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1 Introduction

Rational Pavelka logic (RPL) is obtained from  Lukasiewicz in�nite valued propo-
sitional calculus (L) by adding the truth constants r for r 2 [0; 1] \ Q. The
corresponding algebraic structures (Pavelka algebras) will be MV-algebras that
contain a set of constants fr j r 2 [0; 1] \ Qg as a subalgebra. The quanti�ers
de�ned on an MV-algebra appear in [10, 11] reecting the action of the quanti-
�ers in  Lukasiewicz in�nite valued predicate calculus (L8). In this paper we start
from the Rational Pavelka predicate logic (RPL8) in order to de�ne the quanti-
�ers on Pavelka algebras. This leds to the notion of monadic Pavelka algebra. If
K is a non-empty set then the MV-algebra [0; 1]K has a canonical structure of
monadic Pavelka algebra. The main result of this paper is a representation theo-
rem for monadic Pavelka algebras. In fact, our results can be viewed as algebraic
versions of the results in [6] (see also [4], pp. 223-226).

2 Monadic MV-algebras

The MV-algebras were introduced in [1] as algebraic models for L. An
MV-algebra is an algebraic structure hA;�;:; 0i where hA;�; 0i is an abelian
monoid and : is an unary operation such that :
1. ::x = x for any x 2 A,
2. x� :0 = :0 for any x 2 A,
3. :(:x� y)� y = :(:y � x)� x for any x, y 2 A.
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We also de�ne 1 = :0, x � y = :(:x � :y), x �! y = :x � y,
x _ y = x� (:x� y), x ^ y = x � (:x � y). Thus hA;_;^; 0; 1i is a bounded
distributive lattice. If x 2 A and n is a natural number we denote

0x = 0, (n+ 1)x = nx� x,
x0 = 1, xn+1 = xn � x:
The interval [0; 1] is an MV-algebra with respect to the operations

x� y = min(1; x + y) and :x = 1�x. In [0; 1] we have that x�y = max(0; x+
y � 1) and x �! y = min(1; 1 � x + y). If x < 1 then there exists a natural
number n such that xn = 0.

Lemma 2.1 [2] In every MV-algebra A the following equalities hold:
(i) a �

W
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W
i2I(a� xi), a�

V
i2I xi =

V
i2I(a� xi),

(ii) a �
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i2I(xi � xi) =

�V
i2I xi

�2
.

Lemma 2.2 [1, 2] The implication operation �! has the following properties:
(i) x � y i� x �! y = 1,
(ii) y � z � x i� y � z �! x,
(iii) (x _ y) �! z = (x �! z) ^ (y �! z).

A non-empty subset F of A is an MV-�lter ( �lter) if for every x, y 2 A the
following are satis�ed:
4. x,y 2 F ) x � y 2 F ,
5. x � y, x 2 F ) y 2 F .
For X � A the �lter generated by X is given by

filt(X) = fa 2 A j x1 � � � � � xn � a for some n < ! and x1; . . . ; xn 2 Xg.
If F is a �lter and b 2 A then

filt(X [ fbg) = fa 2 A j x� bn � a for some n < ! and x 2 Fg.
With any �lter F of A we can associate a congruence �F on A:

x �F y i� (x �! y) ^ (y �! x) 2 F .
Denote by A=F the quotient MV-algebra A= �F and denote by a=F the class of
a 2 A.

A proper �lter P is prime if x_y 2 P implies x 2 P or y 2 P . One can prove
that a proper �lter P is prime i� x �! y 2 P or y �! x 2 P for any x, y 2 A
i� A=P is a linearly ordered MV-algebra.

De�nition 2.3 An existential quanti�er on an MV-algebra A is a mapping
9 : A �! A which satis�es the following axioms:
M0. 90 = 0,
M1. x � 9x,
M2. 9(x � 9y) = 9x� 9y,
M3. 9(x � 9y) = 9x� 9y,
M4. 9(x � x) = 9x� 9x,
M5. 9(x � x) = 9x� 9x.

If we de�ne 8x = :9:x for any x 2 A then the mapping 8 : A �! A ful�ls
the following properties:
M0�. 81 = 1,
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M1�. 8x � x,
M2�. 8(x� 8y) = 8x � 8y,
M3�. 8(x� 8y) = 8x � 8y,
M4�. 8(x� x) = 8x � 8x,
M5�. 8(x� x) = 8x � 8x.

A mapping 8 : A �! A satisfying the properties M0� - M5� will be called
universal quanti�er on A. A monadic MV-algebra is a pair hA;9i where A is
an MV-algebra and 9 is an existential quanti�er on A. One can also de�ne a
monadic MV-algebra as a pair hA;8i where A is an MV-algebra and 8 is an
universal quanti�er on A.

Lemma 2.4 [10] In every monadic MV-algebra the following properties are sat-
is�ed:
(i) 91 = 1,
(ii) 99x = 9x,
(iii) 9(:9x) = :9x,
(iv) 9(9x � 9y) = 9x� 9y,
(v) 9(9x � 9y) = 9x� 9y,
(vi) 9(a ^ 9b) = 9a ^ 9b,
(vii) 9(a _ b) = 9a _ 9b,
(viii) x � y ) 9x � 9y and 8x � 8y,
(ix) 98x = 8x, 89x = 9x.

Example 2.5 [3] If K is a non-empty set then [0; 1]K becomes a monadic
MV-algebra by de�ning 9 : [0; 1]K �! [0; 1]K in the following way:

(9p)(k) =
W
fp(l) j l 2 Kg for any p 2 [0; 1]K and k 2 K.

The axioms M0-M5 can be proved by using Lemma 2.1.

3 Monadic Pavelka algebras

Let us denote L the MV-algebra [0; 1] \Q.

De�nition 3.1 A Pavelka algebra is a structure hA; fr : r 2 Lgi where A is an
MV-algebra and fr : r 2 Lg � A such that:
P0. 0 = 0,
P1. r � s = r � s for any r,s 2 L,
P2. :r = :r for any r 2 L,
P3. r 6= s for any distinct r, s 2 L.

Thus, the mapping r 7! r is an injective morphism of MV-algebras. The Lin-
denbaum - Tarski algebra of Rational Pavelka logic (RPL) is a Pavelka algebra.
The notion of morphism of Pavelka algebras is introduced as usual.

Lemma 3.2 Let hA; fr : r 2 Lgi be a Pavelka algebra, P a proper �lter of A
and r, s 2 L. Then the following hold:
(i) r 2 P i� r = 1,
(ii) r � s i� r=P � s=P .

Proof. (i) If r 6= 1 then there is n < ! such that rn = 0, so rn = 0. But r 2 P
implies rm 2 P for each m < !. We get 0 2 P . Contradiction.
(ii) r � s i� r �! s = 1 i� r �! s 2 P i� r �! s 2 P i� r=P � s=P . 2
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De�nition 3.3 A monadic Pavelka algebra is a structure hA;9; fr : r 2 Lgi
where hA;9i is a monadic MV-algebra and hA; fr : r 2 Lgi is a Pavelka alge-
bra such that 9r = r for any r 2 L.

The notion of morphism of monadic Pavelka algebras is introduced as usual.

Example 3.4 Let F be the set of formulas of Rational Pavelka predicate logic
(RPL8) and � the following equivalence relation on F : ' �  i� ` ' $  . If
x is a variable then we denote (9x)([']) = [9x'] where ' is a formula and [']
its class in F=�. Then hF=�;9x : F=� �! F�i is a monadic MV-algebra. If r,
s 2 L are distinct then [r] 6= [s]. If [r] = [s] then ` r ! s and ` s ! r. We
get r � s and s � r (see [4]), so r = s. It is easy to show that in this way F=�
becomes a monadic Pavelka algebra.

Example 3.5 Let K be a non-empty set. For r 2 L denote r : K �! [0; 1] the
constant function k 7! r. Thus



[0; 1]K ; fr : r 2 Lg

�
is a Pavelka algebra, so , by

Example 2.5, [0; 1]K is endowed with a structure of monadic Pavelka algebra.

If A is a monadic Pavelka algebra then a morphism of monadic Pavelka
algebras � : A �! [0; 1]K will be called a representation of A.

Lemma 3.6 In a monadic Pavelka algebra A the following equalities hold for
any r 2 L and a 2 A:
(i) 9(r � a) = r � 9(a),
(ii) 9(r � a) = r � 9(a),
(iii) 8(r � a) = r � 8(a),
(iv) 8(r � a) = r � 8(a),
(v) r �! 9a = 9(r �! a),
(vi) 9a �! r = 8(a �! r),
(vii) r �! 8a = 8(r �! a),
(viii) 8a �! r = 9(a �! r).

Proof. (i) 9(r � a) = 9(9r � a) = 9r � 9a = r � 9a.
(ii), (iii), (iv) follows similarly.
(v) 9(r �! a) = 9(:r � a) = 9(:r � a) = :r � 9a = r �! 9a.
(vi) 8(a �! r) = 8(:a � r) = r � 8:a = r � :9a = 9a �! r.
(vii), (viii) follows similarly. 2

One remark that B = 9(A) = 8(A) is a Pavelka subalgebra of A.
For the rest of the paper let hA;9; fr : r 2 Lgi be an arbitrary monadic

Pavelka algebra and B = 9(A).

Lemma 3.7 If s 2 L, a 2 A and s 6� a then there exists X � B such that:
(i) filt(X [ fa �! sg) is proper,
(ii) for any b 2 B and r 2 L, r �! b 2 X or b �! r 2 X.

Proof. We shall prove that the filt(a �! s) is proper. If not, then (a �! s)n = 0
for some n < !. But (a �! s)n _ (s �! a)n = 1 so (s �! a)n = 1. This yields
s �! a = 1, hence s � a. Contradiction. Thus there exists b 62 filt(a �! s).

Consider an enumeration f(a�; r�) j � < kg of the set B � L. We shall
construct by induction a sequence fX�g�<k such that b 62 filt(X�) for any � < k.
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� X0 = fa �! sg
� � = � + 1. The induction hypothesis is b 62 filt(X�). Assume b 2

filt(X� [ fa� �! r�g) \ filt(X� [ fr� �! a�g) so there is n < ! such that
(a� �! r�)n �! b 2 filt(X�) and (r� �! a�)n �! b 2 filt(X�). But

b = 1 �! b
= [(a� �! r�)n _ (r� �! a�)n] �! b
= [(a� �! r�)n �! b] ^ [(r� �! a�)n �! b]

hence b 2 filt(X�). Contradiction. It follows that b 62 filt(X� [ fa� �! r�g) or
b 62 filt(X� [ fr� �! a�g). Thus one can de�ne

X� =

�
X� [ fa� �! r�g if b 62 filt(X� [ fa� �! r�g)
X� [ fr� �! a�g otherwise.

� If � is a limit ordinal then X� =
S
�<�X� .

It follows that b 62 filt(
S
�<kX�) and we de�ne X =

S
�<kX� � fa �! sg. 2

Lemma 3.8 Let X be a the set constructed in Lemma 3.7. If 9a 2 X then there
exists a prime �lter P such that X [ fag � P .

Proof. By the dual of [2], Proposition 1.2.13 it su�ces to prove that filt(X[fag)
is a proper �lter. If not, then there exist m < ! and x1, . . ., xn 2 X such
that x1 � � � � � xn � am = 0. Denote x = x1 � � � � � xn so c � :am, hence
8c � 8:(am) = :9(am). But c 2 9(A) because X � 9(A) so c � :9(am), hence
:9(am) 2 filt(X). By hypothesis, 9(am) = (9a)m 2 filt(X), contradicting that
filt(X) is proper. 2

4 Representation theorem

In this section we shall prove a representation theorem for monadic Pavelka
algebras.

Theorem 4.1 Let hA; 9; fr : r 2 Lgi be a monadic Pavelka algebra. If a 2 A
and s 2 L such that s 6� a then there exist a non-empty set K, a representation
� : A �! [0; 1]K and k 2 K such that �(a)(k) � s.

Proof. Let X be the set constructed in Lemma 3.7 and K the set of prime �lters
of A including X. For any x 2 A and P 2 K denote

[x]P = supfr 2 L j r �! x 2 Pg.
In order to de�ne � we have to prove some properties.
(i)[x]P = inffr 2 L j x �! r 2 Pg.
If r �! x 2 P and x �! s 2 P then, by Lemma 3.2, r �! s 2 P , so r � s. It
follows that [x]P � inffr 2 L j x �! r 2 Pg. If we assume [x]P < inffr 2 L j
x �! r 2 Pg then there is q 2 L such that [x]P < q < inffr 2 L j x �! r 2 Pg,
so q �! x 62 P and x �! q 62 P . This contradicts the fact that P is a prime
�lter.
(ii) [x� y]P = [x]P � [y]P .
(iii) [x� y]P = [x]P � [y]P .
In order to prove (ii) we have

[x� y]P = infft j x � y �! t 2 Pg and
[x]P � [y]P = supfr � q j r �! x 2 P; q �! y 2 Pg.

By Lemma 3.2, r �! x 2 P , q �! y 2 P and x � y �! t 2 P implies
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r=P � x=P , q=P � y=P and x=P � y=P � t=P so r � q=P � t=P , hence r� q � t.
We proved that [x]P � [y]P � [x � y]P . The converse inequality and (iii) follow
similarly.
(iv) [r]P = r for any r 2 L.
By Lemma 3.2, [r] = supfq 2 L j q � rg = r.

Let us de�ne � : A �! [0; 1]K by �(x)(P ) = [x]P for any x 2 A and P 2 K.
In accordance to (ii)-(iv), � is a morphism of Pavelka algebras. Now we shall
prove that
(v) �(9x)(P ) = (9�(x))(P ) for any x 2 A and P 2 K.
If r 2 L and P , Q 2 K we have, in accordance to Lemma 3.2, r �! 9x 2 P
i� r �! 9x 2 Q, therefore [9x]P = [9x]Q. Then [9x]P = [9x]Q � [x]Q for every
Q 2 K, hence
�(9x)(P ) = [9x]P � supf[x]Q j Q 2 Kg = supf�(x)(Q) j Q 2 Kg = (9�(x))(P ).
The following implications:

r < [9x]P ) 9x �! r 62 P (cf. (i))
) 9x �! r 62 X (cf. X � P )
) r �! 9x 2 X (cf. Lemma 3.7)
) 9(r �! x) 2 X (cf. Lemma 3.6)
) r �! x 2 Q (cf. Lemma 3.8)
) r � [x]Q

for some Q 2 K, establish the converse inequality in (v). Indeed, if we assume
[9x]P > supf[x]Q j Q 2 Kg then there is r 2 L such that [9x]P > r > supf[x]Q j
Q 2 Kg contradicting the above implications. Therefore, � is a representation
of A.

Finally, by Lemma 3.7, there exists P0 2 K such that X [ fa �! sg � P0 so
�(a)(P0) � s and �(a)(P0) = inffr j a �! r 2 P0g. 2

For any a 2 A let us de�ne
[a] = supfr j r � ag
k a k= inff�(a)(k) j � : A �! [0; 1]K representation and k 2 Kg.

Corollary 4.2 [a] =k a k for any a 2 A.

Proof. The inequality [a] �k a k is obvious. Assume there exists s 2 L such
that [a] < s <k a k. Thus s 6� a so, by Theorem 4.1, there exist a rep-
resentation � : A �! [0; 1]K and k 2 K such that �(a)(k) � s. Therefore
k a k� �(a)(k) � s. Contradiction. 2
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