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Abstract: A pseudo-Boolean function (pBf) is a mapping from f0; 1gn to the real
numbers. It is known that pseudo-Boolean functions have polynomial representations,
and it was recently shown that they also have disjunctive normal forms (DNFs). In
this paper we relate the DNF syntax of the classes of monotone, quadratic and Horn
pBfs to their characteristic inequalities.
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1 Introduction

An n-adic pseudo-Boolean function (or a pseudo-Boolean function of n variables,
or simply pBf) is a mapping f : Bn ! R, where B = f0; 1g, R is the set of real
numbers, and n is a positive integer. Join (disjunction), meet (conjunction) and
complementation (negation) in Bn will be denoted by V _W; V ^W = V W;
and �V ; respectively. The order relation V �W in Bn is de�ned componentwise.
The symbols _ and ^ will also denote the max and min operators in R:

A pseudo-Boolean function f is Boolean if its range is contained in B. A
necessary and su�cient condition for this is that f2 = f .

Pseudo-Boolean functions are essentially equivalent with set functions, i.e.
mappings of the subsets of a �nite set into the real �eld. The term pseudo-
Boolean function re
ects the similarity of these functions with the Boolean ones
and was introduced in [Hammer, Rosenberg and Rudeanu 1963], while the class
was amply studied from this perspective in [Hammer, Rudeanu 1968].
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For every real number �, we have a particularly simple n-adic function,
namely the constant function on Bn taking the value �.

The set of all n-adic functions constitutes a ring whose operations are de�ned
by

(f + g)(V ) = f(V ) + g(V )
(fg)(V ) = f(V )� g(V )

On the same set a distributive lattice structure is de�ned as well, where the
order and the join and meet operations are de�ned by

f � g , f(V ) � g(V ) for all V 2 Bn

(f _ g)(V ) = max(f(V ); g(V ))
(f ^ g)(V ) = min(f(V ); g(V ))

For any variable x with values in B, the function 1 � x is called the cor-
responding complemented variable, denoted also by �x. The functions x and �x
are called Boolean literals. Any function of the form a + bx, where a and b are
constants and b 6= 0, is called a pseudo-Boolean literal. Every pseudo-Boolean
literal has a unique expression a+ b~x, where ~x is a Boolean literal (i.e. x or �x)
and b > 0. Obviously a is the minimum value of such a literal, and a+ b is the
maximum value of it. These concepts were developed in [Foldes, Hammer 2000].

An elementary conjunction was de�ned in [Foldes, Hammer 2000] as the great-
est lower bound of one or more literals having the same minimum, i.e. a function
of the form

(a+ b1~x1) ^ : : : ^ (a+ bm~xm)

which can easily be shown to be equal to

a+ (min
i
bi)~x1 : : : ~xm

i.e. to
a+ b~x1 : : : ~xm (1)

where b and the bi's are positive and each ~xi is a variable or a complemented
variable.

An elementary disjunction was de�ned as the least upper bound of one or
more literals having the same maximum; these are precisely the functions of the
form

a+ b (~x1 _ : : : _ ~xm) (2)

Obviously, the minimum value of the elementary conjunction (1), as well
as that of the elementary disjunction (2) is a, while a + b is their maximum
value (except in the case when (1) represents a constant elementary conjunction).
Observe also that a non-constant elementary conjunction (1) or disjunction (2)
is Boolean if and only if a = 0 and b = 1.

Let f be a pseudo-Boolean function. Any elementary conjunction g such that
g � f is called an implicant of f , and any maximal implicant of f is called a
prime implicant. Any elementary disjunction h such that f � h is called an
implicatum of f , and any minimal implicatum is called a prime implicatum.
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It was seen in [Foldes, Hammer 2000] that every pseudo-Boolean function f
can be expressed as a �nite join (disjunction) of elementary conjunctions having
the same minimum a,

f =
_
i

�
a+ bi(~xi1 ^ : : : ^ ~ximi )

�
(3)

Such an expression is called a disjunctive normal form (DNF) representation
of f . In particular, f has a DNF representation (3) in which the terms of the
disjunction are all the di�erent prime implicants of f . This is referred to as the
canonical DNF of f .

Similarly, every pseudo-Boolean function f can be expressed as a �nite meet
(conjunction) of elementary disjunctions that have the same maximum t,

f =
^
i

�
ai + bi(~xi1 _ : : : _ ~ximi )

�
(4)

where ai + bi = t for every i. Such an expression is called a conjunctive normal
form (CNF) representation of f . In particular f has a CNF representation (4)
in which the terms of the conjunction are all the di�erent prime implicata of f .
This is referred to as the canonical CNF of f .

In this paper we shall examine several classes of pseudo-Boolean functions
distinguished by particular forms of DNF representation, and we shall gener-
alize to the case of pseudo-Boolean functions several characterizations given
in [Ekin, Hammer and Peled 1997] for classes of Boolean functions.

This work was presented at the Meeting of the Institute for Operations Re-
search and Management Science, Philadelphia, November 1999.

2 Monotone Pseudo-Boolean Functions

A pseudo-Boolean function f is called monotone non-decreasing if

V �W in Bn =) f(V ) � f(W ) in R

and it is called monotone non-increasing if

V �W in Bn =) f(V ) � f(W ) in R

For example, the function �x_ 2�xy _ 2x_ 4xy is monotone non-decreasing, while
y _ 3�y _ 2�xy is monotone non-increasing.

Observe that a literal a + bx is monotone non-increasing or non-decreasing
according to whether b is positive or negative.

The set of all monotone non-decreasing pseudo-Boolean functions is a sublat-
tice of RB

n

. Monotone non-increasing functions constitute another sublattice.
It is easy to see that a non-constant elementary conjunction (1) is monotone

non-decreasing if and only if all Boolean literals occurring in (1) are variables,
and it is monotone non-increasing if and only if all these literals are comple-
mented variables. Similarly, a non-constant elementary disjunction (2) is mono-
tone non-decreasing if and only if all the Boolean literals in (2) are variables, and
it is monotone non-increasing if and only if all these literals are complemented
variables.
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The following two theorems generalize well known results from the theory
of Boolean functions, which have also been extended recently to the class of
discrete functions ([Bioch 1998]).

Theorem1. For any pseudo-Boolean function f the following conditions are
equivalent:

(i) f is monotone non-decreasing,
(ii) some DNF of f contains no complemented variables,
(ii') the canonical DNF of f contains no complemented variables,
(iii) some CNF of f contains no complemented variables,
(iii') the canonical CNF of f contains no complemented variables.

Proof: By the observations made before the statement of the Theorem, either
of the properties (ii) or (iii) implies (i).

Let us show that (i) implies (ii'). Assume (i). Without loss of generality, let
a+ b(~x1 ^ : : :^ ~xm) be a prime implicant and assume ~x1 = x1. Suppose that one
of the Boolean literals is a complemented variable, say ~x1 = 1 � x1. We shall
derive a contradiction. Let Q = ~x2 ^ : : : ^ ~xm; P = ~x1 ^ : : : ^ ~xm. Because we
have

minff(V ) : Q(V ) = 1g < minff(V ) : P (V ) = 1g = a+ b

there must exist a V = (v1; : : : ; vn) in Bn such that Q(V ) = 1; P (V ) = 0 and
f(V ) < a + b. Clearly, v1 = 1. Let W 2 Bn be obtained from V by changing
v1 to 0. Then P (W ) = 1 and therefore a+ b � f(W ). Since W < V in Bn, by
(i) we must have a + b � f(W ) � f(V ), contradicting f(V ) < a + b. Thus (i)
implies (ii') as claimed.

Let us also show that (i) also implies (iii'). Assume (i). Without loss of
generality, let a+ b(~x1 _ : : : _ ~xm) be a prime implicatum. As in the preceding
part, we shall derive a contradiction. Let D = ~x1 _ : : : _ ~xm; Q = ~x2 _ : : : _ ~xm.
Because we have

maxff(V ) : Q(V ) = 0g > maxff(V ) : D(V ) = 0g = a

there is a V = (v1; : : : ; vn) in B
n such that Q(V ) = 0; D(V ) = 1 and f(V ) > a.

We must have v1 = 0. Let W 2 Bn be obtained from V by changing v1 to 1.
Then D(W ) = 0 and therefore f(W ) � a. Since V < W in Bn, by (i) we must
have f(V ) � f(W ) � a, contradicting f(V ) > a. Thus (i) implies (iii').

Finally, (ii) and (iii) follow from (ii') and (iii') respectively, and we have
already noted that each one of them implies (i). 2

As an example, consider the monotone non-decreasing function �x_2�xy_2x_
4xy on B2. Its prime implicants are (1 + x), (1 + y) and (1 + 3xy). The prime
implicata are (2 + 2x); (2 + 2y) and 1 + 3(x _ y).

Theorem2. For any pseudo-Boolean function f the following conditions are
equivalent:

(i) f is monotone non-increasing,
(ii) in some DNF of f , all variable occurrences are complemented,
(ii') all Boolean literals occurring in the canonical DNF of f are complemented

variables,
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(iii) in some CNF of f all variable occurrences are complemented,
(iii') all Boolean literals in the canonical CNF of f are complemented variables.

Proof: Observe that

(A) f is monotone non-increasing if and only if �f is monotone non-decreasing
(B) the prime implicants of f are in bijective correspondence with the prime

implicata of �f , where for a prime implicant a + b(~x1 ^ : : : ^ ~xm) of f the
corresponding prime implicatum of �f is

�a� b(~x1 ^ : : : ^ ~xm) = (�a� b) + b[(1� ~x1) _ : : : _ (1� ~xm)]

Using these observations, Theorem 1 can be used to establish the equivalences
of Theorem 2. 2

As an example, consider the monotone non-increasing function y _ 3�y _ 2�xy
on B2. Its prime implicants are 1+ �x and 1+ 2�y. The prime implicata are 2+ �y
and 1 + 2(�x _ �y).

3 Pseudo-Boolean Horn Functions

A Boolean function is called a Horn function if it has a DNF having at most one
complemented variable in each of its terms, and such a DNF is called a Horn
DNF. Adopting the same de�nitions for pseudo-Boolean Horn functions and
Horn DNF's, the following generalization of a known characterization of Horn
functions among Boolean functions (a Boolean function is Horn if and only if
f(V W ) � f(V )_f(W ) for any V;W 2 Bn; see [Ekin, Hammer and Peled 1997])
holds:

Theorem3. A pseudo-Boolean function f has a Horn DNF if and only if
f(V W ) � f(V ) _ f(W ) for all V;W 2 Bn.

Proof: Suppose that all the elementary conjunctions Pi = ~xi1 : : : ~ximi
are Horn,

but f(V W ) > f(V ) _ f(W ) for some V;W 2 Bn. De�ne

g = _fPi : a+ bi � f(VW )g

Then g is a Horn Boolean function and

1 = g(V W ) < g(V ) _ g(W ) = 0

In view of the quoted above result of [Ekin, Hammer and Peled 1997], this is
impossible, thus proving the validity of f(V W ) � f(V ) _ f(W ).

Conversely, suppose f(V W ) � f(V ) _ f(W ) valid. Suppose some prime im-
plicant is of the form a+ b�x�yP : we shall derive a contradiction, proving that the
canonical DNF is of the required form. Since a+ b�x�yP is prime, neither a+ b�xP
nor a + b�yP are implicants, i.e. there exist V;W 2 Bn such that (denoting
without loss of generality x = x1; y = x2)

a+ b�x1P (V ) = a+ b; f(V ) < a+ b
a+ b�x2P (W ) = a+ b; f(W ) < a+ b

We must have b�x1�x2P (V ) = b�x1�x2P (W ) = 0; and thus v1 = 0; v2 = 1; w1 =
1; w2 = 0, while P (V ) = P (W ) = 1. Therefore both the �rst and second compo-
nents of V W are 0, and P (V W ) = 1. It follows that b�x1�x2P (V W ) = b, implying
f(V W ) � a+ b, hence f(V ) � a+ b or f(W ) � a+ b, which is impossible. 2
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4 Quadratic Pseudo-Boolean Functions

A Boolean function is called quadratic if it is a constant or if it has a DNF of the
form

W
i
Pi, where each Pi is the conjunction of at most two Boolean literals. It

was shown in [Ekin, Hammer and Peled 1997] a Boolean function is quadratic if
and only if it satis�es

f(UV _ UW _ V W ) � f(U) _ f(V ) _ f(W ) (5)

for any U; V;W 2 Bn: We shall prove below the following generalization of this
result:

Theorem4. A pseudo-Boolean function f has a DNF
W
i
(a+bi(~xi1^: : :^~ximi

))
with all Boolean conjunctions Pi = ~xi1 : : : ^ ~ximi

quadratic if and only if it
satis�es

f(UV _ UW _ V W ) � f(U) _ f(V ) _ f(W ) (6)

for all U; V;W 2 Bn.

Proof: Suppose f = _(a + biPi) with every Pi quadratic. If we had for some
U; V;W 2 Bn,

f(UV _ UW _ V W ) > f(U) _ f(V ) _ f(W ) (7)

then the quadratic Boolean function g de�ned by

g =
_
fPi : a+ bi � f(UV _ UW _ V W )g

would not satisfy (6) because we would have

1 = g(UV _ UW _ V W ) > g(U) _ g(V ) _ g(W ) = 0

Therefore we cannot have (7), and hence (6) must be valid.
Conversely, suppose (6) is valid. It su�ces to show that no prime implicant

of f is of the form a + b~x1~x2~x3P , where b is positive, ~xi is either xi or �xi, and
x1; x2; x3 are three distinct variables. Assume that, to the contrary, we have such
a prime implicant

h = a+ b~x1~x2~x3P

Let h3 = a + b~x1~x2P , h2 = a + b~x1~x3P; h1 = a + b~x2~x3P . From the primality
of h it follows that none of the hi is an implicant, and hence, that there are
U; V;W 2 Bn such that

h3(U) = h2(V ) = h1(W ) = a+ b;

while f(U); f(V ); f(W ) are all less than a+ b. We must have

u3 6= v3; v3 = w3; ~x3(U) = 0; ~x3(V ) = ~x3(W ) = 1
v2 6= u2; u2 = w2; ~x2(V ) = 0; ~x2(U) = ~x2(W ) = 1
w1 6= u1; u1 = v1; ~x1(W ) = 0; ~x1(U) = ~x1(V ) = 1

It follows that
~x1(UV ) = ~x2(UW ) = ~x3(V W ) = 1

102 Foldes S., Hammer P.L.: Monotone, Horn and Quadratic Pseudo-Boolean Functions



and
x2(UV ) = x3(UV ) = 0
x1(UW ) = x3(UW ) = 0
x1(V W ) = x2(V W ) = 0

Consequently all the ~xi; i = 1; 2; 3, take the value 1 on UV _ UW _ V W , and
obviously so does P . But then

a+ b = h(UV _ UW _ V W ) � f(UV _ UW _ V W )

and hence by the validity of (6), at least one of f(U); f(V ); f(W ) must be greater
than or equal to a+ b: contradiction. 2

5 Applications

The maximization of a pBf in DNF representation is clearly achievable in polyno-
mial time. On the other hand, the minimization problem is obviously intractable,
since SAT is a particular case of it.

Some important practical pBf minimization problems concern functions given
in DNF representation involving monotone, quadratic or Horn expressions (see
e.g. [Boros, Hammer, Minoux and Rader 1999] for an application in VLSI de-
sign). The minimization of a monotone DNF is trivial. The minimization of a
quadratic or Horn DNF can be achieved in polynomial time by a simple reduction
to the Boolean case.

Indeed, it follows by distributivity from the DNF representation (3), that any
pBf f can be written as

f = a+

 
t_
i=1

bi~xi1 : : : ~ximi

!

where all bi > 0: The way to check whether for a real number r there exists an
X 2 Bn with f(X) � r, we have to check whether the system_

i2A

~xi1 : : : ~ximi = 1

_
i2B

~xi1 : : : ~ximi = 0

is consistent; here A = fi : a + bi � rg; B = fi : a + bi > rg: It is well
known that in case of quadratic or Horn DNFs the above Boolean equations'
consistency can be established in polynomial time. Since the minimum of f can
only occur in one of the values a; a + b1; : : : ; a + bt; the polynomiality of the
minimization problem for quadratic and Horn DNFs follows immediately.
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