
Galois Connections and Data Mining1

Dana Cristofor
(University of Massachusetts at Boston

Department of Mathematics and Computer Science
Boston, Massachusetts 02125, USA

Email: dana@cs.umb.edu.)

Laurentiu Cristofor
(University of Massachusetts at Boston

Department of Mathematics and Computer Science
Boston, Massachusetts 02125, USA

Email: laur@cs.umb.edu.)

Dan A. Simovici
(University of Massachusetts at Boston

Department of Mathematics and Computer Science
Boston, Massachusetts 02125, USA

Email: dsim@cs.umb.edu.)

Abstract: We investigate the application of Galois connections to the identi�cation
of frequent item sets, a central problem in data mining. Starting from the notion
of closure generated by a Galois connection, we de�ne the notion of extended closure,
and we use these notions to improve the classical Apriori algorithm. Our experimental
study shows that in certain situations, the algorithms that we describe outperform the
Apriori algorithm. Also, these algorithms scale up linearly.

Key Words: Galois connection, closure, extended closure, support, frequent set of
items

Category: H.2.0, E.5

1 Introduction

Galois connections are algebraic constructions which play an important role
in lattice theory, universal algebras and, more recently, in computer science
(see [4]). We demonstrate their usefulness as an algebraic and conceptual tool in
designing e�cient algorithms for the identi�cation of frequent sets of items, as
de�ned in data mining.

Let (P;�) and (Q;�) be two partially ordered sets. A Galois connection
between P andQ is a pair of mappings (�;) such that � : P �! Q, 	 : Q �! P
and:

x � x0 implies �(x) � �(x0);

y � y0 implies 	(y) � 	(y0);

x � 	(�(x)) and y � �((y));

for x; x0 2 P and y; y0 2 Q.

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

Journal of Universal Computer Science, vol. 6, no. 1 (2000), 60-73
submitted: 20/10/99, accepted: 6/11/99, appeared: 28/1/00  Springer Pub. Co.

It is easy to verify (see [4]) that �((�(x))) = x and 	(�((y))) = y for
x 2 X and y 2 Y .

Let (P;�) be a complete lattice, that is, a poset such that for any K � P
there exist both supK and infK. A closure is a mapping cl : P �! P such
that the following conditions are satis�ed:

1. x � cl(x),
2. cl(x) = cl(cl(x)) and
3. if x � x0 then cl(x) � cl(x0),

for all x; x0 2 P . An element x 2 P is cl-closed if cl(x) = x. The set of cl-closed
elements will be denoted by Ccl.

For any Galois connection c = (�;) between the complete lattices (P;�)
and (Q;�) the mapping clc = 	� is a closure on P while the mapping cl0

c
= �	

is a closure on Q. It is easy to see that in this case the mapping �
c
= ��Cclc

is
a bijection between Cclc

and Ccl
0

c

.
A standard method for generating Galois connections is through the notion

of polarity. Let X;Y be two sets and let R � X � Y be a relation. De�ne the
mappings � : P(X) �! P(Y) and 	 : P(Y) �! P(X) by

�(K) = fy j y 2 Y; (x; y) 2 R for all x 2 Kg;

for K � X and

	(H) = fx j x 2 X; (x; y) 2 R for all y 2 Hg;

for H � Y . The pair c = (�;) introduced above is a Galois connection and is
usually referred to as the polarity on X and Y determined by the relation R.

De�nition 1.1 Let c = (�;) be a polarity on the sets X and Y .
The semidistances generated by c are the mappings d

c
: P(X)�P(X) �!N

and d0
c
: P(Y) � P(Y) �! N de�ned by d

c
(U0; U1) = j�(U0) � �(U1)j for

U0; U1 2 P(X), where � is the symmetric di�erence operation, and d0
c
(V0; V1) =

j	(V0)� 	(V1)j for V0; V1 2 Y .
The proximities generated by c are the mappings pc : P(X) � P(X) �! N

and p0
c
: P(Y)�P(Y) �!N de�ned by pc(U0; U1) = j�(U0)\�(U1)j for U0; U1 2

P(X), and p0
c
(V0; V1) = j	(V0) \ 	(V1)j for V0; V1 2 Y .

The weight functions are the mappings wc : P(X) �! N and w0

c
: P(Y) �!

N given by w
c
(U) = j�(U)j and w

c
(V) = j	(V)j for every U 2 P(X) and

V 2 P(Y).

If the Galois connection c is clear from context then the subscript c may
be omitted. Also, if a set consists of only one element ` we may write simply `
instead of f`g.

Proposition 1.2 Let c be a polarity on the sets X and Y . We have

1. dc(U0; U0 [U1) + dc(U1; U0 [U1) = dc(U0; U1),
2. pc(U0; U0 [U1) = pc(U1; U0 [U1) = pc(U0; U1),
3. d

c
(U0; clc(U0)) = 0,

for every U0; U1 2 P(X).

61Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

Proof. The de�nition of d implies that

d
c
(U0; U0 [U1) = j�(U0)� �(U0 [U1)j

= j�(U0)� (�(U0) \ �(U1))j

= j�(U0)� �(U1)j

dc(U1; U0 [U1) = j�(U1)� �(U0 [U1)j

= j�(U1)� (�(U0) \ �(U1))j

= j�(U1)� �(U0)j;

which imply

dc(U0; U1) = j�(U0)� �(U1)j

= j�(U0)� �(U1)j+ j�(U1)� �(U0)j

= dc(U0; U0 [U1) + dc(U1; U0 [U1):

For the second part of the proposition we note that

p
c
(U0; U0 [U1) = j�(U0) \ �(U0 [U1)j

= j�(U0) \ (�(U0) \ �(U1))j

= j�(U0) \ �(U1)j

= pc(U0; U1)

for every U0; U1 2 P(X). The proof of pc(U1; U0 [U1) = pc(U0; U1) is entirely
similar.

Finally, note that dc(U0; clc(U0)) = j�(U0) � �((�(U0)))j = j�(U0) �
�(U0)j = 0. 2

Proposition 1.3 The weight function wc generated by a polarity c = (�;) on
X and Y has the following properties:

1. maxfwc(U0); wc(U1)g � dc(U0; U1) + pc(U0; U1),
2. pc(U0; U1) = wc(U0 [U1) � minfwc(U0); wc(U1)g,
3. dc(U0; U1) + pc(U0; U1) � wc(U0 \ U1),
4. w

c
(U0) + w

c
(U1) = d

c
(U0; U1) + 2p

c
(U0; U1),

5. w
c
(U0) = w

c
(cl

c
(U0)),

for every U0; U1 2 P(X).

Proof. We give the argument for the third part of the proposition. Note that

dc(U0; U1) + pc(U0; U1) = j�(U0)� �(U1)j+ j�(U0) \ �(U1)j

= j�(U0) [�(U1)j

� j�(U0 \ U1)j

= w
c
(U0 \ U1):

The rest of the proof is elementary and is left to the reader. 2

Proposition 1.4 The proximity function pc generated by a polarity c = (�;)
on X and Y has the following properties:

62 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

1. p
c
(U;U) = w

c
(U)

2. pc(U0; U1) = pc(U1; U0)
3. pc(U0; U1) = pc(clc(U0); clc(U1))
4. pc(U0; U2) � pc(U0; U1) + pc(U1; U2)� wc(U1),

for every U;U0; U1; U2 2 P(X).

Proof. The argument is elementary and is omitted. 2

Proposition 1.5 Let U0; U1 � X and let c be a polarity on the sets X and Y .
For every sets U 0; U 00 such that U0 � U 0 � cl

c
(U0) and U1 � U 00 � cl0

c
(U1) we

have d
c
(U 0; U 00) = d

c
(cl(U0); cl(U1)).

Proof. Note that if U0 � U 0 � cl
c
(U0), then �(U0) � �(U 0) � �((�(U0))) =

�(U0), so �(U
0) = �(U0). This implies d

c
(U 0; V 0) = j�(U 0)� �(V 0)j = j�(U0)�

�(U1)j = d
c
(U0; V0). 2

2 Frequent Sets of Items and Closures of Sets of Items

The notion of frequent sets of items is formulated starting from two �nite,
nonempty sets, a set of transactions T and a set of items I, and from a re-
lation R � T � I. The mappings of the polarity determined by the relation R
are denoted by tiR : P(T) �! P(I) and itR : P(I) �! P(T). If R is clear from
context, the subscript will be omitted.

The table � associated to this Galois connection is a table whose heading is
the set of items I . Each item, regarded as an attribute has the binary domain
f0; 1g. If t is a transaction in T , then T is represented in the table � by a tuple
(denoted by the same letter) such that t[i] = 1 if and only if (t; i) 2 R.

De�nition 2.1 Let c be a polarity on the set of transactions T and the set of
items I. The support of a set of items K, K � I, is the number supp

c
(K) =

wc(K)=jT j.
A set K is �-frequent if supp

c
(K) � � and is �-maximal if it is �-frequent

and there is no �-frequent set L such that K � L.

The weight of a set of items K is given by

wc(K) = jti(K)j = jt 2 T j t[k] = 1 for every k 2 Kj:

In other words, the weight of the set of itemsK equals the number of transactions
that are associated with every item k 2 K.

In view of Proposition 1.3 we have

Theorem 2.2 If c is a polarity on the set of transactions T and the set of items
I, then for every two sets of items K0;K1 � I we have:

1. maxfsupp
c
(K0); suppc(K1)g � (dc(K0;K1) + pc(K0; K1))=jT j;

2. supp
c
(K0 [K1) � minfsupp

c
(K0); suppc(K1)g;

3. d
c
(K0;K1) + p

c
(K0;K1) � supp

c
(K0 \K1) � jT j;

4. supp
c
(K0) + supp

c
(K1) = (d

c
(K0; K1) + 2p

c
(K0;K1)) � jT j;

5. supp
c
(K0) = supp

c
(cl

c
(K0));

63Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

6. K0 � K1 implies supp
c
(K1) � supp

c
(K0).

Proof. The arguments for the �rst �ve parts follow immediately from De�ni-
tion 2.1 and the corresponding parts of Proposition 1.3. The last part follows
from Part (ii). 2

Thus, if K1 is an �-frequent set of items and K0 � K1, then K0 is also
�-frequent.

Corollary 2.3 For every sets of items K;H such that K � H � cl
c
(K) we

have supp
c
(K) = supp

c
(H).

De�nition 2.4 Let c be a polarity on the set of transactions T and the set of
items I and let L � I. The family of (`; �)-extended closures of L relative to c

is the collection of sets

CL`;�
c
(L) = fcl

c
(L) [H j jH j = `;H \ cl

c
(L) = ;; and supp(L [H) � �g:

Note that

CL0;�
c
(L) =

�
; if supp(L) < �;
fclc(L)g; otherwise.

Further,

CL1;�
c
(L) = fcl

c
(L) [fig j i 62 cl

c
(L) and supp(L [fig) � �g:

We refer to any member of CL`;�
c
(L) as an (`; �)-extended closure. Unless stated

otherwise we always work with (1; �)-extended closures; so, we will just refer to
them as extended closures.

We will often refer to a set of items using the term itemset.

De�nition 2.5 An itemset I cannot be extended by closure if it is cl-closed
and its family of extended closures is ;.

To compute the family of (1; �)-extended closures for a set of items we need
to de�ne the k-matrix M [k] of the Galois connection c. Every row of this matrix
corresponds to a set of items of cardinality k. We assume that the set of items
is I = fi0; : : : ; in�1g and that the sets of items of length k are arranged in
lexicographical order. The columns of the matrix M [k] correspond to the items

of I. If C is a set of items such that jCj = k and ip 2 I, then M [k]
C;ip

, the element

located in the C-row and p-th column is

M
[k]
C;ip

= pc(C; fipg) = jft 2 T j t[C; ip] = (1; : : : ; 1)gj:

Note that the matrix M1 is symmetric. Also, the largest value of the entries
of the C-line of the matrix M [k] will be found in the columns that correspond
to the members of C and possibly in other columns.

The closure and family of extended closures of a set of items K can be
computed starting from the table � associated to the Galois connection c, as
shown in the next section.

64 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

Theorem 2.6 Let c = (tiR; itR) be the polarity associated to the relation R �

T � I. We have i 2 cl
c
(K) if and only if M [k]

K;i = maxfM [k]
K;j j j 2 Ig, where

k = jKj.

Proof. Note that maxfM
[k]
K;j j j 2 Ig = supp

c
(K). For any i 2 I such that

M
[k]
K;i = supp

c
(K) and i 62 K we have to prove that i 2 clc(K). This follows from

the de�nition of the value M
[k]
K;i which tells us that i appears in all transactions

in which K appears so i belongs to the closure of the itemset K. 2
Finding all �-frequent sets of items for a speci�ed � is an important data

mining problem as it represents the most computationally expensive step in
�nding association rules in a database [1]. In literature ([1], [2]) the value of � is
called minimum support and �-frequent sets of items are called large itemsets.

In the following sections we present one algorithm (Closure) for �nding all �-
frequent itemsets and two algorithms (MaxClosure, AltMaxClosure) for �nding
all maximal �-frequent itemsets.

3 The Closure Algorithm

We use the notions of closure and extended closure to improve on the number of
database scans done by the Apriori algorithm. Our algorithm is based on the
following result:

Theorem 3.1 Let F�;k be the collection of �-frequent k-itemsets. De�ne

CF�;k =
[

F2F�;k

fclc(F)g [CL1;�
c
(F):

Then, for every G 2 F�;k+1 there is a set C 2 CF�;k such that G � C.

Proof. Suppose G 2 F�;k+1; then, all subsets of G that have cardinality k are
included in F�;k. We can write G = F

S
fig where F 2 F�;k and i is an item. We

now have two cases:

1. If the item i appears in all transactions in which F appears, then i 2 clc(F)
and since clc(F) is one of the elements of CF�;k it follows that G must be
included in one of the elements of CF�;k.

2. If i does not appear in all transactions in which F appears, but it appears in
a fraction of transactions greater than �, then this will ensure that one (1; �)-
extended closure of F will contain i which means that G must be included
in one of the elements of CF�;k.

2

The algorithm based on this idea uses the matrix M presented before and
works as follows:

Let Maximal be the collection of all �-maximal itemsets.

65Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

Candidate = all 1 itemsets
KFrequent = empty
Maximal = empty

while (true) do
initialize the elements of matrix M with 0;
count the support for all elements of Candidate

and update their corresponding rows in M;
for all itemsets C in Candidate do
if (C is not frequent)
continue to next itemset;

add C to KFrequent;
compute closure of C in cl(C);
compute all extended closures of C and add them to Maximal;
if no extended closures were found
add cl(C) to Maximal;

od
empty Candidate;
generate new candidate itemsets in Candidate

based on KFrequent;
if Candidate is empty
break;

empty KFrequent;
for all itemsets L in Maximal
mark as frequent all itemsets from Candidate

that are contained in L;
for all itemsets C in Candidate
if C is marked as frequent
add C to KFrequent;

empty Candidate;
generate new candidate itemsets in Candidate

based on KFrequent;
if Candidate is empty
break;

empty KFrequent;
od
return Maximal

Note that the Closure algorithm requires (bn2 c + 1) scans of the database
where n is the dimension of the longest frequent itemset.

4 The MaxClosure Algorithm

We wrote the MaxClosure algorithm in order to provide a fast algorithm for
�nding the maximal frequent sets. As mentioned in [3], �nding all frequent sets
is an extremely expensive computation for some databases, so it makes sense to
have instead a fast algorithm that would allow one to know what the maximal
itemsets are (which also means what the frequent itemsets are) without �nding
the support for all frequent candidates. Based on this knowledge, one could guide
the mining process to extract only the rules one is interested in.

66 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

The MaxClosure algorithm is a specialization of the Closure algorithm. It
uses a similar matrix structure for computing the closures and extended closures
and it makes use of the fact that if at any point a frequent itemset has an empty
extended closure, then that itemset is a maximal frequent itemset (it belongs to
the positive border [6]). The matrix used in this algorithm di�ers from the one
described before in the fact that its rows can correspond to itemsets of di�erent
cardinality.

Theorem 4.1 If a frequent itemset F cannot be extended by closure then it is
a maximal frequent itemset.

Proof. Suppose that F cannot be extended by closure but is not a maximal
frequent itemset. Then, there exists a frequent itemset G such that F � G and
G � F 6= ;. Let i be an item such that i 2 G and i 62 F . Since G is frequent it
folows that i is frequent and appears with F in a fraction of transactions greater
than �. Then i should either belong to the closure of F or to an extended closure
of F and we have a contradiction since F could not be extended by closure. 2

The algorithm's psudocode is presented below. It uses three collections:
Candidate to keep the candidate maximal frequent itemsets, Frequent which is
used for intermediate storage, and Maximal which contains the maximal frequent
itemsets found at any point.

Candidate = all 1-itemsets;
Frequent = empty;
Maximal = empty;

while (true) do
initialize the elements of matrix M with 0;
count the support for all elements of Candidate

and update their corresponding rows in M;
for all itemsets C in Candidate do
if C is not frequent
continue to next itemset;

compute closure of C in cl(C);
for all extended closures xcl(C) of C
if xcl(C) has not been already added to Frequent
add xcl(C) to Frequent;

if no extended closures were found
if cl(C) has not been already added to Maximal
add cl(C) to Maximal;

od
if Frequent is empty
break;

empty Candidate;
move into Candidate all elements from Frequent;

od
return Maximal;

Note that the MaxClosure algorithm requires in the worst case n � 1 scans
of the database where n is the dimension of the longest frequent itemset. The

67Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

reason is that in the worst case, a candidate itemset can be extended with only
one item during one scan of the database so it will take n � 1 scans of the
database to generate an n-itemset.

5 An Extension of the MaxClosure Algorithm

The algorithm presented in this section is designed to guarantee fewer passes over
the database, as compared to MaxClosure. AltMaxClosure requires (bn2 c + 1)
scans of the database where n is the dimension of the longest frequent itemset,
the same number that Closure does.

AltMaxClosure is an extension of MaxClosure. The idea is that instead of
starting with a candidate C, computing the extended closure of C and then
using this extended closure as a candidate, we can try to extend even further
the extended closure and use this extension as a candidate. This ensures that
we will do half the number of passes required by MaxClosure.

The pseudocode for the algorithm is presented below. It uses one additional
collection: XPrevCandidate to keep the extended closures generated from the
previous candidate itemsets.

Candidate = all 1-itemsets;
Frequent = empty;
XPrevCandidate = empty;
Maximal = empty;

while (true) do
initialize the elements of matrix M with 0;
count the support for all elements of Candidate

and update their corresponding rows in M;
if XPrevCandidate is not empty do
for all itemsets C in Candidate
mark as not being maximal all itemsets from

XPrevCandidate that are contained in C;
for all itemsets L in Maximal
mark as not being maximal all itemsets from

XPrevCandidate that are contained in L;
for all itemsets P in XPrevCandidate
if P is marked as being maximal
add P to Maximal;

od
empty XPrevCandidate;
for all itemsets C in Candidate
do
if C is not frequent
continue to next itemset;

compute closure of C in cl(C);
for all extended closures xcl(C) of C
if xcl(C) has not been already added to XPrevCandidate
do
add xcl(C) to XPrevCandidate;

68 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

for all items i not in xcl(C) such that M(C,i) >= epsilon
do
create itemset C' from the union of xcl(C) and i;
if C' has not been already added to Frequent
add C' to Frequent;

od
od

if no extended closures were found
if cl(C) has not been already added to Maximal
add cl(C) to Maximal;

od
if Frequent is empty
break;

empty Candidate;
move into Candidate all elements from Frequent;

od
return Maximal;

Given an extended closure of a candidate C, we try to extend it by looking
at all items that appear with C in a number of transactions greater or equal
to �. We also store xcl(C) in XPrevCandidate in the eventuality that none of
these extensions prove to be frequent which would mean that xcl(C) can not be
further extended so it is maximal. A new step has been introduced for verifying
whether any of the elements of XPrevCandidate are maximal.

6 Experimental results

We implemented Apriori, Closure, MaxClosure, and AltMaxClosure in C++.
We have used the hash-tree structure introduced in [2] in order to e�ciently
test for itemset inclusions. The data was generated using the IBM Quest syn-
thetic data generator and was stored in binary �les. As observed by other re-
searchers [7], when working with �les the bottleneck is in the CPU computations,
not in accessing the disk. For this reason, the di�erence between Closure and
Apriori is not as big as one would expect. In a previous experiment in which
we ran a preliminary version of the Apriori and Closure algorithms using Or-
acle databases, the results showed a 50% improvement in time on behalf of the
Closure algorithm.

Our �rst experiments used databases with an average number of items per
transaction equal to 10, and a total of 100 items. We have generated a 50 thou-
sand, a 100 thousand and a 1 million rows database in order to check for the
scalability of each algorithm. The results of the experiments, presented in Fig-
ure 1, show clearly that all algorithms scale linearly with the size of the database.

The graphs in Figure 2 show that at reasonable levels of support, our algo-
rithms outperform the Apriori algorithm.

Similar results hold for AltMaxClosure when compared to Apriori, as shown
in Figure 3.

On the other hand, under our current implementations, which are based on
raw �les rather than on relational databases, AltMaxClosure is always slower
than MaxClosure, despite the fact that it does fewer passes over the data. The

69Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

Support % Time in seconds
Apriori Closure MaxClosure AltMaxClosure

50 thousand records
1 105 100 16 195
2 29 19 6 33
3 16 4 3 9
5 11 1 1 2
10 4 1 1 1
15 1 0 0 0
20 0 0 0 0

100 thousand records
1 201 186 33 348
2 58 38 12 64
3 33 9 6 18
5 22 3 3 4
10 8 2 2 2
15 2 1 1 1
20 1 1 1 1

1 million records
1 2033 1874 328 3139
2 573 367 123 611
3 324 92 66 180
5 226 34 37 45
10 85 19 20 19
15 24 16 16 16
20 15 16 16 16

Figure 1: Performance of Algorithms

0

50

100

150

200

2 4 6 8 10 12 14 16 18 20

Time
(s)

Minimum support (%)

100 thousand rows

Apriori
4

4

4
4

4
4 4

4

Closure
2

2

2
2 2 2 2

2

MaxClosure

e

e
e e e e e

e

Figure 2: Performance Graphs for Apriori, Closure, and MaxClosure

70 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16 18 20

Time
(s)

Minimum support (%)

100 thousand rows

Apriori

4

4

4
4

4 4 4

4

MaxClosure2

3

3

3
3 3 3 3

3

Figure 3: Performance Graphs for Apriori and AltMaxClosure

reason is that AltMaxClosure has to do several equality and inclusion tests in
order to ensure that no duplicates are added to its various collections and those
operations prove to be quite expensive.

In Figure 4 we present the results obtained when we ran the algorithms on a
100,000 thousand rows database having an average of 25 items per transaction.

In this experiment Closure performs slightly worse than Apriori because it
does more computations which are not compensated by the decreased number
of passes over the database. MaxClosure continues to perform better than the
other two although the improvement comes from counting the support for fewer
itemsets rather than from doing fewer scans over the database. For 5% minimum
support the algorithms discover 16949 maximal frequent itemsets.

We also did a test on a database with 100,000 transactions and an average
of 50 items per transaction. We ran the algorithms for 50% minimum support
and we obtained 2243 maximal frequent itemsets:

Apriori Closure MaxClosure AltMaxClosure
Time 1573 2905 3169 4500
Database passes 8 4 7 4

We conclude that as the average number of items per transaction increases, the
performance of the Closure algorithm decreases. MaxClosure performs its worst
case number of passes but it comes pretty close to Closure because it does not
compute all frequent itemsets.

71Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

0

500

1000

1500

2000

2500

5 10 15 20 25

Time
(s)

Minimum support (%)

100 thousand rows

Apriori4

4

4
4 4

4

Closure

2

2

2
2 2

2

MaxClosure

e

e

e e e

e

0

500

1000

1500

2000

2500

3000

5 10 15 20 25

Time
(s)

Minimum support (%)

100 thousand rows

Apriori

4

4

4 4 4

4

MaxClosure2

3

3

3
3 3

3

Figure 4: Performance Graphs at 25 Items per Transaction

7 Conclusions

We introduced three new algorithms: Closure, MaxClosure and AltMaxClosure
that make use of Galois connections. The experiments we have done show that
Closure and MaxClosure perform faster than the standard Apriori algorithm
when running on databases with an average number of items per transaction of
less than 25% of the total number of items. For higher averages (like 50%), our
algorithms are outperformed by Apriori. However, if database access is expen-
sive, Closure might still perform better than Apriori due to the fewer number
of passes over the database it requires. AltMaxClosure may be an alternative

72 Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

for MaxClosure when database access is expensive; however, its performance
decreases very fast as the minimum support takes smaller values.

References

[1] Agrawal R., Imielinski T., Swami A.:Mining Association rules between Sets of
Items in Large Databases, SIGMOD 1993, pages 207-216.

[2] Agrawal R., Srikant R.:Fast Algorithms for mining association rules, VLDB 1994.
[3] Bayardo R. J.:E�ciently Mining Long Patterns from Databases, SIGMOD 1998,

pages 85-93.
[4] Birkho� G.:Lattice Theory, American Mathematical Society, Colloquium Publi-

cations, 3rd edition, 1973.
[5] Gierz G.et al.:A Compendium of Continuous Lattices, Springer-Verlag, Berlin,

1980.
[6] Gunopulos D., Khardon R., Mannila H., Toivonen H.:Data mining, Hypergraph

Transversals, and Machine Learning, PODS 1997, pages 209-216.
[7] Mueller A.:Fast Sequential and Parallel Algorithms for Association Rule Mining:

A Comparison, CS-TR-3515, University of Maryland-College Park, 1995.

73Cristofor D., Cristofor L., Simovici D.A.: Galois Connections ...

