A Note on Bounded-Weight Error-Correcting Codes

Russell Bent, Michael Schear, and Lane A. Hemaspaandra
(Department of Computer Science
University of Rochester
Rochester, NY 14627
\{rbent,mschear,lane\}@cs.rochester.edu)
Gabriel Istrate
(Center for Nonlinear Studies and CIC-3 Division
Los Alamos National Laboratory
MS 258, Los Alamos, NM 87545.
gistrate@cnls.lanl.gov)

Abstract

This paper computationally obtains optimal bounded-weight, binary, error-correcting codes for a variety of distance bounds and dimensions. We compare the sizes of our codes to the sizes of optimal constant-weight, binary, error-correcting codes, and evaluate the differences.

Key Words: error-correcting codes, bounded-weight codes, constant-weight codes, experimental algorithms, heuristic algorithms, exact solutions.
Category: H.1.1, E.4.

1 Introduction

One goal of coding theory is to construct classes of codes having optimal size. Studies have investigated versions of this problem for classes of codes with various regularity properties, such as linear codes over finite fields [Brouwer], binary self-dual codes [Conway, Pless and Sloane (92)], mixed binary-ternary codes [Brouwer et al. (97)], and various classes of spherical codes [Sloane].

Two such important cases concern determining the values of $A(n, d)$ and $A(n, d, w)$, where $A(n, d)$ is the number of codewords in the largest binary code of length n having minimum distance d, and $A(n, d, w)$ is the number of codewords in the largest binary code of length n, minimum distance d, and weight w. Optimal values for $A(n, d)$ and $A(n, d, w)$ have been tabulated in [Litsyn, Rains and Sloane] and [Rains and Sloane], respectively.

It is conceivable that significant improvements in optimal code size could be obtained by relaxing the restriction on the code weight in the definition of $A(n, d, w)$ from "equal to w " to "upper-bounded by w," because there would then be a greater number of words potentially available for inclusion in the codes. We present optimal, bounded-weight, binary, error-correcting codes for a variety of distance bounds and dimensions. The method we employ to obtain the optimal codes is based on the observation that finding optimal bounded-weight codes can be transformed to finding the size of a maximum clique in a suitably defined graph. The clique-finding is accomplished primarily using the branch and bound search used in [Brouwer et al. (97)], (see also [Applegate and Johnson] and the discussion later in this paper).

2 Preliminaries

Let F be some finite set of characters-the alphabet. A word of length n over F is an element of F^{n}. A code over F of size n is a set of words of length n over F. A code over the alphabet $\{0,1\}$ is called binary. Throughout this paper, we use the alphabet $F=\{0,1\}$.

The distance, d, of a code is the smallest Hamming distance between any two codewords in the code. If we have two codewords, x and y, both of length n, we can represent these two words as $x_{1} x_{2} x_{3} \cdots x_{n}$ and $y_{1} y_{2} y_{3} \cdots y_{n}$, where x_{j} is the $j^{t h}$ bit in x. The Hamming distance between x and y is the size of the set, $\left\{j: 1 \leq j \leq n \wedge x_{j} \neq y_{j}\right\}$. The weight, w, of a binary word, x, is equal to the number of 1 s in x. For a constant-weight (w) code, every word in the code has the same weight, w. In a bounded-weight (w) code, every word has at most w ones.

The standard reduction of finding optimal values of $A(n, d)$ and $A(n, d, w)$ to the problem of determining a maximum clique in a graph is as follows. The graph's vertices represent binary strings of length n (and legal weight, when appropriate). Two vertices are joined by an edge if and only if their Hamming distance is at least d.

It is easily seen that the connection between optimal code size and maximum clique in a suitably constructed graph carries over to the case of bounded-weight codes, and we indeed use exactly that in this paper.

3 Results and Discussion

The constant-weight bounds, many tight, tabulated by Sloane were obtained from a variety of sources and methods [Rains and Sloane]. An elegant method for finding optimal codes of constant-weight is to use an algebraic formula. Methods of creating such formulas for certain cases are presented in [Brouwer et al. (90)]. No such algebraic formulas for instances of bounded-weight codes are available yet. In the absence of such a method we tried various other methods for obtaining good sets of codewords. Many of the algorithms used were bounded-weight variants of those suggested in the literature for calculating good constant-weight codes. These methods included simulated annealing [El Gamel et al. (87)], genetic algorithms [Vaessens, Aaarts and van Lint (93)], and a randomized greedy heuristic search. The codes generated by these methods were beaten or equaled by our final method of obtaining codes, which was creating an appropriate graph and seeking a large (in fact, usually maximum-size) clique via different clique-finding algorithms.

Since the problem of finding a maximum clique in a graph has been thoroughly investigated [Johnson and Trick (93)], it is natural to use a reduction to this problem as our basis for finding good bounded-weight codes. The reduction is accomplished by creating the graph of possible codewords acceptable under the parameters for length and weight. Each possible codeword is represented by a vertex in the graph. If two codewords have a proper Hamming distance, then an edge is placed between them. The largest clique in the graph is representative of a maximum set of codewords such that the set meets all the parameters.

We used two clique-finding algorithms suggested in [Brouwer et al. (97)]. The first algorithm is a basic branch and bound search. In the worst case, it will search all possible combinations of nodes for cliques, but in practice it keeps track of a best solution and travels only those paths that have the potential to beat the current best solution. This algorithm will always find a maximum-size clique. We used a publicly available coding from [Applegate and Johnson], (see also [Carragan and Pardalos (90)]). The second algorithm is a variant of semiexhaustive greedy search. This algorithm may not always find the largest clique. The algorithm begins by creating two sets of nodes. The first set is nodes that are part of the clique being created and the second set is nodes that can be added to the clique set without disrupting the clique property of the set. This available node set initially contains all the nodes and the clique set is initially empty. A node is chosen from the nodes in the available set. Those nodes that are not connected to the chosen node are eliminated from the available set. This process is repeated until the number of nodes in the available set drops below a user-defined threshold, y. Once y is reached, the branch and bound algorithm is employed on the available set. The nodes are selected as follows. For a user-defined number x, x nodes are chosen at random from the available node set. The node with the most edges in the set of x nodes is chosen. We used a publicly available coding, originally by Johnson, as modified by Applegate and Johnson (see [Applegate and Johnson], also [Johnson et al. (91)]). For our purposes, good results were achieved when $x=0.1 s$, where s is the number of nodes in the original graph, and $y=100$. We ran the algorithm a thousand times in order to increase the odds of finding the largest clique.

The branch and bound algorithm was used on parameters where the optimal constant-weight code sizes were known and the search spaces were small enough to allow results to be obtained in reasonable amounts of time. For example, it took forty-one CPU minutes to calculate $A(9,4,4)$ and this was considered reasonable. On the other hand, the calculation of $A(9,4,7)$ was terminated as it was taking an unreasonable amount of time. However, running the greedy algorithm one thousand times on $A(9,4,7)$ took just under seventy two CPU minutes. ${ }^{1}$

From our results, it is now clear that, with regards to changing from constantweight to bounded-weight, there is little or no increase in number of codewords in the best code until constant-weight codes become handicapped with a decrease in search space. (As the weight of a constant-weight code increases, the search space increases initially, but then begins to decrease once $w>\left\lceil\frac{n}{2}\right\rceil$. However, in the case of bounded-weight codes, the search space continues to increase as w approaches n.) It is important to note that where there are increases in the number of words in bounded-weight codes over constant-weight codes, these new bounded-weight codes can often be obtained trivially. For example, if $w \geq d$, a bounded-weight code can be created by taking the constant-weight code at $A(n, d, w), w \geq d$ and adding the word of all 0s. This is because the word of all 0s has a Hamming distance at least d from all the words in the constant-weight code $A(n, d, w)$, when $w \geq d$. Other bounded-weight codes can be created in this manner by patching together known constant-weight codes.

[^0]| Length (n) | Weight (w) | Constant Weight | Bounded Weight |
| :---: | :---: | :---: | :---: |
| 6 | 3 | 4 | 4 |
| 6 | 4 | 3 | 4 |
| 6 | 5 | 1 | 4 |
| 6 | 6 | 1 | 4 |
| 7 | 3 | 7 | 7 |
| 7 | 4 | 7 | 8 |
| 7 | 5 | 3 | 8 |
| 7 | 6 | 1 | 8 |
| 7 | 7 | 1 | 8 |
| 8 | 3 | 8 | 8 |
| 8 | 4 | 14 | 15 |
| 8 | 5 | 8 | 15 |
| 8 | 6 | 4 | 16 |
| 8 | 7 | 1 | 16 |
| 8 | 8 | 1 | 16 |
| 9 | 3 | 12 | 12 |
| 9 | 4 | 18 | 19 |
| 9 | 5 | 18 | 19^{\star} |
| 9 | 6 | 12 | 19^{\star} |
| 9 | 7 | 4 | 19^{\star} |
| 9 | 8 | 1 | 20^{\star} |
| 9 | 9 | 1 | 20^{\star} |
| 10 | 3 | 13 | 13 |
| 10 | 4 | 30 | 31^{\star} |
| 11 | 6 | 66 | 71^{\star} |

Table 1: Code sizes for distance 4. Note: The values superscripted with " \star " were obtained through greedy search.

Clearly, a lower bound for bounded-weight codes is

$$
\max _{m: 0 \leq m<d}\left(\sum_{j: 0 \leq j \leq w} A(n, d, j)\right)
$$

Results from the two clique-finding algorithms seem to usually merely meet this bound, and occasionally (see discussion below) beat it. Tables 1, 2, and 3 illustrate these results. It must be noted that the performance of the semiexhaustive search has only been tested on those parameters where the entire graph can be created and stored in memory. It remains to be seen if patched codes can be matched or beaten easily in other cases.

We now discuss more broadly our results. As noted above, in most cases the best bounded-weight codes we obtain are in fact such that codes of optimal sizes are also provided by "patching together" existing optimal constant-weight codes. However, this does not mean that that part of our paper makes no contribution. Before our paper, it remained possible that there existed bounded-weight codes for these cases having size larger than the patched-together codes. Our paper, via in many cases (namely, in all table lines other than the nine superscripted with

Length (n)	Weight (w)	Constant Weight	Bounded Weight
8	4	2	2
8	5	2	2
8	6	1	2
8	7	1	2
8	8	1	2
9	4	3	3
9	5	3	4
9	6	3	4
9	7	1	4
9	8	1	4
9	9	1	4
10	4	5	5
10	5	6	6
10	6	5	6
10	7	3	6
10	8	1	6
10	9	1	6
10	10	1	6
12	6	22	23^{\star}

Table 2: Code sizes for distance 6. Note: The value superscripted with " \star " was obtained through greedy search.
asterisks) establishing the maximum size achievable by any legal code obeying the parameters, removes this possibility. Additionally, our work shows that in some cases the obvious patching together that we mention does not achieve a maximum-sized code. For example, the size 16 code obtained for $A(8,4,6)$ is such a case (as, since $A(8,4,2)$ obviously is exactly 4 , the relevant patched-together codes are of size $8+4$ and of size $14+1$, and thus both fall short of size 16).

We now turn to the question of whether, in light of our results, boundedweight codes seem wise to use. Bounded-weight codes obviously give no fewer codewords (in a maximum-sized code) that their sister constant-weight codes. Our tables show that in many cases they give strictly more words. Of course, as w increases beyond $\lfloor n / 2\rfloor$ the size of the word-space of bounded-weight codes becomes extremely rich relative to that of constant-weight codes (which starting at weight $\lceil n / 2\rceil$ have contracting word-spaces as w increases), and even for smaller (but nonzero) values of w their word space is of course richer-which is exactly what opens up the possibility of larger-sized codes.

However, this does not necessarily mean that it is wise to use bounded-weight codes. As our results show, even maximum-sized bounded-weight codes give scant improvement over their sister constant-weight codes, at least in the range$w \leq\lfloor n / 2\rfloor$-in which the bounded-weight codes don't have a prohibitively unfair advantage in search-space size. Indeed, in this range, the increase in code size we found is disappointing, and as our codes in this range are all maximum-sized, this disappointment reflects the actual, optimal state of such codes. Additionally, there is a huge cost in adopting bounded-weight codes. In particular, the deepest direct advantage of constant-weight is that their weight provides an extra type

Length (n)	Weight (w)	Constant Weight	Bounded Weight
8	5	1	2
8	6	1	2
8	7	1	2
8	8	1	2
9	5	2	2
9	6	1	2
9	7	1	2
9	8	1	2
9	9	1	2
10	5	2	2
10	6	2	2
10	7	1	2
10	8	1	2
10	9	1	2
10	10	1	2
11	5	2	2
11	6	2	2
11	7	2	2
11	8	1	2
11	9	1	2
11	10	1	2
11	11	1	2
12	5	3	3
13	5	3	3
14	7	8	8^{\star}

Table 3: Code sizes for $d=8$. Note: The value superscripted with " \star " was obtained through greedy search.
of error detection. Bounded-weight codes sacrifice this extra line of protection.
However, as a final comment, we mention that maximum-sized codes may have potential future uses in alternate models of computation/communication. Though this is currently hypothetical, it is not entirely implausible. Consider for example some future alternate model of information (storage or) transmissionperhaps biological, perhaps electrical, perhaps something else-in which each (stored or) transmitted "word" has n binary "bits" (which might be represented via genetic material, or via charged particles in a given location, or so on) but such that, due to constraints of the (storage or) transmission medium, if more than w of the bits are "on" there is the possibility that the information in the word will degrade, or that the computer or transmission lines will incur physical damage. Possible reasons might include power limitations, heat dissipation, or attraction between biological components. In this admittedly extremely hypothetical setting, bounded-weight codes might play a valuable role, as their limitation would be exactly suited to the physical constraints imposed by the (storage or) transmission medium.

Acknowledgments

We thank the anonymous J.UCS referees for helpful comments. The authors were supported in part by NSF grants 9322513, 9513368/DAAD-315-PRO-foab, 9701911,9725021 , and $9815095 / D A A D-315-P P P-g u ̈-a b$. This work was done while Gabriel Istrate was attending the University of Rochester.

References

[Applegate and Johnson]
D. Applegate and D. Johnson. Clique-finding program dfmax.c. Available from ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers.
[Brouwer et al. (97)] A. Brouwer, K. Hamalainen, P. Ostergard, and N. Sloane. Bounds on mixed binary/ternary codes. IEEE Transactions on Information Theory, IT-44, 1 (1997), 1334-1380.
[Brouwer] A. Brouwer. Bounds on the minimum distance of linear codes. Available at http://www.win.tue.nl/math/dw/voorlincod.html.
[Brouwer et al. (90)] A. Brouwer, J. Shearer, N. Sloane, and W. Smith. A new table of constant weight codes. IEEE Transactions on Information Theory, IT-36, 6 (1990), 1334-1380.
[Carragan and Pardalos (90)] R. Carraghan and P. Paradalos. An exact algorithm for the maximum clique problem. Operations Research Letters, 9 (1990), 375382.
[Conway, Pless and Sloane (92)] J. Conway, V. Pless, and N. Sloane. The binary selfdual codes of length up to 32: A revised enumeration. J. Combinatorial Theory, Series A, 60, 2 (1992), 183-195.
[El Gamel et al. (87)] A. El Gamel, L. Hemachandra, I. Shperling, and V. Wei. Using simulated annealing to design good codes. IEEE Transactions on Information Theory, IT-33, 1 (1987), 116-123.
[Johnson et al. (91)] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated annealing: An experimental evaluation-Part II, graph coloring and number partitioning. Operations Research, 39, 3 (1991), 378-406.
[Johnson and Trick (93)] D. Johnson and M. Trick, editors. Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, number 26 in DIMACS series in Discrete Mathematics and Theoretical Computer Science. A.M.S., 1993.
[Litsyn, Rains and Sloane] S. Litsyn, E. Rains, and N. Sloane. Table of nonlinear binary codes. Available at http://www.research.att.com/ njas/codes/And.
[Rains and Sloane] E. Rains and N. Sloane. Table of constant weight binary codes. Available at http://www.research.att.com/~njas/codes/Andw/.
[Sloane] N. Sloane. Tables for various types of spherical codes. Available from http://www.research.att.com/~njas/.
[Vaessens, Aaarts and van Lint (93)] R. Vaessens, E. Aarts, and J. van Lint. Genetic algorithms in coding theory: A table for $A_{3}(n, d)$. Discrete Applied Mathematics, 45, 1 (1993), 71-87.

Appendix: Codes

This section presents codes that give the values in Tables 1, 2, and 3.

$\underline{A(6,4,3)}$	A(8,4,3)	A(8, 4, 7)
000111	00000001	00001111
011001	00101010	00110011
101010	00110100	01010101
110100	01001100	01101001
A(6,4,4)	01010010	10010110
000000	10011000	10101010
010111	10000110	11001100
101011	11100000	11110000
111100		00011000
A(6,4,5)		00100100
000000	$A(8,4,4)$	01000010
011110	00000000	10000001
111001	00111100	10111101
100111	01011010	11011011
$\underline{A(6,4,6)}$	01101001	11100111
000000	10010110	
001111	10100101	
110011	11000011	
111100	00110011	
$A(7,4,3)$	01010101	
0000111	01100110	
0011001	10011001	
0101010	10101010	
0110100	11001100	
1001100	00001111	
1010010	11110000	$\frac{A(8,4,8)}{00001111}$
1100001		0000110011
$\underline{A(7,4,4)}$		01010101
0000000	A(8,4,5)	01101001
0101011	00000000	10010110
0110101	00111100	10101010
1011001	11011000	11001100
1101100	11100100	11110000
1110010	01001101	00011000
1000111	01010110	00100100
0011110	01101010	01000010
$\underline{A(7,4,5)}$	01110001	01111110
0000000	10001110	10000001
0101101	10010101	10111101
1010101	10101001	11011011
0110011	10110010	11100111
0011110	00011011	
1001011	00100111	
1100110	11000011	
1111000		
$\underline{A(7,4,6)}$		
0000000	$A(8,4,6)$	
0001111	00001111	
0110011	00110011	
0111100	01010101	
1010101	01101001	$A(9,4,3)$
1011010	10010110	000000111
1100110	10101010	000011001
1101001	11001100	000101010
$\underline{A(7,4,7)}$	11110000	001001100
0000000	00011000	100010100
0001111	00100100	100100001
0110011	01000010	101000010
0111100	01111110	011000001
1010101	10000001	010100100
1011010	10111101	110001000
1100110	11011011	001110000
1101001	11100111	010010010

$A(9,4,4)$
000000000
001101010
010101100
011000110
100111000
000001111
000110011
101001100
101000011
001011001
111010000
110100010
010011010
110001001
011100001
100010110
001110100
100100101
010010101

$A(9,4,5)$
000000000 001101010 010101100 011000110 100111000 000001111 000110011 101001100 101000011 001011001 111010000 110100010 010011010 110001001 011100001 100010110 001110100 100100101 010010101
$A(9,4,6)$ 000000000 001101010 010101100 011000110 100111000 000001111 000110011 101001100 101000011 001011001 111010000 110100010 010011010 110001001 011100001 100010110 001110100 100100101 010010101

$A(9,4,7)$
000000000
001101010
010101100
011000110
100111000
000001111
000110011
101001100
101000011
001011001
111010000
110100010
010011010
110001001
011100001
100010110
001110100
100100101
010010101

$A(9,4,8)$
$\overline{000000000}$ 001101010 010101100 011000110 100111000 000001111 000110011 101001100 101000011 001011001 111010000 110100010 010011010 110001001 011100001 100010110 001110100 100100101 010010101 111011111
$A(9,4,9)$
000000000
001101010
010101100
011000110 100111000 000001111 000110011 101001100 101000011 001011001 111010000 110100010 010011010 110001001 011100001 100010110 001110100 100100101 010010101 111111011
$A(10,4,3)$
0000000001
0000101010
0000110100
0001001100
1100000100
1001100000
0101000010
0010000110 0011010000 0110100000
1010001000
0100011000
1000010010
$A(10,4,4)$
$\overline{0000100111}$
0010110001
0010101010
0000011110
0011000011
0001011001
0001101100
0001110010
0010001101
1000110100
0110010010
1000010011
0100010101
1001000101
1010011000
0100111000
1000101001
1010000110
1011100000
0110100100
0100001011
0101100001
1001001010
0111001000
0101000110
0000000000
1110000001
1101010000
0011010100
1100100010
1100001100

$A(11,4,6)$	A(8,6,4)	$A(10,6,7)$
00110111010	00000011	0000000000
00001111110	11110000	0111101100
00101110011		1010100111
10101111000	$\frac{A(8,6,5)}{00000001}$	1100111010
10111100010	00000001	1011011001
10011011010	01111100	0101010111
10000111011	$\frac{A(8,6,6)}{}$	
00011101011	$\overline{00000000}$	0000000000
01011110010	11111100	1101100011
01001111001		1001111100
10011110001	A(8,6, 7)	1001111100
00010111101	$\overline{00000000}$	1110011010
10010110110	01111110	0110101101
00011010111	$A(8,6,8)$	- ${ }^{\text {a }}$ (10, 6,9)
11001101010	$\frac{A(8,6,8)}{00000000}$	$A(10,6,9)$
10101001011	00111111	0000000000
10001100111		0001111110
01010011011	$A(9,6,4)$	1110001110
11010111000	000000011	0111010101
11001010011	110010100	1011101001
00111011001	001111000	1100110011
10001011101	$A(9,6,5)$	$A(10,6,10)$
10110101001	$\frac{A(9,6,5)}{00000111}$	O000000000
11011001001	101110100	0000111111
10101010110	110011001	0111000111
11010100011	011101010	1110110001
10011101100		1101101010
01101011010	$\frac{A(9,6,6)}{000000000}$	1011011100
10010001111	111111000	$A(12,6,6)$
11000011110	001110111	010010111100
10100101110	110001111	011100101001
00100011111		001000011111
10110011100	$A(9,6,7)$	011001110010
00111001110	$\overline{000000000}$	011110000110
11111010000	111110001	001011100101
11011000110	011101110	110000100111
11110001010	100011111	111010010001
11100011001	$A(9,6,8)$	000110110011
11100110010	$\frac{A(8,6,8)}{000000000}$	100011010110
01011011100	001111110	000000000000
10111000101	111001101	101100110100
10100110101	110110011	000101101110
01111000011		010011001011
11010010101	$A(9,6,9)$	100001111001
01100101011	000000000	010101010101
01001001111	000111111	110111100000
01000110111	111000111	100110001101
00110100111	111111000	110100011010
11000101101		111001001100
01010101110	$\frac{A(10,6,4)}{0000001111}$	001111011000
11101100001	000000111	101101000011
01100000000	0001110001	101010101010
00001100000	0110010010	
00000000011	1010100100	A (8,8,5)
10000001000	1101001000	$\overline{00000111}$
00010010000	$A(10,6,5)$	11111000
11100000111	1111000001	$\underline{A(8,8,6)}$
01100111100	0001011101	00000011
01101010101	1000110011	11111100
01111101000	0110011010	
01011100101	1100101100	$\frac{A(8,8,7)}{00000101}$
11001110100	0011100110	00000101
00101101101		11111010
01110110001	A(10,6,6)	$A(8,8,8)$
01110001101	0000000000	$\overline{00100001}$
00111110100	1111001100	11011110
01101100110	0011010111	
01110010110	1100100111	$A(9,8,5)$
11110100100	1001111010	000000111
11101001100	0110111001	111110000

$\frac{A(9,8,6)}{000000111}$	$\frac{A(10,8,9)}{0000000000}$	$\frac{A(11,8,11)}{00000000000}$
111110000	0111111110	00011111111
$\frac{A(9,8,7)}{000000001}$	$\frac{A(10,8,10)}{111100000}$	$\frac{A(12,8,5)}{000000000111}$
111111100	0000011111	011100011000
$\frac{A(9,8,8)}{000000000}$	$\frac{A(11,8,5)}{11111000000}$	100011110000
111111110	00100101110	$A(13,8,5)$
$\frac{A(9,8,9)}{000000000}$	$\frac{A(11,8,6)}{00000000011}$	01110000001110
011111111	00011111100	1000111100000
$\frac{A(10,8,5)}{1111100000}$	$\frac{A(11,8,7)}{A(14,8,7)}$	
0000000111	11111000000	10010100111100
$\frac{A(10,8,6)}{001111110}$	00000100110	11100011101000
1100010000	$\frac{A(11,8,8)}{000011111111}$	00110110010100
$\frac{A(10,8,7)}{1111111000}$	11110110001	11001100001011
000001010	$A(11,8,9)$	10011011010010
$\frac{A(10,8,8)}{0000000000}$	11110110001	00111001001101
1111111100	$A(11,8,10)$	01000001110111
	00000000000	

[^0]: ${ }^{1}$ These CPU times were obtained using a Sun Ultra 10.

