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1 Introduction

Pseudo-Wajsberg algebras are generalizations of Wajsberg algebras. The latter
were introduced by Mordchaj Wajsberg in [10] and studied by Font, Rodriguez
and Torrens in [7]. Pseudo-Wajsberg algebras were introduced in [2] (also [1] )
with the explicit purpose of providing a concept categorically equivalent to that
of pseudo-MV algebra , and which will have the same relationship with Wajsberg
algebras as pseudo-MV algebras have with MV algebras. The concept of MV
algebra is the most intensively studied algebraic counterpart of Lukasiewicz's
calculus (see [3], [4], [5] and [6] ), and pseudo-MV algebras are a non-commutative
generalization of it, recently introduced by G. Georgescu and A. Iorgulescu in
[8] and [9].

The desired categorical equivalence between pseudo-Wajsberg algebras and
pseudo-MV algebras was established in [2] , but several other interesting prop-
erties of pseudo-Wajsberg algebras emerged, especially related to their order
structure (and not necessarily connected to their presentation as pseudo-MV
algebras). These properties justify a continuation of the study of this concept,
and the present paper is a step towards this goal.

In section 2 we present the de�nition of pseudo-Wajsberg algebras, their
relation to Wajsberg algebras, and some �rst properties of pseudo-Wajsberg
algebras which derive gradually from the axioms. Almost all the results are
presented without proofs, the material being contained in [2], to which we refer
the reader for details. The presentation di�ers from that in [2] in certain points:
we give here a more simple and direct proof of property (P10) (the equivalence
of the two de�nitions of the order relation), we give several de�nitions of ^, and
derive relations (A) and (B). The result ending this section, which establishes
the fact that any pseudo-Wajsberg algebra has an underlying bounded lattice
structure with two quasi-complements, has its proof in results contained in [2].

The rest of the paper is devoted to the presentation of new results.
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In section 3 some further relations between the pseudo-Wajsberg algebra
operations and the lattice operations are established. These relations are inspired
from similar ones holding in Wajsberg algebras, most of them presented in [7],
and are important in the sequel.

In section 4 another important result from [7] , a residuation result, is gen-
eralized for pseudo-Wajsberg algebras. Two theorems are proven, which to-
gether state that pseudo-Wajsberg algebras are categorically equivalent to (non-
abelian) residuated bounded ordered monoids satisfying some supplementary
conditions. The two implications of a pseudo-Wajsberg algebra appear as the
right and left residuals of this underlying monoid structure. A result is also es-
tablished which allows the expression of the lattice operation ^ in terms of the
monoid multiplication.

Finally, in section 5 some equivalent characterizations of the Boolean center of
a pseudo-Wajsberg algebra are given. The results are inspired by similar results
in [9] , but the proofs are independent and rely entirely on properties of pseudo-
Wajsberg lattices, making no use of their categorical equivalence to pseudo-MV
algebras.

2 Pseudo-Wajsberg algebras: de�nitions and �rst results

De�nition 2.1 An algebra (A;!;�; 1) of type (2; 1; 0) is called a Wajsberg al-
gebra i� the following axioms hold:

(Wajs1) 1! x = x
(Wajs2) (x! y)! y = (y ! x)! x
(Wajs3) (x! y)! [(y ! z)! (x! z)] = 1
(Wajs4) (x� ! y�)! (y ! x) = 1

De�nition 2.2 An algebra < A;!;;;�;�; 1 > of arrity < 2; 2; 1; 1; 0 > will
be called a pseudo-Wajsberg algebra i� it satis�es axioms (W1) - (W6).

(W1) (a) 1! x = x
(b) 1; x = x

(W2) (x; y)! y = (y ; x)! x = (y ! x); x = (x! y); y
(W3) (a) (x! y)! [(y ! z); (x! z)] = 1

(b) (x; y); [(y ; z)! (x; z)] = 1
(W4) 1� = 1� (and let 0 denote this element).
(W5) (a) (x� ; y�)! (y ! x) = 1

(b) (x� ! y�)! (y ; x) = 1
(W6) (x! y�)� = (y ; x�)�

We have the following result which gives us Wajsberg algebras as a particular
case of pseudo-Wajsberg algebras.

Proposition 2.3 A pseudo-Wajsberg algebra in which the two implications co-
incide is a Wajsberg algebra.

Let us now derive the �rst properties of pseudo-Wajsberg algebras. The fol-
lowing are consequences of axioms (W1)-(W3).
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Proposition 2.4 In an algebra < A;!;;;�;�; 1 > which satis�es axioms
(W1), (W2) and (W3), the following equalities and implications hold:

(P1) (a) x! x = 1
(b) x; x = 1

(P2) (a) If x! y = 1 and y ! x = 1, then x = y.
(b) If x; y = 1 and y ; x = 1, then x = y.
(c) If x! y = 1 and y ; x = 1, then x = y.

(P3) (a) (x! 1); 1 = 1
(b) (x; 1)! 1 = 1

(P4) (a) x! 1 = 1
(b) x; 1 = 1

(P5) (a) If x! y = 1 and y ! z = 1, then x! z = 1.
(b) If x; y = 1 and y ; z = 1, then x; z = 1.

(P6) (a) x! (y ; x) = 1
(b) x; (y ! x) = 1

(P7) x! (y ; z) = 1() y ; (x! z) = 1
(P8) (a) (x! y); [(z ! x)! (z ! y)] = 1

(b) (x; y)! [(z ; x); (z ; y)] = 1
(P9) x! (y ; z) = y ; (x! z)

The proofs can be found in [2].
Next follow some properties which are consequences of axioms (W1)-(W5).

Proposition 2.5 In an algebra < A;!;;;�;�; 1 > which satis�es axioms
(W1)-(W5) the following equalities are true:

(C1) (a) (x� ; 0)! x = 1
(b) (x� ! 0); x = 1

(C2) 0! x = 1 = 0; x
(C3) (a) x! 0 = x�

(b) x; 0 = x�

(C4) (x�)� = x = (x�)�

(C5) (a) x� ! y� = y ; x
(b) x� ; y� = y ! x

(C6) x� ! y = y� ; x

Again the proofs can be found in [2].
Next, we prove by purely algebraic manipulations the following equivalence.

Lemma 2.6 We have

x! y = 1 () x; y = 1

Proof: Suppose x! y = 1. We have

y = 1; y = (x! y); y = (x; y)! y

by (W1)(b), our hypothesis, and (W2). Replacing y in this form in x ; y we
get:

x; y = x; [(x; y)! y] = (x; y)! (x; y) = 1

by (P9) and (P1)(a). Similarly for the reverse implication. 2
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In an algebra as above, let us de�ne the following relation:

x � y () x! y = 1 () x; y = 1

It is re
exive by (P1), antisymmetric by (P2) and transitive by (P5), and thus it
de�nes a partial order on A, with greatest element 1 by (P4), and �rst element
0 by (C2).

The following result states that both negations reverse the order.

Lemma 2.7 We have

(C7) x � y () y� � x� () y� � x�

Proof: Use (C5)(a) and (b) and the alternative de�nitions of the order. 2
In every pseudo-Wajsberg algebra we also have the following equalities, which

are equivalent to axiom (W6) in a straightforward manner using (C4).

(C8) (a) (x! y)� = (y� ; x�)�

(b) (x; y)� = (y� ! x�)�.

Some �rst relationships between the order relation and the implications are
established next.

Proposition 2.8 The following are true for every x; y; z 2 A:
(O1) (a) x! y � (y ! z); (x! z)

(b) x; y � (y ; z)! (x; z)
(O2) (a) x! y � (z ! x)! (z ! y)

(b) x; y � (z ; x); (z ; y)
(O3) (a) x � y ! x

(b) x � y ; x
(O4) x � y ! z () y � x; z
(O5) (a) x � y =) y ! z � x! z

(b) x � y =) y ; z � x; z
(O6) (a) x � y =) z ! x � z ! y

(b) x � y =) z ; x � z ; y

Proof: (O1) is a direct transcription of axiom (W3) in terms of the order �,
and (O2) is a similar transcription of properties (P8). (O3) is immediate from
(P6) and the de�nition of �, and (O4) from (P7).

(O5) follows from (W3) and (W1), again using the de�nition of �. In a similar
manner (O6) follows from (P8) and (W1). 2

De�ne now the binary operation
x _ y : = (x! y); y = (y ! x); x =

= (x; y)! y = (y ; x)! x:

where the last equalities are given by axiom (W2).

Proposition 2.9 x _ y is a supremum for x and y relative to � on A.

Proof. The proof can be found in [2], where two separate orders were introduced,
consequently two separate operations, _1 and _2, were de�ned, using only the
�rst and last equalities of (W2), and they were proven separately to be sups,
thus implying the equality of the two orders. 2
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De�ne two binary operations on a pseudo-Wajsberg algebra A by:

x^1y := [x; (x! y)�]� = [(x! y)! x�]�

x^2y := [y ! (y ; x)�]� = [(y ; x); y�]�

where the last two equalities hold in view of (W6).
Also from [2] we give without proof the following results:

Proposition 2.10 x ^1 y is an in�mum for x and y on A.

Proposition 2.11 x ^2 y is an in�mum for x and y on A.

Corollary 2.12 x ^1 y = x ^2 y.

Since x ^1 y = x ^2 y we will denote this operation by ^, and we have the
following eight alternative de�nitions for it, where the �rst three equalities follow
from the de�nitions and the equality x^1 y = x^2 y, and the last ones from the
commutativity of the inf.

x ^ y : = [x; (x! y)�]� = [(x! y)! x�]� =
= [y ! (y ; x)�]� = [(y ; x); y�]� =
= [y ; (y ! x)�]� = [(y ! x)! y�]� =
= [x! (x; y)�]� = [(x; y); x�]�:

As a "by-product" of these equalities we also obtain

(A) (x ^ y)� = (x! y)! x� = y ! (y ; x)� =
= (y ! x)! y� = x! (x; y)�

(B) (x ^ y)� = x; (x! y)� = (y ; x); y� =
= y ; (y ! x)� = (x; y); x�

where relations (A) are derived from those de�nitions of ^ expressed using �,
and (B) from those expressed using �.

We have so far:

Theorem 2.13 If < A;!;;;�;�; 0; 1 > is a pseudo-Wajsberg algebra then,
with the de�nitions above for _ and ^, < A;_;^; 0; 1 > is a bounded lattice,
with two quasi-complements, � and � .

3 Further properties of pseudo-Wajsberg lattices

We establish in this section relations between the implications, negations, and
the lattice operations, _ and ^. The following properties are analogous to the
ones proven for Wajsberg algebras in [7].
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Theorem 3.1 In a pseudo-Wajsberg algebra the following equalities are true for
every x, y, z.

(O7) (x _ y)� = x� ^ y� (x _ y)� = x� ^ y�

(x ^ y)� = x� _ y� (x ^ y)� = x� _ y�

(O8) (a) (x _ y)! z = (x! z) ^ (y ! z)
(b) (x _ y); z = (x; z) ^ (y ; z)

(O9) (a) z ! (x ^ y) = (z ! x) ^ (z ! y)
(b) z ; (x ^ y) = (z ; x) ^ (z ; y)

(O10) (a) (x _ y)! y = x! y
(b) (x _ y); y = x; y

(O11) (a) x! (x ^ y) = x! y
(b) x; (x ^ y) = x; y

(O12) (a) (x! y) _ (y ! x) = 1
(b) (x; y) _ (y ; x) = 1

(O13) (a) x! (y _ z) = (x! y) _ (x! z)
(b) x; (y _ z) = (x; y) _ (x; z)

(O14) (a) (x ^ y)! z = (x! z) _ (y ! z)
(b) (x ^ y); z = (x; z) _ (y ; z)

(O15) (x ^ y) _ z = (x _ z) ^ (y _ z)
(O16) (a) (x ^ y)! z = (x! y)! (x! z) = (y ! x)! (y ! z)

(b) (x ^ y); z = (x; y); (x; z) = (y ; x); (y ; z)
(O17) (a) z ! (x _ y) = (x! y); (z ! y) = (y ! x); (z ! x)

(b) z ; (x _ y) = (x; y)! (z ; y) = (y ; x)! (z ; x)

Proof. (O7)(the De Morgan laws for � and � )
(^�) On one hand we have:

(x ^ y)� = (x! y)! x� = y ! (y ; x)�

from those de�nitions of ^ expressed using �. On the other hand, we get from
the de�nition of _ and (C5)(b)

x� _ y� = (y� ; x�)! x� = (x! y)! x�

and from these two the equality (x ^ y)� = x� _ y� follows.
(^�) On one hand we have:

(x ^ y)� = x; (x! y)� = (y ; x); y�

from those de�nitions of ^ expressed using �. On the other hand, we get from
the de�nition of _ and (C5)(a)

x� _ y� = (x� ! y�); y� = (y ; x); y�

and from these two the equality (x ^ y)� = x� _ y� follows.
(_�) From the de�nition of _, (C5)(b), (C4) and the de�nition of ^ we get

(x _ y)� = [(x! y); y]� = [(y� ; x�); y]� = x� ^ y�:

(_�) From the de�nition of _, (C5)(a), (C4) and the de�nition of ^ we get

(x _ y)� = [(y ; x)! x]� = [(x� ! y�)! x]� = x� ^ y�:
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(O8)(a) We will prove the two inequalities which will lead to (O8)(a). Denote
t = (x ! z) ^ (y ! z). Since x � x _ y and y � x _ y, applying twice (O5)(a),
we get:

(x _ y)! z � (x! z) and (x _ y)! z � (y ! z)

from which, by the de�nition of t as an inf, it follows that

(x _ y)! z � t:

From t � x! z and t � y ! z, applying twice (O4) we have:

x � t; z and y � t; z

from which it follows that x _ y � t; z, and, applying (O4) once again we get
t � (x _ y) ! z. (O8)(b) will be obtained in a similar manner, using (O5)(b)
and (O4).

(O9)(b) We have

(z ; x) ^ (z ; y) = (x� ! z�) ^ (y� ! z�) = (x� _ y�)! z� =

= z ; (x� _ y�)� = z ; (x ^ y)

by (C5)(a), (O8)(a), (C5)(b), (O7) and (C4). Similarly for (O9)(a), using (C5)(b),
(O8)(b), (C5)(a), (O7) and (C4).

(O10)(a) We have

(x _ y)! y = (x! y) ^ (y ! y) = (x! y) ^ 1 = x! y

by taking in (O8)(a) z = y, and by (P1)(a). For (O10)(b) use (O8)(b) with z = y
and (P1)(b).

(O11)(a) We have

x! (x ^ y) = (x! x) ^ (x! y) = 1 ^ (x! y) = x! y

by taking z = x in (O9)(a). Similarly, by taking z = x in (O9)(b), we obtain
(O11)(b).

(O12)(a) We calculate:

(x! y)! (y ! x) = [(x _ y)! y]! [(x _ y)! x)

= [y� ; (x _ y)�]! [x� ; (x _ y)�]

= x� ; [[y� ; (x _ y)�]! (x _ y)�]

= x� ; [y� _ (x _ y)�]

= [y� _ (x _ y)�]� ! x

= [y ^ (x _ y)]! x

= y ! x

by (O10)(a), (C5)(b), (P9), the de�nition of _, (C4), (C5)(b), (O7), (C4) and
the obvious fact that y ^ (x _ y) = y. Replacing what we just obtained in the
de�nition of _, we have

(x! y)_(y ! x) = [(x! y)! (y ! x)]; (y ! x) = (y ! x); (y ! x) = 1:

Similarly for (O12)(b).
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(O13)(a) We will prove the equality by a double inequality. First, from y �
y _ z and z � y _ z, by (O6)(a) we get

x! y � x! (y _ z) and x! z � x! (y _ z)

from which it follows that

(x! y) _ (x! z) � x! (y _ z):

On the other hand, we have

1 = (z ! y) _ (y ! z)

= [(z _ y)! y] _ [(z _ y)! z]

� [(x! (z _ y))! (x! y)] _ [(x! (z _ y))! (x! z)]

� (x! (z _ y))! [(x! y) _ (x! z)]

from (O12)(a), twice (O10)(a), twice (O2)(a), and the previously proven inequal-
ity. It follows that

(x! (z _ y))! [(x! y) _ (x! z)] = 1

which means precisely

x! (z _ y) � (x! y) _ (x! z):

Similarly for (O13)(b).
(O14)(b) We have

(x ^ y); z = ((x ^ y)�)� ; (z�)� = z� ! (x ^ y)� =

= z� ! (x� _ y�) = (z� ! x�) _ (z� ! y�) =

= (x; z) _ (y ; z)

by (C4), (C5)(b), (O7), (O13)(a) and (C5)(a). Similarly for (O14)(a).
(O15) (distributivity of _ over ^) We calculate

(x ^ y) _ z = [(x ^ y); z]! z = [(x; z) _ (y ; z)]! z =

= [(x; z)! z] ^ [(y ; z)! z] =

= (x _ z) ^ (y _ z)

from the de�nition of _, (O14)(b), (O8)(a), and again the de�nition of _.
(O16)(b) We have a �rst equality by calculating:

(x ^ y); z = ((x ^ y)�)� ; (z�)� = z� ! (x ^ y)� =

= z� ! (x� _ y�) = z� ! [(y� ! x�); x�] =

= (y� ! x�); (z� ! x�) = (x; y); (x; z)

from (C4), (C5)(b), (O7), the de�nition of _, (P9), and (C5)(a). The second
equality follows from the commutativity of _. Similarly for (O16)(a).
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(O17)(a) We have a �rst equality by calculating:

z ! (x _ y) = (z�)� ! ((x _ y)�)� = (x _ y)� ; z� =

= (x� ^ y�); z� = [(y� ; x�); (y�)�]� ; z� =

= z ! [(y� ; x�); y] = (y� ; x�); (z ! y) =

= (x! y); (z ! y)

from (C4), (C5)(a), (O7), the de�nition of ^, (C5)(b), (C4), (P9), and (C5)(b).
The second equality follows from the commutativity of ^. Similarly for (O17)(b).
2

Remark. As we noticed, relations (O7) are the De Morgan laws for � and
�. Moreover, relation (O15) states the distributivity of _ over ^, from which the
distributivity of ^ over _ follows. We have thus

Theorem 3.2 If A is a pseudo-Wajsberg algebra, then its underlying bounded
lattice has two De Morgan algebra structures on it, < A;_;^;�; 0; 1 > and
< A;_;^;�; 0; 1 >.

4 A residuation result

Let < A; �;�; 1 > be a partially ordered monoid (not necessarily abelian). This
means that � is increasing in each argument, i.e., x � y implies a � x � b � a � y � b
for every a; b 2 A.

De�nition 4.1 We say that A is right residuated i� for every a; b 2 A there
exists a greatest element x such that a � x � b. We will denote this element by
a! b.

We say that A is left residuated i� for every a; b 2 A there exists a greatest
element y such that y � a � b. We will denote this element by a; b.

We say that A is residuated i� it is left and right residuated.

The condition for A to be residuated can be expressed in a compact manner
by stating that ! and ;, as de�ned above, are total binary operations on A,
which satisfy the following equivalent conditions:

x � y � z () y � x! z () x � y ; z:

If A is abelian, the left residual (if it exists) coincides with the right residual.
We recall from [7] the following two results, which give us a categorical

equivalence between Wajsberg algebras and residuated ordered bounded abelian
monoids, in which the residual satis�es a certain supplementary condition.

Theorem 4.2 Let < A;!;�; 1 > be a Wajsberg algebra. De�ne the binary
operation

x � y := (x! y�)�:

Then < A; �;�; 1 > is a residuated ordered abelian monoid, with lower bound 0
and upper bound 1, having ! as the residual of �.
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Theorem 4.3 Let < A; �;�; 1 > be a residuated ordered abelian monoid, having
1 as upper bound, having a lower bound, 0, and !, the residual of �, satis�es the
condition

(Wajs2) (x! y)! y = (y ! x)! x:

Then, de�ning
x� := x! 0

we have that < A;!;�; 1 > is a Wajsberg algebra.

In the following, we will generalize these results for pseudo-Wajsberg alge-
bras. Let us �rst prove:

Proposition 4.4 Let < A;!;;;�;�; 1 > be a pseudo-Wajsberg algebra. De-
�ne the binary operation

x � y := (y ! x�)� = (x; y�)�

where the second equality is given by axiom (W6). Then we have:
1. The operation ! is the right residual of �, i.e. we have

x � y � z () y � x! z

2. The operation ; is the left residual of �, i.e. we have

x � y � z () x � y ; z

Proof. For assertion (1), let us make the following calculations:

(x � y)! z = (y ! x�)� ! z = z� ; (y ! x�) =

= y ! (z� ; x�) = y ! (x! z)

by applying the �rst de�nition of �, (C5)(b), (C4), (P9) and again (C5)(b). From
this and the de�nition of � we have the desired equivalence.

For assertion (2), let us note that property (O4) states precisely

y � x! z () x � y ; z: 2

Theorem 4.5 Let < A;!;;;�;�; 1 > be a pseudo-Wajsberg algebra. De�ne
the binary operation

x � y := (y ! x�)� = (x; y�)�

where the second equality is given by axiom (W6). Then < A; �;�; 1 > is a
residuated ordered monoid, with lower bound 0 and upper bound 1, having ! as
the right residual, and ; as the left residual of �.

Proof. By the preceding result, we have the residuation property. Also, in
view of the already known facts about pseudo-Wajsberg algebras and their order
structure, all that remains to be proven is the monoid structure of < A; �; 1 >
and the monotony of �.

To prove that 1 is the neutral element, we calculate and obtain:

x � 1 = (1! x�)� = (x�)� = x

1 � x = (1; x�)� = (x�)� = x
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by the de�nitions of �, (W1), and (C4).
To prove associativity, calculate:

[(x � y) � z]� = z ! (x � y)� = z ! (y ! x�) = z ! ((x�)� ; y�) =

= (x�)� ; (z ! y�) = (x�)� ; (y � z)� = (y � z)! x� =

= [x � (y � z)]�

where we have used twice the de�nition of � which uses �, then (C5)(b), (P9),
again the de�nition of �, (C5)(b) and the de�nition of �. Then apply � and (C4).

For the monotony of � with respect to multiplication to the right: from x � y
follows by (C7) that y� � x�, from which, by (O6)(a)

a! y� � a! x� for every a 2 A

from which, applying � and (C7) again we get

(a! x�)� � (a! y�)� for every a 2 A

which means precisely

x � a � y � a for every a 2 A:

Similar calculations for multiplication to the left. 2

Theorem 4.6 Let < A; �;�; 1 > be a residuated ordered monoid, with lower
bound 0 and upper bound 1, having ! as the right residual, and ; as the left
residual of �. De�ne the unary operations

x� := x! 0

x� := x; 0

and suppose the residuals and the unary operations satisfy the supplementary
conditions:

(W2) (x; y)! y = (y ; x)! x = (y ! x); x = (x! y); y

(W6) (x! y�)� = (y ; x�)�

Then < A;!;;;�;�; 1 > is a pseudo-Wajsberg algebra.
Moreover, if on this pseudo-Wajsberg algebra we de�ne the binary operation

x ? y := (y ! x�)� = (x; y�)�

which, according to theorem 4.5, makes < A; ?;�; 1 > an ordered bounded resid-
uated monoid, we have that the two monoid structures coincide, i.e. x �y = x?y.

Proof. Remember that the residuation property states that

x � y � z () y � x! z () x � y ; z:

Also, from the de�nitions of the residuals we have two easy consequences:

(R1) x � (x! y) � y

(R2) (y ; z) � y � z
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Let us prove next some intermediate results, relations (1) and (2).

(1) x � y i� x! y = 1 i� x; y = 1

From the residuation property and the fact that 1 is the neutral element of
the monoid we have:

x � y () x � 1 � y () 1 � x! y
() 1 � x � y () 1 � x; y

and 1 being the greatest element of A, the proof of (1) is �nished.
Let us now prove
(2) If x � y then z ! x � z ! y

z ; x � z ; y

By de�nition z ! x is the greatest b such that z � b � x, but x � y, so by the
transitivity of � and the de�nition of z ! y it follows that z ! x � z ! y. An
analogous straightforward proof for the second assertion.

Note that from relation (1) it follows that in a residuated ordered bounded
monoid < A; �;�; 1 > as the one given by the theorem, properties (P1), (P2),
(P3), (P4), (P5), (P6), (P7) and (C2) are valid for any x; y; z 2 A.

To prove that < A;!;;;�;�; 1 > is a pseudo-Wajsberg algebra, we have to
show that (W1), (W3), (W4) and (W5) hold (since (W2) and (W6) are supposed
to be true).

For (W1)(a) let us estimate (1! x); x. We have

(1! x); x = (x! 1); 1 = 1

from (W2) and (P3), and, applying (1), we get 1 ! x � x. On the other hand,
from 1 �x � x and the residuation property we get x � 1! x. The same for (b).

(W3)(a) is equivalent by (1) to

(x! y) � (y ! z); (x! z)

which by the residuation property is equivalent to

(x! y) � (y ! z) � (x! z)

which, again by the residuation property, is equivalent to

x � (x! y) � (y ! z) � z:

By applying twice (R1) and using the monotony of � we get

x � (x! y) � (y ! z) � y � (y ! z) � z

which is precisely what we desired. The same proof for (W3)(b), using (R2).
Note that because we already have axioms (W1), (W2) and (W3), relations

(P8) and (P9) will also hold.
(W4)(a) is equivalent to 1 ! 0 = 0, But by (R1) we have 1 � (1 ! 0) � 0,

which implies (1! 0) � 0, and 0 is the smallest element of A. For (b) use (R2).
(W5)(a) is equivalent by (1) to

x� ; y� � y ! x:
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We will actually prove equality (which is (C5)(b)). We have

x� ; y� = (x! 0); (y ! 0) = y ! [(x! 0); 0] =

= y ! [(0! x); x] = y ! (1; x) =

= y ! x

by the de�nition of �, (P9), (W2), (C2)(a) and (W1)(b). This ends the proof of
the fact that < A;!;;;�;�; 1 > is a pseudo-Wajsberg algebra.

Let us now de�ne on it the binary operation

x ? y := (y ! x�)� = (x; y�)�

and let us prove x � y = x ? y by double inequality.
First, x � y � x ? y = (x; y�)� is equivalent by the residuation property to

y � x! (x; y�)� and the right-hand side is

x! (x; y�)� = (x ^ y�)� = x� _ y

by (1) and (O7), so the relation to be proven becomes y � x� _ y, and is thus
true.

The second inequality to be proven has the following equivalent forms:

(y ! x�)� � x � y () (x � y)� � y ! x�

() (x � y)� ; (y ! x�) = 1

() y ! [((x � y)�); x�] = 1

() y ! (x! x � y) = 1

() y � x! x � y

() x � y � x � y

equivalences given by (C7), (C4), (1), (P9), (C5)(b), (1) and the residuation
property, and the last relation is trivially true. This ends the proof of the equality
x � y = x ? y. 2

Before ending this section let us give the following result which allows us to
express the ^ in a pseudo-Wajsberg algebra in a more compact manner, using
the underlying monoid structure given by the multiplication operation �.

Lemma 4.7 We have

x ^ y = x � (x! y) = (x; y) � x:

Proof. By the de�nitions of � and ^ we have:

x � (x! y) = [x; (x! y)�]� = x ^ y

(x; y) � x = [x! (x; y)�]� = x ^ y

2

34 Ceterchi R.: The Lattice Structure of Pseudo-Wajsberg Albebras



5 The Boolean center of a pseudo-Wajsberg algebra

For L, a bounded distributive lattice, we denote by B(L) the Boolean algebra of
complemented elements of L. We recall that the lattice complement, if it exists,
is unique.

For a pseudo-Wajsberg algebra < A;!;;;�;�; 1 >, we consider its under-
lying structure of bounded distributive lattice < A;_;^; 0; 1 >, and we denote
by B(A) the Boolean algebra of its complemented elements. We call B(A) the
Boolean center of A, and elements of it will be called Boolean elements of A.

In this section, we will characterize the elements of B(A) in terms of pseudo-
Wajsberg algebra operations, and also in terms of its canonically associated
monoid structure, following similar results in [9].

We begin by proving two easy inequalities, and their consequences.

Lemma 5.1 In a pseudo-Wajsberg lattice we have that for every x; y 2 A the
following inequalities hold:

(M1) x _ y � x� ! y

(M2) (y ! x�)� � x ^ y

Proof. (M1) By (O3)(a) x� � y� ! x� is true, and by (C5)(a) this is equivalent
to x� � x; y. From this, by (O5)(a) follows (x; y)! y � x� ! y, which is
precisely the desired inequality.

(M2) By (O3)(a) we have y � x ! y, and by (C5)(b) this is equivalent to
y � y� ; x�. This implies, by (O5)(a), (y� ; x�) ! x� � y ! x�. From
the de�nition of _ and (O7) this is equivalent to (x ^ y)� � y ! x�, to which,
applying � and using (C7) and (C4), we get x ^ y � (y ! x�)�, which is
precisely (M2). 2

Remark: We also have the following inequalities, equivalent to (M1) and
(M2) respectively, which are consequences of the commutativity of _ (respec-
tively ^) and of equalities (C6) and, respectively, (W6):

(M1') x _ y � y� ! x

(M1") x _ y � y� ; x
(M1"') x _ y � x� ; y
(M2') (x! y�)� � x ^ y

(M2") (x; y�)� � x ^ y
(M2"') (y ; x�)� � x ^ y

Corollary 5.2 (1) If x _ y = 1 then we have
x� � y y� � x
y� � x x� � y

(2) If x ^ y = 0 then we have
y � x� x � y�

x � y� y � x�

Proof. (1) 1 being the greatest element, from x _ y = 1 follows, by (M1) and
(M1')

x� ! y = 1 () x� � y () y� � x
y� ! x = 1 () y� � x () x� � y

where the �rst equivalences come from the de�nition of � and the second by
(C7) and (C4).

(2) 0 being the smallest element, from x ^ y = 0 follows, by (M2) and (M2')
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(y ! x�)� = 0 () y ! x� = 1 () y � x� () x � y�

(x! y�)� = 0 () x! y� = 1 () x � y� () y � x�

where the equivalences are given by the application of � and (W4), the de�nition
of � and (C7), (C4). 2

Corollary 5.3 If x has a lattice complement, y, then y = x� = x�.

Proof: Suppose there exists an y such that x _ y = 1 and x ^ y = 0. By the
previous result, from the �rst condition it follows we have the following group
of four inequalities

(I) x� � y y� � x
y� � x x� � y

and from the second condition, we have another group
(II) y � x� x � y�

x � y� y � x�

From x� � y in (I) and y � x� in (II) we obtain y = x�. From x� � y in
(I) and y � x� in (II) we get y = x�. 2

Proposition 5.4 The following conditions are equivalent:
(1) x� ! x = x (1') x� ; x = x

(2) (x! x�)� = x (2') (x; x�)� = x
(3) x! x� = x� (3') x; x� = x�

(4) x _ x� = 1 (4') x ^ x� = 0
(5) x ^ x� = 0 (5') x _ x� = 1
(6) x � x = x

Proof. Almost all the horizontal equivalences are immediate:
(1) () (1') by replacing y with x in (C6) x� ! y = y� ; x.
(2) () (2') by replacing y with x in (W6) (x! y�)� = (y ; x�)�.
(4) () (4') and (5) () (5') by (O7), (C4) and (W4).
(2) () (3) and (2') () (3') by applying � in one direction and � in the

other, and using (C4).
We now have a group of four equivalent relations, (2), (2'), (3), (3').
(1) =) (4): x _ x� = (x� ! x) ; x = x ; x = 1, by the de�nition of _,

the hypothesis, and (P1).
(4) =) (1): x = 1 ! x = (x _ x�) ! x = (x ! x) ^ (x� ! x) = x� ! x,

by (W1), the hypothesis, (O8)(a) and (P1).
(1') =) (5'): x _ x� = (x� ; x) ! x = x ! x = 1, by the de�nition of _,

the hypothesis, and (P1).
(5') =) (1'): x = 1 ; x = (x _ x�) ; x = (x ; x) ^ (x� ; x) = x� ; x,

by (W1), the hypothesis, (O8)(b) and (P1).
We now have a second group of equivalent relations, namely (1), (1'), (4),

(4'), (5), (5'). We establish next the equivalence between the two groups.
(4') =) (3): x� = x! 0 = x! (x ^ x�) = (x! x) ^ (x! x�) = x! x�,

by (C3)(a), the hypothesis, (O9)(a) and (P1).
(3) =) (4'): x ^ x� = [(x ! x�) ! x�]� = (x� ! x�)� = 1� = 0, by the

de�nition of ^, the hypothesis, (P1) and (W4).
Finally, we also have
(2) () (6): trivial, because x � x = (x! x�)�. 2
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Proposition 5.5 An element x of a pseudo-Wajsberg algebra A is a Boolean
element, i� any one of the equivalent conditions of the previous proposition holds.

Proof: The equivalent conditions (4) or (5) state the x� is a lattice complement
for x, so x 2 B(A). For the reverse implication use 5.3. 2

Proposition 5.6 If x 2 B(A) and y 2 A then

(1) x _ y = x� ! y

(2) x ^ y = (y ! x�)�

Proof: (1) From (M1) we have x _ y � x� ! y. For the other inequality we
have:

(x� ! y); (x _ y) = [(x� ! y); x] _ [(x� ! y); y]

� x _ x� _ y � x _ x� = 1

from (O13)(b), (O3)(b) and x 2 B(A).
(2) From (M2) we have x^y � (y ! x�)�. For the other inequality we have:

(x ^ y); (y ! x�)� = [x; (y ! x�)�] _ [y ; (y ! x�)�]

= [(y ! x�)�� ! x�] _ (x� ^ y)�

� x� _ x _ y� � x _ x� = 1

from (O14)(b), (C5)(a), the de�nition of ^, (O7), (O3)(a) and x 2 B(A). 2

Corollary 5.7 If x; y 2 B(A) then
(1) x� ! y = x _ y = y� ! x

(2) (y ! x�)� = x ^ y = (x! y�)�

Proof: Immediate from the commutativity of _ and ^ and the previous result.
2

Corollary 5.8 1. B(A) is a sublattice of < A;_;^; 0; 1 >.
2. B(A) is a pseudo-Wajsberg subalgebra of < A;!;;;�;�; 1 >.
3. For any C, pseudo-Wajsberg subalgebra of < A;!;;;�;�; 1 >, whose

underlying lattice structure is a Boolean algebra, we have C � B(A).
4. B(A) is a submonoid of the residuated bounded monoid < A; �;�; 1 >.
5. For any C, submonoid of the residuated bounded monoid < A; �;�; 1 >, in

which multiplication is idempotent, we have C � B(A).
6. B(A) is a Wajsberg subalgebra of A.

Proof: 1. B(A) is closed with respect to � and �, immediate from 5.4. For
x; y 2 B(A) we will prove that x _ y 2 B(A), using for instance (4) in 5.4.

(x _ y) _ (x _ y)� = (x _ y) _ (x� ^ y�) = [(x _ y) _ x�] ^ [(x _ y) _ y�] = 1

from (O7), (O15), associativity and commutativity of _ and x; y 2 B(A). Closure
to ^ follows by (O7) from closure to _ and �.

2. For x; y 2 B(A) we will prove that x! y 2 B(A):

x! y = (x�)� ! y = x� _ y 2 B(A)
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from (C4), 5.7, and closure of B(A) to � and _. Since B(A) is closed to � and
!, we also have closure to ; by

x; y = y� ! x� 2 B(A):

3. Obvious.
4. Since the monoid multiplication is de�ned in terms of the operations of

pseudo-Wajsberg algebra, and B(A) is closed to these, closure to � follows. More-
over, � on B(A) is idempotent (see condition (6) in 5.4, and also 5.5 ) and com-
mutative because it coincides with ^ (see (2) in 5.7 ).

5. Obvious.
6. We have to show that ! and ; coincide on B(A). Let x; y 2 B(A). By

(C4) and Corollary 5.7 we have

x! y = (x�)� ! y = x� _ y

and by (C5)(a) and Corollary 5.7 we have

x; y = y� ! x� = y _ x�:

From x 2 B(A) we have x� = x�, so the right-hand sides of the above
equalities coincide, which leads to x! y = x; y. 2
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