There is no stable 1(0)-set that is active for both input states.

4.1 Algorithm

Let N = the total number of nodes in the circuit, L = last gate level, and nk = number
of nodes at the kth gate level. The algorithm to detect static hazards in a
combinational logic circuit is given as follows [Heal and Page 1993]:

Step 1: Convert any AND and NAND gates to augmented-OR gates.
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Step 2: Label the nodes.
Step 3: Construct the connection matrix, C (N x N).
Step 4: At gate level k = 0, create the initial set matrix (N entries),

S0 = [s1  s2 … sn0  0  0 … 0]T, where sj consists of both the 0- and 1-sets at
the jth node. Based on the generated 0- and 1-sets, examine static hazards
accordingly.

Step 5: To advance to the next gate level to obtain the next set information, perform
the matrix operation, S1 = S0 + C ∗  S0 so that
S1  = [s1  s2 … sn0  sn0+1 … sn0+n1  0  0 … 0]T

Step 6: Examine the 0- and 1-sets of sn0+1, sn0+2, ..., sn0+n1 for static hazards.
Step 7: Repeat steps 5 and 6 until k = L and SL has nonzero entries, i.e.,

SL =[s1  s2 ... sN]T.

In general, Sp+1 = Sp + C ∗  Sp, where p = 0, 1, ..., L - 1, and k = p + 1. In the original
algorithm by Heal and Page (1993), an N x N ‘sets’ matrix Sp is used even though
only the diagonal elements of Sp are involved in the matrix multiplication.
Furthermore, although the results of multiplications are stored in non-diagonal rows
of Sp, they are there only temporarily. Thus, in the above algorithm, it is sufficient to
use Sp with a dimension of N x 1 only. For filling the connection matrix C, every
entry in a row represents the presence of an input. An ‘i’ entry represents an input
signal that is not inverted while a ‘c’ entry means that the input signal is inverted. The
operator ∗  in the algorithm is defined as follows: 0 ∗  0 = 0, 0 ∗  si = 0, c ∗  0 = 0,
i ∗  0 = 0, c ∗  si = si and i ∗  si = si .

4.2 Example

Figure 4.   Circuit for illustration
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k = 0 1 2 3

nk = 6 2 2 1
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Fig. 4 shows a circuit in which any AND or NAND gates have been converted to
augmented-OR gates, and all nodes have been labeled. The connection matrix C is
given below. We obtain S0 = [s1 … s7  0 … 0]T in which each node-set, sj, j = 1..7,
consists of its own input variable in the 0- and 1-sets. Furthermore, S1 = [s1 … s9  0 …
0]T and S2 = [s1 … s10  0 … 0]T where s8, s9 and s10 are given in Table 1. No static
hazard is detected at this stage. Lastly, S3 = [s1… s11 ]

T.
At node 11, we have

0-set = ({x1, x2}{x2, x3'}{x2, x4'}{x1, x1', x2}{x1, x2, x3}{x1, x2', x3'}{x1', x2, x3'}{x1',
x2, x4'}{x2, x3, x3'}{x2, x3, x4'}{x1, x2', x3', x4'}{x1', x2', x3, x4}{x1', x2, x2',
x3, x4}{x1, x1', x2, x2', x3, x3', x4})

1-set = ({x1, x1', x2}{x1, x2, x3}{x1, x2, x4}{x1', x2, x2'}{x1', x2, x3'}{x2, x2', x3}{x2,
x2', x4}{x2, x3, x3'}{x2, x3', x4}{x1, x2', x3', x4'}{x1', x2, x2', x3}{x1', x2, x2 ',
x3, x4}{x1, x1', x2, x3, x3', x4'}).
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⎡
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ii
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iic
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C

Node-set 1-sets 0-sets
s8 {x1}{x2'}{x3'} {x1, x2', x3'}
s9 {x1’}{x3}{x4} {x1', x3, x4}
s10 {x1, x3', x4'}{ x1', x2, x3}

{x1, x2', x3', x4'}{x1', x2, x3, x4}
{x1, x1'}{x1, x2}{x1, x3}{x1', x3'}
{x1', x4'}{x2, x3'}{x2, x4'}{x3, x3'}
{x3, x4'}{x1, x1', x2', x3, x3', x4}

Table 1.  Set information for static hazard.

Recall that in testing a network for static logic hazards, it is only necessary to
generate either the 1-sets or the 0-sets [McCluskey 1986, page 86], although both
types of sets are calculated in the example. For many networks, it is generally easier
to calculate one type of sets rather than the other type.
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Examine only the 1-set. For the unstable set, {x1’, x2, x2’, x3, x4}, there is no way
to make any of the stable sets active. Using the theorem for static logic hazard stated
earlier, when x1 = 0, x3 = 1, x4 = 1 and x2 changes, static logic 0-hazard is possible.
Furthermore, there is also another static logic 0-hazard that may occur in the circuit
when x1 = 0, x3 = 1, x4 = 0, with x2 changing.

5 Dynamic Hazards

The matrix method can also include dynamic hazard detection. In a dynamic hazard,
an output may change several times for a single change in input. As a result, we need
to trace all the paths taken by an input-variable and differentiate them by using
different subscripts. This is an indirect but important way of associating order of
signals as the ‘timing’ aspects is required to detect dynamic hazards.

All the 1-sets are replaced by P-sets and 0-sets by S-sets [McCluskey 1986]. In
essence, A P-set (S-set) is defined and computed in the same manner as a 1-set (0-set)
with the additional requirement that whenever an input variable can propagate to the
output along more than one path, each appearance of that variable must include a
label identifying which path corresponds to the instance of that variable. That is, we
need to trace all the paths taken by an input-variable and differentiate them by
different subscripts. This will be satisfied if whenever a variable is propagated
through a labelled lead, the lead label is added as a subscript to that variable. To
determine dynamic hazards, we use the following corollary from [McCluskey 1986,
page 92]:

Corollary: If a network contains any dynamic hazards, it must contain at least one
pair of unstable sets, one of which is a P-set (1-set) and the other of which is a S-set
(0-set); the pair of unstable sets must share the same unstable variable, and any other
variable that appears in both sets must be complemented in one of the sets and
uncomplemented in the other.

Of course, one can also use the theorem in [McCluskey 1986, page 90] to
examine the existence of dynamic hazard. However, four conditions in the theorem
must be tested in order to detect dynamic hazard.

5.1 Algorithm

The algorithm is the same as in Section 4.1 except modifications in the following
three steps:

Step 2: Label the nodes. For each fan-out, a subscript with the same label along the
path is added to the variable.

Step 4: Create Sk (N x 1) and enter the P-sets and S-sets for the circuit inputs in the
appropriate row. All the variables of the primary input will take up the
subscript of the input line.
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1

3 9

Step 6: For all the rows with new entries, combine the set entries and determine any
dynamic hazards. If the new set is a fan-out branch, the subscript of the line
will be added to the subscript of all the variables in the new set.

5.2 Example

Figure 5.  Circuit in converted and labelled form

Consider the circuit in Fig. 5 for determining the existence of any possible dynamic
logic hazard.
Step 1: Perform necessary conversions so that the circuit contains only EX-OR

and/or augmented-OR gates.
Step 2: Label all the nodes. (For each fan-out, a subscript with the same label along

the path will be added to the variable later.)
Step 3: The following connection matrix (N = 10) is obtained:
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k = 0 1 2 3

nk = 5 2 2 1
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Step 4: The first five rows in C are all primary inputs. Thus, from Fig. 5, we have
S0 = [s1  s2  s3   s4   s5  0  0   0   0   0]T in which the respective P-sets and S-sets
for s1 , …, s5  are given in Table 2 below. After checking with the above
corollary for all the P-sets and S-sets generated so far, no dynamic hazard
exists.

Node-set P-sets S-sets
s1 {W1} {W1}
s2 {X2} {X2}
s3 {Y3} {Y3}
s4 {Z4} {Z4}
s5 {X5} {X5}

Table 2.  Set information for s1 , …, s5.

Step 5: S1 = S0 + C ∗  S0 = [s1  s2  s3   s4   s5   s6  s7   0   0   0]T in which the respective
P-sets and S-sets for s6 and s7  are given in Table 3 below. Note that because
the output of the EX-OR gate in Fig. 5 is a fan-out node, a subscript with the
same label along the path is added to the variable according to the method in
[McCluskey 1986].

Node-set P-sets S-sets
s6 {X2,6, Y3,6'} {X2,6', Y3,6} {X2,6, Y3,6} {X2,6', Y3,6'}
s7 {X2,7, Y3,7'} {X2,7', Y3,7} {X2,7, Y3,7} {X2,7', Y3,7'}

Table 3.  Set information for s6 and s7.

Step 6: After checking with the above corollary for all the P-sets and S-sets
generated so far, no dynamic hazard exists.

Step 7: Go to Step 5.
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Step 5: S2 = S1 + C ∗  S1 = [s1  s2  s3    s4    s5   s6   s7   s8   s9   0]T in which the
respective P-sets and S-sets for s8 and s9  are given in Table 4 below.

Node-set P-sets S-sets
s8 {W1,8} {X5,8’} { X2,6,8, Y3,6,8}

{ X2,6,8’, Y3,6,8’}
{W1,8, X5,8’, X2,6,8, Y3,6,8’}
{W1,8, X5,8’, X2,6,8’, Y3,6,8}

s9 {X2,7,9, Y3,7,9’} {X2,7,9’, Y3,7,9}
{Z4,9}

{Z4,9, X2,7,9, Y3,7,9}
{Z4,9, X2,7,9’, Y3,7,9’}

Table 4.  Set information for for s8 and s9.

Step 6: After checking with the above corollary for all the P-sets and S-sets
generated so far, no dynamic hazard exists.

Step 7: Go to Step 5.
Step 5: S3 = S2 + C ∗  S2 = [s1  s2  s3    s4    s5   s6   s7   s8   s9   s10]

T in
which the P-sets and S-sets for s10 are given in Table 5
below.

Node-set P-sets S-sets
s10 {W1,8,10’, X5,8,10, X2,6,8,10,

Y3,6,8,10’}
{W1,8,10’, X5,8,10, X2,6,8,10’,
Y3,6,8,10}
{Z4,9,10’, X2,7,9,10, Y3,7,9,10}
{Z4,9,10’, X2,7,9,10’, Y3,7,9,10’}

{W1,8,10’, X2,7,9,10’, Y3,7,9,10}
{X5,8,10, X2,7,9,10’, Y3,7,9,10}
{X2,6,8,10, X2,7,9,10’, Y3,6,8,10, Y3,7,9,10}
{X2,6,8,10’, X2,7,9,10’, Y3,6,8,10’, Y3,7,9,10}
{W1,8,10’, X2,7,9,10, Y3,7,9,10’}
{X5,8,10, X2,7,9,10, Y3,7,9,10’}
{X2,6,8,10, X2,7,9,10, Y3,6,8,10, Y3,7,9,10’}
{X2,6,8,10’, X2,7,9,10, Y3,6,8,10’, Y3,7,9,10’}
{W1,8,10’, Z4,9,10’} { X5,8,10, Z4,9,10’}
{X2,6,8,10, Y3,6,8,10, Z4,9,10’}
{X2,6,8,10’, Y3,6,8,10’, Z4,9,10’}

Table 5.  Set information for s10.

Step 6: Check for dynamic hazard using all the P-sets and S-sets
generated so far. Notice that the P-set, {W1,8,10’, X5,8,10,
X2,6,8,10’, Y3,6,8,10}, in s10 of Table 5 and the S-set, {W1,8, X5,8’,
X2,6,8, Y3,6,8’}, in s8 of Table 4 satisfy the corollary for
dynamic hazard stated earlier. Thus a dynamic hazard
exists.

Step 7: Since k = 3 and S3  has nonzero entries, the program stops.

6  Conclusion

We have shown how to modify a matrix method developed by Heal and Page [1993],
for the detection of logic hazards in combinational circuits with EX-OR gates. The
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matrix method generates sets of variables of all nodes in each gate level of a circuit
progressively until it reaches the output of the circuit. In particular, we have defined
the rules for the required set generations at input nodes of EX-OR gates. The sets
generated are subsequently used to determine the existence of static or dynamic
hazards based on McCluskey’s work [1986]. Algorithms and examples are given to
illustrate set generations and the detection of static and dynamic logic hazards. The
results are confirmed by simulations using Xilinx’s FPGAs.
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