A Representation Theorem for Monadic Pavelka Algebras¹

George Georgescu (Department of Fundamentals of Computer Science, Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109, Bucharest, Romania Email: georgescu@funinf.math.unibuc.ro.)

Ioana Leuştean (Department of Fundamentals of Computer Science, Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109, Bucharest, Romania Email: ioana@funinf.math.unibuc.ro.)

Abstract: In this paper we define the *monadic Pavelka algebras* as algebraic structures induced by the action of quantifiers in Rational Pavelka predicate logic. The main result is a representation theorem for these structures.

Key Words: Pavelka algebra, monadic Pavelka algebra, MV-algebra, monadic MV-algebra.

Category: F.4.1.

1 Introduction

Rational Pavelka logic (RPL) is obtained from Lukasiewicz infinite valued propositional calculus (L) by adding the truth constants \bar{r} for $r \in [0,1] \cap Q$. The corresponding algebraic structures (*Pavelka algebras*) will be MV-algebras that contain a set of constants { $\bar{r} \mid r \in [0,1] \cap Q$ } as a subalgebra. The quantifiers defined on an MV-algebra appear in [10, 11] reflecting the action of the quantifiers in Lukasiewicz infinite valued predicate calculus (L \forall). In this paper we start from the Rational Pavelka predicate logic (RPL \forall) in order to define the quantifiers on Pavelka algebras. This leds to the notion of *monadic Pavelka algebra*. If *K* is a non-empty set then the MV-algebra [0, 1]^K has a canonical structure of monadic Pavelka algebras. In fact, our results can be viewed as algebraic versions of the results in [6] (see also [4], pp. 223-226).

2 Monadic MV-algebras

The MV-algebras were introduced in [1] as algebraic models for L. An MV-algebra is an algebraic structure $\langle A, \oplus, \neg, 0 \rangle$ where $\langle A, \oplus, 0 \rangle$ is an abelian monoid and \neg is an unary operation such that :

- 1. $\neg \neg x = x$ for any $x \in A$,
- 2. $x \oplus \neg 0 = \neg 0$ for any $x \in A$,

3. $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$ for any $x, y \in A$.

¹ C. S. Calude and G. Ştefănescu (eds.). Automata, Logic, and Computability. Special issue dedicated to Professor Sergiu Rudeanu Festschrift.

We also define $1 = \neg 0$, $x \odot y = \neg(\neg x \oplus \neg y)$, $x \longrightarrow y = \neg x \oplus y$, $x \lor y = x \oplus (\neg x \odot y)$, $x \land y = x \odot (\neg x \oplus y)$. Thus $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice. If $x \in A$ and n is a natural number we denote 0x = 0, $(n+1)x = nx \oplus x$,

 $x^0 = 1, \ x^{n+1} = x^n \odot x.$

The interval [0,1] is an MV-algebra with respect to the operations $x \oplus y = min(1, x + y)$ and $\neg x = 1 - x$. In [0,1] we have that $x \odot y = max(0, x + y - 1)$ and $x \longrightarrow y = min(1, 1 - x + y)$. If x < 1 then there exists a natural number n such that $x^n = 0$.

Lemma 2.1 [2] In every MV-algebra A the following equalities hold: (i) $a \oplus \bigvee_{i \in I} x_i = \bigvee_{i \in I} (a \oplus x_i), a \oplus \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \oplus x_i),$ (ii) $a \odot \bigvee_{i \in I} x_i = \bigvee_{i \in I} (a \odot x_i), a \odot \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \odot x_i),$ (iii) if A is linearly ordered then $\bigvee_{i \in I} (x_i \oplus x_i) = 2 (\bigvee_{i \in I} x_i), \bigvee_{i \in I} (x_i \odot x_i) = (\bigvee_{i \in I} x_i)^2,$ $\bigwedge_{i \in I} (x_i \oplus x_i) = 2 (\bigwedge_{i \in I} x_i), \bigwedge_{i \in I} (x_i \odot x_i) = (\bigwedge_{i \in I} x_i)^2.$

Lemma 2.2 [1, 2] The implication operation \longrightarrow has the following properties: (i) $x \leq y$ iff $x \longrightarrow y = 1$, (ii) $y \odot z \leq x$ iff $y \leq z \longrightarrow x$, (iii) $(x \lor y) \longrightarrow z = (x \longrightarrow z) \land (y \longrightarrow z)$.

A non-empty subset F of A is an MV-filter (filter) if for every $x, y \in A$ the following are satisfied:

4. $x, y \in F \Rightarrow x \odot y \in F$,

5. $x \leq y, x \in F \Rightarrow y \in F$.

For $X \subseteq A$ the filter generated by X is given by

 $filt(X) = \{a \in A \mid x_1 \oplus \cdots \oplus x_n \leq a \text{ for some } n < \omega \text{ and } x_1, \dots, x_n \in X\}.$ If F is a filter and $b \in A$ then

 $filt(X \cup \{b\}) = \{a \in A \mid x \odot b^n \leq a \text{ for some } n < \omega \text{ and } x \in F\}.$ With any filter F of A we can associate a congruence \sim_F on A:

 $x \sim_F y \text{ iff } (x \longrightarrow y) \land (y \longrightarrow x) \in F.$

Denote by $A/_F$ the quotient MV-algebra A/\sim_F and denote by $a/_F$ the class of $a \in A$.

A proper filter P is prime if $x \lor y \in P$ implies $x \in P$ or $y \in P$. One can prove that a proper filter P is prime iff $x \longrightarrow y \in P$ or $y \longrightarrow x \in P$ for any $x, y \in A$ iff $A/_P$ is a linearly ordered MV-algebra.

Definition 2.3 An existential quantifier on an MV-algebra A is a mapping $\exists : A \longrightarrow A$ which satisfies the following axioms:

 $\begin{array}{l} \mathrm{M0.} \ \exists 0 = 0, \\ \mathrm{M1.} \ x \leq \exists x, \\ \mathrm{M2.} \ \exists (x \odot \exists y) = \exists x \odot \exists y, \\ \mathrm{M3.} \ \exists (x \oplus \exists y) = \exists x \oplus \exists y, \\ \mathrm{M4.} \ \exists (x \odot x) = \exists x \odot \exists x, \\ \mathrm{M5.} \ \exists (x \oplus x) = \exists x \oplus \exists x. \end{array}$

If we define $\forall x = \neg \exists \neg x$ for any $x \in A$ then the mapping $\forall : A \longrightarrow A$ fulfils the following properties: M0°. $\forall 1 = 1$, $\begin{array}{l} \mathrm{M1}^{\circ} \cdot \forall x \leq x, \\ \mathrm{M2}^{\circ} \cdot \forall (x \oplus \forall y) = \forall x \oplus \forall y, \\ \mathrm{M3}^{\circ} \cdot \forall (x \odot \forall y) = \forall x \odot \forall y, \\ \mathrm{M4}^{\circ} \cdot \forall (x \oplus x) = \forall x \oplus \forall x, \\ \mathrm{M5}^{\circ} \cdot \forall (x \odot x) = \forall x \odot \forall x. \end{array}$

A mapping $\forall : A \longrightarrow A$ satisfying the properties M0° - M5° will be called universal quantifier on A. A monadic MV-algebra is a pair $\langle A, \exists \rangle$ where A is an MV-algebra and \exists is an existential quantifier on A. One can also define a monadic MV-algebra as a pair $\langle A, \forall \rangle$ where A is an MV-algebra and \forall is an universal quantifier on A.

Lemma 2.4 [10] In every monadic MV-algebra the following properties are satisfied:

(i) $\exists 1 = 1$, (ii) $\exists \exists x = \exists x$, (iii) $\exists (\neg \exists x) = \neg \exists x$, (iv) $\exists (\exists x \odot \exists y) = \exists x \odot \exists y$, (v) $\exists (\exists x \oplus \exists y) = \exists x \oplus \exists y$, (vi) $\exists (a \land \exists b) = \exists a \land \exists b$, (vii) $\exists (a \lor b) = \exists a \lor \exists b$, (viii) $x \le y \Rightarrow \exists x \le \exists y \text{ and } \forall x \le \forall y$, (ix) $\exists \forall x = \forall x$, $\forall \exists x = \exists x$.

Example 2.5 [3] If K is a non-empty set then $[0,1]^K$ becomes a monadic MV-algebra by defining $\exists : [0,1]^K \longrightarrow [0,1]^K$ in the following way:

 $(\exists p)(k) = \bigvee \{p(l) \mid l \in K\}$ for any $p \in [0, 1]^K$ and $k \in K$. The axioms M0-M5 can be proved by using Lemma 2.1.

3 Monadic Pavelka algebras

Let us denote L the MV-algebra $[0,1] \cap Q$.

Definition 3.1 A Pavelka algebra is a structure $\langle A, \{\overline{r} : r \in L\} \rangle$ where A is an MV-algebra and $\{\overline{r} : r \in L\} \subseteq A$ such that: P0. $\overline{0} = 0$, P1. $\overline{r \oplus s} = \overline{r} \oplus \overline{s}$ for any $r, s \in L$, P2. $\overline{\neg r} = \neg \overline{r}$ for any $r \in L$, P3. $\overline{r} \neq \overline{s}$ for any distinct $r, s \in L$.

Thus, the mapping $r \mapsto \overline{r}$ is an injective morphism of MV-algebras. The Lindenbaum - Tarski algebra of Rational Pavelka logic (RPL) is a Pavelka algebra. The notion of morphism of Pavelka algebras is introduced as usual.

Lemma 3.2 Let $\langle A, \{\overline{r} : r \in L\} \rangle$ be a Pavelka algebra, P a proper filter of A and $r, s \in L$. Then the following hold: (i) $\overline{r} \in P$ iff r = 1, (ii) $r \leq s$ iff $\overline{r}/_P \leq \overline{s}/_P$.

Proof. (i) If $r \neq 1$ then there is $n < \omega$ such that $r^n = 0$, so $\overline{r}^n = 0$. But $\overline{r} \in P$ implies $\overline{r}^m \in P$ for each $m < \omega$. We get $0 \in P$. Contradiction. (ii) $r \leq s$ iff $r \longrightarrow s = 1$ iff $\overline{r} \longrightarrow \overline{s} \in P$ iff $\overline{r} \longrightarrow \overline{s} \in P$ iff $\overline{r}/P \leq \overline{s}/P$. \Box **Definition 3.3** A monadic Pavelka algebra is a structure $\langle A, \exists, \{\overline{r} : r \in L\} \rangle$ where $\langle A, \exists \rangle$ is a monadic MV-algebra and $\langle A, \{\overline{r} : r \in L\} \rangle$ is a Pavelka algebra such that $\exists \overline{r} = \overline{r}$ for any $r \in L$.

The notion of morphism of monadic Pavelka algebras is introduced as usual.

Example 3.4 Let F be the set of formulas of Rational Pavelka predicate logic (RPL \forall) and \sim the following equivalence relation on $F: \varphi \sim \psi$ iff $\vdash \varphi \leftrightarrow \psi$. If x is a variable then we denote $(\exists x)([\varphi]) = [\exists x\varphi]$ where φ is a formula and $[\varphi]$ its class in $F/_{\sim}$. Then $\langle F/_{\sim}, \exists x: F/_{\sim} \longrightarrow F_{\sim} \rangle$ is a monadic MV-algebra. If $r, s \in L$ are distinct then $[\overline{r}] \neq [\overline{s}]$. If $[\overline{r}] = [\overline{s}]$ then $\vdash \overline{r} \to \overline{s}$ and $\vdash \overline{s} \to \overline{r}$. We get $r \leq s$ and $s \leq r$ (see [4]), so r = s. It is easy to show that in this way $F/_{\sim}$ becomes a monadic Pavelka algebra.

Example 3.5 Let K be a non-empty set. For $r \in L$ denote $\overline{r} : K \longrightarrow [0, 1]$ the constant function $k \mapsto r$. Thus $\langle [0, 1]^K, \{\overline{r} : r \in L\} \rangle$ is a Pavelka algebra, so, by Example 2.5, $[0, 1]^K$ is endowed with a structure of monadic Pavelka algebra.

If A is a monadic Pavelka algebra then a morphism of monadic Pavelka algebras $\Phi: A \longrightarrow [0, 1]^K$ will be called a *representation* of A.

Lemma 3.6 In a monadic Pavelka algebra A the following equalities hold for any $r \in L$ and $a \in A$:

 $\begin{array}{ll} (\mathrm{i}) \ \exists (\overline{r} \oplus a) = \overline{r} \oplus \exists (a), \\ (\mathrm{ii}) \ \exists (\overline{r} \odot a) = \overline{r} \odot \exists (a), \\ (\mathrm{iii}) \ \forall (\overline{r} \oplus a) = \overline{r} \odot \forall (a), \\ (\mathrm{iv}) \ \forall (\overline{r} \odot a) = \overline{r} \odot \forall (a), \\ (\mathrm{v}) \ \overline{r} \longrightarrow \exists a = \exists (\overline{r} \longrightarrow a), \\ (\mathrm{vi}) \ \exists a \longrightarrow \overline{r} = \forall (a \longrightarrow \overline{r}), \\ (\mathrm{vii}) \ \overline{r} \longrightarrow \forall a = \forall (\overline{r} \longrightarrow a), \\ (\mathrm{viii}) \ \forall a \longrightarrow \overline{r} = \exists (a \longrightarrow \overline{r}). \end{array}$

 $\begin{array}{ll} Proof. \ (\mathrm{i}) \ \exists (\overline{r} \oplus a) = \exists (\exists \overline{r} \oplus a) = \exists \overline{r} \oplus \exists a = \overline{r} \oplus \exists a. \\ (\mathrm{ii}), \ (\mathrm{iii}), \ (\mathrm{iv}) \ \mathrm{follows \ similarly.} \\ (\mathrm{v}) \ \exists (\overline{r} \longrightarrow a) = \exists (\neg \overline{r} \oplus a) = \exists (\neg \overline{r} \oplus a) = \neg \overline{r} \oplus \exists a = \overline{r} \longrightarrow \exists a. \\ (\mathrm{vi}) \ \forall (a \longrightarrow \overline{r}) = \forall (\neg a \oplus \overline{r}) = \overline{r} \oplus \forall \neg a = \overline{r} \oplus \neg \exists a = \exists a \longrightarrow \overline{r}. \\ (\mathrm{vii}), \ (\mathrm{viii}) \ \mathrm{follows \ similarly.} \end{array}$

One remark that $B = \exists (A) = \forall (A)$ is a Pavelka subalgebra of A. For the rest of the paper let $\langle A, \exists, \{\overline{r} : r \in L\} \rangle$ be an arbitrary monadic Pavelka algebra and $B = \exists (A)$.

Lemma 3.7 If $s \in L$, $a \in A$ and $\overline{s} \not\leq a$ then there exists $X \subseteq B$ such that: (i) $filt(X \cup \{a \longrightarrow \overline{s}\})$ is proper, (ii) for any $b \in B$ and $r \in L$, $\overline{r} \longrightarrow b \in X$ or $b \longrightarrow \overline{r} \in X$.

Proof. We shall prove that the $filt(a \rightarrow \overline{s})$ is proper. If not, then $(a \rightarrow \overline{s})^n = 0$ for some $n < \omega$. But $(a \rightarrow \overline{s})^n \lor (\overline{s} \rightarrow a)^n = 1$ so $(\overline{s} \rightarrow a)^n = 1$. This yields $\overline{s} \rightarrow a = 1$, hence $\overline{s} \leq a$. Contradiction. Thus there exists $b \notin filt(a \rightarrow \overline{s})$.

Consider an enumeration $\{(a_{\xi}, \overline{r}_{\xi}) \mid \xi < k\}$ of the set $B \times L$. We shall construct by induction a sequence $\{X_{\xi}\}_{\xi < k}$ such that $b \notin filt(X_{\xi})$ for any $\xi < k$.

• $X_0 = \{a \longrightarrow \overline{s}\}$ • $\xi = \zeta + 1$. The induction hypothesis is $b \notin filt(X_{\zeta})$. Assume $b \in filt(X_{\zeta} \cup \{a_{\zeta} \longrightarrow \overline{r}_{\zeta}\}) \cap filt(X_{\zeta} \cup \{\overline{r}_{\zeta} \longrightarrow a_{\zeta}\})$ so there is $n < \omega$ such that $(a_{\zeta} \longrightarrow \overline{r}_{\zeta})^n \longrightarrow b \in filt(X_{\zeta})$ and $(\overline{r}_{\zeta} \longrightarrow a_{\zeta})^n \longrightarrow b \in filt(X_{\zeta})$. But $b = 1 \longrightarrow b$ $\begin{array}{l} = [(a_{\zeta} \longrightarrow \overline{r}_{\zeta})^n \vee (\overline{r}_{\zeta} \longrightarrow a_{\zeta})^n] \longrightarrow b \\ = [(a_{\zeta} \longrightarrow \overline{r}_{\zeta})^n \longrightarrow b] \wedge [(\overline{r}_{\zeta} \longrightarrow a_{\zeta})^n \longrightarrow b] \end{array}$ hence $b \in filt(X_{\zeta})$. Contradiction. It follows that $b \notin filt(X_{\zeta} \cup \{a_{\zeta} \longrightarrow \overline{r}_{\zeta}\})$ or $b \notin filt(X_{\zeta} \cup \{\overline{r_{\zeta}} \longrightarrow a_{\zeta}\})$. Thus one can define $X_{\xi} = \begin{cases} X_{\zeta} \cup \{a_{\zeta} \longrightarrow \overline{r}_{\zeta}\} & \text{if } b \notin filt(X_{\zeta} \cup \{a_{\zeta} \longrightarrow \overline{r}_{\zeta}\}) \\ X_{\zeta} \cup \{\overline{r}_{\zeta} \longrightarrow a_{\zeta}\} & \text{otherwise.} \end{cases}$ • If ξ is a limit ordinal then $X_{\xi} = \bigcup_{\zeta < \xi} X_{\zeta}$.

It follows that $b \notin filt(\bigcup_{\xi < k} X_{\xi})$ and we define $X = \bigcup_{\xi < k} X_{\xi} - \{a \longrightarrow \overline{s}\}.$

Lemma 3.8 Let X be a the set constructed in Lemma 3.7. If $\exists a \in X$ then there exists a prime filter P such that $X \cup \{a\} \subseteq P$.

Proof. By the dual of [2], Proposition 1.2.13 it suffices to prove that $filt(X \cup \{a\})$ is a proper filter. If not, then there exist $m < \omega$ and $x_1, \ldots, x_n \in X$ such that $x_1 \odot \cdots \odot x_n \odot a^m = 0$. Denote $x = x_1 \odot \cdots \odot x_n$ so $c \leq \neg a^m$, hence $\forall c \leq \forall \neg (a^m) = \neg \exists (a^m)$. But $c \in \exists (A)$ because $X \subseteq \exists (A)$ so $c \leq \neg \exists (a^m)$, hence $\neg \exists (a^m) \in filt(X)$. By hypothesis, $\exists (a^m) = (\exists a)^m \in filt(X)$, contradicting that filt(X) is proper.

4 **Representation theorem**

In this section we shall prove a representation theorem for monadic Pavelka algebras.

Theorem 4.1 Let $\langle A, \exists, \{\overline{r} : r \in L\} \rangle$ be a monadic Pavelka algebra. If $a \in A$ and $s \in L$ such that $\overline{s} \not\leq a$ then there exist a non-empty set K, a representation $\Phi: A \longrightarrow [0,1]^K$ and $k \in K$ such that $\Phi(a)(k) \leq s$.

Proof. Let X be the set constructed in Lemma 3.7 and K the set of prime filters of A including X. For any $x \in A$ and $P \in K$ denote

 $[x]_P = \sup\{r \in L \mid \overline{r} \longrightarrow x \in P\}.$

In order to define Φ we have to prove some properties.

(i) $[x]_P = \inf\{r \in L \mid x \to \overline{r} \in P\}$. If $\overline{r} \to x \in P$ and $x \to \overline{s} \in P$ then, by Lemma 3.2, $\overline{r} \to \overline{s} \in P$, so $r \leq s$. It follows that $[x]_P \leq \inf\{r \in L \mid x \to \overline{r} \in P\}$. If we assume $[x]_P < \inf\{r \in L \mid x \to \overline{r} \in P\}$. $x \longrightarrow \overline{r} \in P$ then there is $q \in L$ such that $[x]_P < q < \inf\{r \in L \mid x \longrightarrow \overline{r} \in P\}$, so $\overline{q} \longrightarrow x \notin P$ and $x \longrightarrow \overline{q} \notin P$. This contradicts the fact that P is a prime filter.

(ii) $[x \oplus y]_P = [x]_P \oplus [y]_P$.

(iii) $[x \odot y]_P = [x]_P \odot [y]_P$.

In order to prove (ii) we have

 $[x \oplus y]_P = inf\{t \mid x \oplus y \longrightarrow \overline{t} \in P\}$ and

 $[x]_P \oplus [y]_P = \sup \{ r \oplus q \mid \overline{r} \longrightarrow x \in P, \overline{q} \longrightarrow y \in P \}.$

By Lemma 3.2, $\overline{r} \longrightarrow x \in P, \overline{q} \longrightarrow y \in P$ and $x \oplus y \longrightarrow \overline{t} \in P$ implies

 $\overline{r}/_P \leq x/_P, \overline{q}/_P \leq y/_P$ and $x/_P \oplus y/_P \leq \overline{t}/_P$ so $\overline{r \oplus q}/_P \leq \overline{t}/_P$, hence $r \oplus q \leq t$. We proved that $[x]_P \oplus [y]_P \leq [x \oplus y]_P$. The converse inequality and (iii) follow similarly.

(iv) $[\overline{r}]_P = r$ for any $r \in L$.

By Lemma 3.2, $[\overline{r}] = sup\{q \in L \mid q \leq r\} = r$.

Let us define $\Phi : A \longrightarrow [0,1]^{K}$ by $\Phi(x)(P) = [x]_{P}$ for any $x \in A$ and $P \in K$. In accordance to (ii)-(iv), Φ is a morphism of Pavelka algebras. Now we shall prove that

(v) $\Phi(\exists x)(P) = (\exists \Phi(x))(P)$ for any $x \in A$ and $P \in K$.

If $r \in L$ and $P, Q \in K$ we have, in accordance to Lemma 3.2, $\overline{r} \longrightarrow \exists x \in P$ iff $\overline{r} \longrightarrow \exists x \in Q$, therefore $[\exists x]_P = [\exists x]_Q$. Then $[\exists x]_P = [\exists x]_Q \ge [x]_Q$ for every $Q \in K$, hence

 $\Phi(\exists x)(P) = [\exists x]_P \ge sup\{[x]_Q \mid Q \in K\} = sup\{\Phi(x)(Q) \mid Q \in K\} = (\exists \Phi(x))(P).$ The following implications:

 $\begin{array}{ccc} r < [\exists x]_{P} \Rightarrow \exists x \longrightarrow \overline{r} \notin P & (\mathrm{cf.} \ (\mathrm{i})) \\ \Rightarrow \exists x \longrightarrow \overline{r} \notin X & (\mathrm{cf.} \ X \subseteq P) \\ \Rightarrow \overline{r} \longrightarrow \exists x \in X & (\mathrm{cf.} \ \mathrm{Lemma} \ 3.7) \\ \Rightarrow \exists (\overline{r} \longrightarrow x) \in X & (\mathrm{cf.} \ \mathrm{Lemma} \ 3.6) \\ \Rightarrow \overline{r} \longrightarrow x \in Q & (\mathrm{cf.} \ \mathrm{Lemma} \ 3.8) \\ \Rightarrow r \leq [x]_{Q} \end{array}$

for some $Q \in K$, establish the converse inequality in (v). Indeed, if we assume $[\exists x]_P > sup\{[x]_Q \mid Q \in K\}$ then there is $r \in L$ such that $[\exists x]_P > r > sup\{[x]_Q \mid Q \in K\}$ contradicting the above implications. Therefore, Φ is a representation of A.

Finally, by Lemma 3.7, there exists $P_0 \in K$ such that $X \cup \{a \longrightarrow \overline{s}\} \subseteq P_0$ so $\varPhi(a)(P_0) \leq s$ and $\varPhi(a)(P_0) = \inf\{r \mid a \longrightarrow \overline{r} \in P_0\}$.

For any $a \in A$ let us define $[a] = \sup\{r \mid \overline{r} \leq a\}$ $\parallel a \parallel = \inf\{\varPhi(a)(k) \mid \varPhi : A \longrightarrow [0,1]^K \text{ representation and } k \in K\}.$

Corollary 4.2 $[a] = \parallel a \parallel for any a \in A$.

Proof. The inequality $[a] \leq || a ||$ is obvious. Assume there exists $s \in L$ such that [a] < s < || a ||. Thus $\overline{s} \leq a$ so, by Theorem 4.1, there exist a representation $\Phi: A \longrightarrow [0,1]^K$ and $k \in K$ such that $\Phi(a)(k) \leq s$. Therefore $|| a || \leq \Phi(a)(k) \leq s$. Contradiction.

References

- C.C. Chang. Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88(1958), 467-490.
- [2] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici. Algebraic foundations of many-valued reasoning, Kluwer Academic Publ., Dordrecth.
- [3] G. Georgescu, A. Iorgulescu, I. Leuştean. Monadic and Closure MV-Algebras, Multi. Val. Logic, Vol. 3(1998), 235-257.
- [4] P. Hájek. Metamathematics of Fuzzy Logic, Kluwer Academic Publ, 1998.
- [5] P. Hájek. Fuzzy logic and arithmetical hierarchy, II, Studia Logica, 58(1997), 129-141.

- P. Hájek, D. Harmancová. A many-valued modal logic, in: IPMU96 Information Processing and management of Uncertainty in Knowledge-Based Systems (Granada, Spain)(1996), 1021-1024.
- [7] P.R. Halmos. Algebraic Logic, Chelsea, New York, 1962.
- J. Novák. On the syntactic-semantical completeness of first-order fuzzy logic, I, II, Kybernetika, 26(1990), 47-66, 134-152.
- J. Pavelka. On fuzzy logic, I, II, II., Zeit. f. Math. Logik und Grundl. der Math., 25(1979), 45-52, 119-134, 447-464.
- [10] D. Schwartz. Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr. 78(1977), 131-138.
- [11] D. Schwartz. Polyadic MV-algebras, Zeit. f. math. Logik und Grundl. der Math., 26(1980), 561-564.