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Abstract: A study of the classes of �nite relations as enriched strict monoidal cate-
gories is presented in [CaS91]. The relations there are interpreted as connections in
owchart schemes, hence an \angelic" theory of relations is used. Finite relations
may be used to model the connections between the components of dataow networks
[BeS98, BrS96], as well. The corresponding algebras are slightly di�erent enriched strict
monoidal categories modeling a \forward-demonic" theory of relations.
In order to obtain a full model for parallel programs one needs to mix control and
reactive parts, hence a richer theory of �nite relations is needed. In this paper we (1)
de�ne a model of such mixed �nite relations, (2) introduce enriched (weak) semiringal
categories as an abstract algebraic model for these relations, and (3) show that the
initial model of the axiomatization (it always exists) is isomorphic to the de�ned one
of mixed relations. Hence the axioms gives a sound and complete axiomatization for
the these relations.
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1 Introduction

Powerful algebraic representations for logics are well-known; see, e.g., [Rud74].
In computer science, such a stage is still a desiderata. This paper is included in
a series [Ste96a, Ste96b, Ste96c, GSB98, GBSS98] aiming to contribute to the
algebraic theory of distributed computation. The key problem in understanding
Multi-Agent Systems is to �nd a theory which integrates the reactive part and the
control part of such systems. The claim of this series of papers is that the mixture
of the additive and multiplicative network algebras (MixNA) will contribute to
the understanding of distributed computation.
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The aim of the present paper is to give an algebraic presentation for �nite re-
lations suited to be used for modeling the interface changing connections between
the statements/modules of parallel program schemes. The model for parallel pro-
grams we are using is MixNA, a mixture of additive and multiplicative network
algebras presented in [Ste96a].

An extensive study of the classes of �nite relations as enriched strict monoidal
categories is presented in [CaS91]. The view taken in [CaS91] is to see relations
as connections in (sequential) owchart schemes, hence an \angelic" theory of
relations is actually used there. Finite relations may be used to model the connec-
tions between the components of (parallel) dataow networks [BeS98, BrS96], as
well. The corresponding algebras are slightly di�erent enriched strict monoidal
categories modeling a \forward-demonic" theory of relations. Similar algebraic
structures where recently used in [Gib95] to handle acyclic graphs, or in [BGM98]
to get a unifying framework for representing \concurrent and distrbuted sys-
tems."

In order to obtain a full model for parallel programs one needs to mix control
and reactive parts, hence a richer theory of �nite relations is needed. We intro-
duced enriched (weak) semiringal categories as an algebraic model for relations
in this mixed setting.

The main result of the paper consists of presenting the mixed relations as
an initial model in the category of enriched semiringal categories. The relations
corresponding to a particular choice (x1; x2; x3; x4) with xi 2 fa; b; c; dg, are
called x1x2x3x4-relations. As a consequence of this result we get axiomatizations
for most of the resulting 256 types of interface-changing relations. (Some cases
with x4 2 fc; dg are open).

2 Preliminaries

In this section we present the de�nition of symmetric semiringal categories. This
structure was introduced, e.g., in [Ste96a, Ste98]. The present de�nition is given
long the line suggested in [Luc99].

A symmetric semiringal category (M;�;
; �; I; =n) is a mixture between two
symmetric strict monoidal categories (M;�; �; I; =n) and (M;
; �; I) where 
 dis-
tributes over � and the zero-rules for I0 hold. In order to express these additional
properties we use two new types of constants: �a;b;c : a
(b�c) �= (a
b)�(a
c),
denoting the isomorphisms corresponding to the distribution of products over
sums of objects, and �a; : a 
 0 �= 0, denoting the isomorphism between the
product a
0 and 0. These new constants must satisfy the axioms D1-D10 listed
in the appendix. We will see later how the constants � are generalized to more
complex terms.

If C is a subset of morphisms in M , then we say (M;�;
; �; I; �; �; =n; X) is a
C-weak symmetric semiringal category over S if the strong distributivity axioms
D9-D10 are required for morphisms f in C, only (and arbitrary g; h in M).

Various enriched symmetric semiringal categories are obtained adding addi-
tive or multiplicative branching constants: a�<k; k � 0 (additive rami�cation);
k>�a; k � 0 (additive identi�cation); �̂ak; k � 0 (multiplicative rami�cation);

�_
k
a; k � 0 (multiplicative identi�cation). These constants must satisfy the ax-

ioms SV1-20, AddS1-4, and MultS1-4 included in the appendix. As is [CaS91],
the restrictions a (k = 1), b (k � 1), c (k � 1), and d (arbitrary k) may be freely
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used for each type of branching constant a�<k; k>�a; �̂
a
k, or �_

k
a. A x1x2x3x4-

enriched semiringal category is an enriched semiringal category where the use of
branching constants is restricted in concordance with x1x2x3x4. Obviously, an
aaaa-enriched semiringal category is just a symmetric semiringal category.

3 Mixed relations

Let S be a set of atomic sorts. The set of sort terms is obtained with the rules
a = a� a j a
 a j 0 j 1 j s(2 S). In the rest of this paper we use the following
notations:

{ ka for a� � � � � a (k times); if k = 0 then ka = 0.
{ ak for a
 � � � 
 a (k times); if k = 0 then ak = 1.

The set of sorts S�;
 is the set of sort terms modulo the congruence generated
by the following axioms:

a� (b� c) = (a� b)� c;
a
 (b
 c) = (a
 b)
 c;
a� 0 = a;
a
 1 = a:

(1)

Each equivalence class is represented by a unique attened term obtained by
removing the parenthesis due to the associativity axioms and deleting the con-
stants 0 and 1 accordingly with the last two axioms. More precisely, a attened
term is an irreducible element relative to the following conuent and terminating
rewriting system:

a� (b� c)! a� b� c;
(a� b)� c! a� b� c;
a
 (b
 c)! a
 b
 c;
(a
 b)
 c! a
 b
 c;
a� 0! a;
a
 1! a:

(2)

A sort is often identi�ed with the attened element representing the class. For
a sort a the associated (unique) attened element is denote by a.

De�nition 1. Let a be a sort term. The set Pos(a) � !� of positions in a, and
the set Fr(a) � !� of frontier positions in a, and the function a : Pos(a) !
S [ f�;
; 1; 0g are inductively de�ned as follows:

{ if a 2 f0; 1g then Pos(a) = Fr(a) = ;;
{ if a 2 S then Pos(a) = Fr(a) = f"g (" denotes the empty string) and a(") = a;
{ if a = a1 op a2 with op 2 f�;
g, then:
- Pos(a) = f"g [ fi:p j p 2 Pos(ai); i = 1; 2g

( : denotes the concatenation operation on !�),
- Fr(a) = fi:p j p 2 Fr(ai); i = 1; 2g, and
- a(") = op, a(i:p) = ai(p) for all p 2 Pos(ai), i = 1; 2.

The de�nition given above is extended to the attened terms in the usual
way:
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{ if a = a1 op � � � op an with op 2 f�;
g, then:
- Pos(a) = f"g [ fi:p j p 2 Pos(ai); i 2 [n]g,
- Fr(a) = fi:p j p 2 Fr(ai); i 2 [n]g, and
- a(") = op, a(i:p) = ai(p) for all p 2 Pos(ai), i 2 [n].

If a is a sort term and a is the attened term equivalent to a, then there is
bijection

+a : Pos(a)! Pos(a)

which is uniquely determined rewriting rules (2). For example, if a = a1
(a2
a3)
and a = a1 
 a2 
 a3 then +a : f1; 2:1; 2:2g ! f1; 2; 3g is given by +a(1) =
1;+a(2:1) = 2;+a(2:2) = 3. When the subscript a may be derived from the
context we simply write +p instead of +a(p), where p 2 Pos(a).

De�nition 2. Consider a a sort term and p and q two frontier positions in Fr(a).
We say that p and q coexist (in a) i� (1) p = q or (2) a(lcp(p; q)) = 
, where

lcp(p; q) denotes the longest common pre�x of p and q. We denote by
co
� the

coexistence relation.
A set consisting of frontier positions which simultaneously coexist in a sort a is
called a multiplicative world of a.

A sort describe the interface of a parallel program. The intuition behind the above
de�nition is that the frontier positions of a multiplicative world describe the com-
ponents of a state of the system. If two positions do not coexist, then they belong
to disjoint (or incompatible) states.

De�nition 3. Consider a and b two sorts in S�;
. A pure multiplicative relation
of type a ! b is a sequence of maps (p1 7! q1; : : : ; pk 7! qk) where pi 2 Fr(a),
qi 2 Fr(b), i = 1; : : : ; k, such that

{ a(pi) = a(qi) for i = 1; : : : ; k, and

{ pi
co
� pj and qi

co
� qj for all i; j = 1; : : : k (in other words, fp1; : : : ; pkg and

fq1; : : : ; qkg are multiplicative worlds of a and b, respectively).

A mixed relation of type a ! b is a set of pure multiplicative relations of type
a ! b. MixRelS(a; b) denotes the set of all mixed relations of type a ! b, and
x1x2x3x4-MixRelS(a; b) denotes the subset of mixed relations of type a ! b
which satisfy x1x2x3x4-restrictions on branching constants.

We use the notation f = ff1 j f2 j � � � j fng for a mixed relation f in order
to emphasize the additive character of f . The above notation can be thought as
the Backus-Naur rule

f ::= f1 j f2 j � � � j fn:

The order of maps of a pure multiplicative relation is not important. Also, any
map can occur only once into a pure multiplicative relation. We use the notation
p 7! q 2 f whenever we want to say that p 7! q occurs in a pure multiplicative
component of f .

Example 1. Consider a = (a1 
 a2)� (a1 
 a3), b = a1 
 (a2 � a1) where ai 2 S,
i = 1; 2; 3. Then:

{ the frontier sets are Fr(a) = f1:1; 1:2; 2:1; 2:2g and Fr(b) = f1; 2:1; 2:2g;
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{ the coexistence relation in a is f1:1
co
� 1:2; 2:1

co
� 2:2g and the coexistence

relation in b is f1
co
� 2:1; 1

co
� 2:2g; and

{ f = f(1:1 7! 1; 1:2 7! 2:1) j (2:1 7! 2:2)g is a mixed relation. It may be
graphically represented as in Fig. 1. The �rst pure multiplicative component
is drawed using solid lines and the second component using dashed lines.

+

x

x

+

x

a a3
a2

2

1 2

1 2 1 2

1

1 2

a1 a1

a1

a1

2

Figure 1: A mixed relation

We often write f� � �ga!b to emphasize that f� � �g 2 MixRelS(a; b).

De�nition 4. Consider f : a ! b and g : b ! c two pure multiplicative re-
lations. Then the (forward demonic) sequential composition of f and g is the
relation f � g = (p 7! r j (9q: p 7! q 2 f and q 7! r 2 g) and (8q0: q0 7! r 2
g 9p0: p0 7! q0 2 f)).

Remark. Accordingly to the demonic/angelic dichotomy we may also consider
the angelic sequential composition of the pure multiplicative relations as being
the usual composition of relations. This kind of composition is not of interest for
this paper. Actually, the angelic and demonic sequential compositions coincide
in the case no equality test �_

k
a with k � 2 is present.

Before de�ning the operations on mixed relations, a remark concerning the
attened sorts is necessary.

Remark. Recall that a sort is identi�ed to the attened element representing the
equivalence class de�ning the sort. So, in the de�nition(s) to follow, a, b, and c
are attened elements. But not always from the fact that a and b are attened
elements follows that a � b and a 
 b are attened elements and therefore the
attening functions + are to be used. The same thing is true for the de�nition
of [[t]] we shall give later.

De�nition 5. The operations � , 
 , and � over mixed relations are de�ned
as follows:

1 Suppose f : a! b; g : a0 ! b0. Then f � g : a� a0 ! b� b0 is given by
f � g =f(+a�a0(1:p) 7! +b�b0(1:q) j p 7! q 2 fi) j i 2 [m]g

[ f(+a�a0(2:p) 7! +b�b0(2:q) j p 7! q 2 gj) j j 2 [n]g
where f = ff1 j : : : j fmg and g = fg1 j : : : j gng.
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2. Suppose f : a! b; g : a0 ! b0. Then f 
 g : a
 a0 ! b
 b0 is given by
f 
 g = f(+a
a0(1:p) 7! +b
b0(1:q);+a
a0(2:p

0) 7! +b
b0(2:q
0) j

p 7! q 2 fi; p
0 7! q0 2 gj) j i 2 [m]; j 2 [n]g

where f = ff1 j : : : j fmg and g = fg1 j : : : j gng.
3. Suppose f : a! b; g : b! c. Then f � g : a! c is given by

f � g = ffi � gj j i 2 [m]; j 2 [n]g
where f = ff1 j : : : j fmg and g = fg1; : : : ; gng.

A mixed relation f = f(p11 7! q11; : : : ; p1n(1) 7! q1n(1)) j : : : j (pm1 7!
qm1; : : : ; pmn(m) 7! qmn(m))g is often denoted by the simpler notation fjp11 7!
q11; : : : ; pmn(m) 7! qmn(m)jg provided the pure multiplicative components of f
are uniquely determined by the maximal subsets of coexisting positions. For
example, if a = b = (a1 � a2) 
 (a3 � a4) and ai 2 S for all i = 1; : : : ; 4, then
fjp 7! p j p 2 Fr(a)jg uniquely denotes the mixed relation f(1:1 7! 1:1; 2:1 7!
2:1) j (1:1 7! 1:1; 2:2 7! 2:2) j (1:2 7! 1:2; 2:1 7! 2:1) j (1:2 7! 1:2; 2:2 7! 2:2)g.
This convention is intensively used in the de�nition of [[t]] given below. Moreover,
if f = fjpi 7! qi j i 2 [n]jg = ff1 j : : : j fkg, g = fjp0i 7! q0i j i 2 [n0]jg = fg1 j � � � j
g`g, h = fjp1 7! q1; : : : ; pn 7! qn; p

0
1 7! q01; : : : ; p

0
n0 7! q0n0g = ff1 j � � � j fk j g1 j

� � � j g`g then we simply write h = f [ g.
The set � = f�;
; �; I; �; =n;�<;>�; X; �̂ ; �_g is in fact a S�;
�S�;
-sorted

signature and a ground �-term will be called a mixed term. Each mixed term t
de�nes a mixed relation [[t]] as follows:

0. [[I0]] = f g0!0 and [[I1]] = f( )g1!1.
1. t = Ia : a! a. Then [[t]] = fjp 7! p j p 2 Fr(a)jg.

Examples: [[Ia1�a2 ]] = f(1 7! 1) j (2 7! 2)g, [[Ia1
a2 ]] = f(1 7! 1; 2 7! 2)g
where a1; a2 2 S.

2. t = �a;b;c : a
 (b� c)! (a
 b)� (a
 c). Then [[t]] =
fj+a
(b�c)(1:p) 7! +(a
b)�(a
c)(1:1:p);

+a
(b�c)(1:p) 7! +(a
b)�(a
c)(2:1:p);

+a
(b�c)(2:1:q) 7! +(a
b)�(a
c)(1:2:q);

+a
(b�c)(2:2:r) 7! +(a
b)�(a
c)(2:2:r) j p 2 Fr(a); q 2 Fr(b); r 2 Fr(c)jg.

��

a

2.1.p ��
��
��
��

c

2.2.r

x

��1.p

a

��

a

1.1.p ����

b

1.2.q

x+

x

����2.1.q

b

��2.2.r

c

+

Example: [[�a1;b1
b2;c1�c2 ]] = f(1 7! 1:1; 2:1:1 7! 1:2; 2:1:2 7! 1:3) j (1 7!
2:1; 2:2 7! 2:2:1) j (1 7! 2:1; 2:3 7! 2:2:2)g where a1; b1; b2; c1; c2 2 S.
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3. [[�a;]] = f ga
0!0.
4. t = b

a=n : a � b ! b � a. Then [[t]] = fj+a�b(1:p) 7! +b�a(2:p);+a�b(2:q) 7!
+b�a(1:q) j p 2 Fr(a); q 2 Fr(b)jg.

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

b b

1.q

aa

1.p 2.q 2.p

+ +

Example: [[a3�a4
a1
a2

=n]] = f(1:1 7! 3:1; 1:2 ! 3:2) j (2 7! 1) j (3 7! 2)g where
a1; : : : ; a4 2 S.

5. t = a�<k : a! ka. Then [[t]] = [1�i�kfjp 7! +ka(i:p) j p 2 Fr(a)jg.

��
��
��
��

�
�
�
�

��
��
��
��

a

1.p

aa

2.p

+

p

Examples: [[a1
a2�<2]] = f(1 7! 1:1; 2 7! 1:2) j (1 7! 2:1; 2 7! 2:2)g and
[[a1�a2�<2]] = f(1 7! 1) j (1 7! 3) j (2 7! 2) j (2 7! 4)g where a1; a2 2 S.

6. t = k>�a : ka! a. Then [[t]] = [1�i�kfj+ka(i:p) 7! p j p 2 Fr(a)jg.

��
��
��
��

�� ��
��
��
��

aa a

1.p 2.p p

+

Examples: [[2>�a1
a2 ]] = f(1:1 7! 1; 1:2 7! 2) j (2:1 7! 1; 2:2 7! 2)g and
[[2>�a1�a2 ]] = f(1 7! 1) j (3 7! 1) j (2 7! 2) j (4 7! 2)g where a1; a2 2 S.

7. t = aXb : a 
 b ! b 
 a. Then [[t]] = fj+a
b(1:p) 7! +b
a(2:p);+a
b(2:q) 7!
+b
a(1:q) j p 2 Fr(a); q 2 Fr(b)jg.
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x x

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

b b

1.q

aa

1.p 2.q 2.p

Example: [[a1�a2X
a3
a4 ]] = f(1:1 7! 3:1; 2 7! 1; 3 7! 2) j (1:2 7! 3:2; 2 7!

1; 3 7! 2)g where a1; : : : ; a4 2 S.
8. t = �̂a

k : a! ak. Then [[t]] = fjp 7! +ak (i:p) j p 2 Fr(a); i = 1; : : : ; kjg.

��
��
��
��

�
�
�
�

��
��
��
��

a

1.p

aa

2.pp

x

Examples: [[ �̂a1�a2
2 ]] = f(1 7! 1:1; 1 7! 2:1) j (2 7! 1:2; 2 7! 2:2)g and

[[ �̂a1
a2
2 ]] = f(1 7! 1; 1 7! 3; 2 7! 2; 2 7! 4)g where a1; a2 2 S.

9. t = �_
k
a : a

k ! a. Then [[t]] = fj+ak (i:p) 7! p j p 2 Fr(a); i = 1; : : : ; kjg.

�
�
�
�

���� �
�
�
�

aa a

1.p 2.p p

x

Examples: [[�_
2
a1�a2

]] = f(1:1 7! 1; 2:1 7! 1) j (1:2 7! 2; 2:2 7! 2)g and

[[�_
2
a1
a2

]] = f(1 7! 1; 3 7! 1; 2 7! 2; 4 7! 2)g where a1; a2 2 S.
10. t = t1 � t2. Then [[t]] = [[t1]]� [[t2]].

Example: [[Ia � b
X
c]] = f(1 7! 1) j (2:1 7! 2:2; 2:2 7! 2:1)g because [[Ia]] =

f(" 7! ")g and [[bXc]] = f(1 7! 2; 2 7! 1)g, where a; b; c 2 S.
11. t = t1 
 t2. Then [[t]] = [[t1]]
 [[t2]].

Example: [[ba=n 

b
a=n]] = f(1:1 7! 1:2; 2:1 7! 2:2) j (1:1 7! 1:2; 2:2 7! 2:1) j

(1:2 7! 1:1; 2:1 7! 2:2) j (1:2 7! 1:1; 2:2 7! 2:1) where a; b 2 S.
12. t = t1 � t2. Then [[t]] = [[t1]] � [[t2]].

Example: [[(Ia 
 c
b=n) � �a;c;b]] = f(1 7! 2:1; 2:1 7! 2:2) j (1 7! 1:1; 2:2 7! 1:2)g
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because [[Ia 
 c
b=n]] = f(1 7! 1; 2:1 7! 2:2) j (1 7! 1; 2:2 7! 2:1)g and [[�a;c;b]] =

f(1 7! 1:1; 2:1 7! 1:2) j (1 7! 2:1; 2:2 7! 2:2)g, where a; b; c 2 S.

The distributivity constants � ; ; and � ; can be extended to arbitrary num-
ber of arguments as follows:

�a;b = �a;b;0 = Ia
b,
�a;b1;:::;bn+1 = �a;b1�����bn;bn+1 � (�a;b1;:::;bn � Ia
bn+1),

�a;b;c =
a�bXc � �c;a;b � (cXa � cXb),

�a1;:::;am+1;b = �a1�����am;am+1;b � (�a1;:::;am;b � Iam+1
b),
�a1;:::;am;b1;:::;bn = �a1;:::;am;b1�����bn � (�a1;b1;:::;bn � � � � � �am;b1;:::;bn),
�a1;:::;am;b = ((I�a1 
 � � � 
 I�am�1)� �am;b) � �a1;���;am�1;am1
b1;:::;amn(m)
bn

where ai = ai1; : : : ; ain(i) for i = 1; : : : ;m, b = b1; : : : ; bn, and �ai = ai1 �
� � � � ain(i) for i = 1; : : : ;m.

De�nition 6. The additive (mixed) normal form nfa and the mixed term disa,
for each a 2 S�;
, are inductively de�ned as follows:

{ if a 2 S [ f0; 1g then nfa = a and disa = Ia;
{ if a = a1�� � ��am then nfa = nfa1�� � ��nfam and disa = disa1�� � ��disam ;
{ if a = a1 
 � � � 
 am then
- nfa =

L
(j(1);:::;j(m))(b1j(1) 
 � � � 
 bmj(m)) and

- disa = (disa1 
 � � � 
 disam) � �b1;���;bm;,
where nfai = bi1�� � �� bin(i), (j(1); : : : ; j(m)) 2 [n(1)]�� � � [n(m)] are listed
in lexicographic order, and bi = bi1; : : : ; bin(i) for i = 1; : : : ;m.

Remark. The additive normal form of a sort a is a sum of products. For example,
if a = (a1�a2)
 (a3�a4) then nfa = (a1
a3)� (a1
a4)� (a2
a3)� (a2
a4)
and disa = �a1;a2;a3;a4 (ai 2 S for i = 1; : : : ; 4). It is easy to check that if

p 7! q; p0 7! q0 2 [[disa]] then p
co
� p0 in a i� q

co
� q0 in nfa. This is equivalent to

say that the relation [[disa]] preserves the maximal multiplicative worlds.

Example 2. Normal form interfaces and mixrelations between these interfaces
may be described in a programming-like notation as follows. Take the following
interfaces:

I:Interface Things of

1:Class Objects of

Elms 1:ball, 2:cub, 3:apple;

2:Class Colours of

Elms 1:red, 2:blue, 3:black;

3:Class Weights of

Elms 1:heavy, 2:light, 3:medium;

End Interface

J:Interface Things with attributes of

1:Class Coloured Objects of

Elms 1:red ball, 2:blue ball, 3:red apple, 4:black cub;

2:Class Weighted Objects of

Elms 1:heavy cub, 2:medium apple, 3:heavy ball;

End Interface
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We describe a a�d� mixrelation (a forward function on additive terms and
backward functions on each connected multiplicative subterms). E.g., � =
(f ; f1; f2; f3) : I! J de�ned by

� =

i 1 2 3 4
f(i) 1 1 2
f1(i) 1 1 3 2
f2(i) 1 2 1 3
f3(i) 1 3 1

In this particular case, a mixfunction is given by: (1) a forward function f be-
tween the terms in the sum (the one which maps both Objects and Colours in
Coloured Objects and Weights in Weighted Objects), and (2) for each con-
nected monommials (\classes") a backword function, i.e., f1 speci�es the object
in Objects associated to a coloured object in Coloured Objects), f2 does the
same for the colours associated to coloured objects, and �nally f3 gives the
weights associated to weighted objects.

4 Axiomatization

In this section we prove that the category whose objects are sorts and whose ar-
rows are mixed relations is initial in the category of enriched symmetric semirin-
gal categories.

Proposition7. Let E denote the set of axioms B1-2, AddB3-10, MultB3-10,
D1-10. If t : a ! nfa is a mixed f�;
; �; I; �; =n; Xg-term such that [[t]] = [[disa]]
then E ` t = disa.

Proof. This is a particular case of Theorem 2 in [Luc99]. ut

Lemma8. Let a and b two sorts in additive normal forms. For each f in
MixRelS(a; b) there is a mixed term t such that [[t]] = f .

Proof. Suppose that a = a1 � � � � � am, b = b1 � � � � � bn, f = f(p11 7!
q11; : : : ; p1n(1) 7! q1n(1)) j : : : j (pm1 7! qm1; : : : ; pmn(m) 7! qmn(m))g. Because
(pi1 7! qi1; : : : ; pin(i) 7! qin(i)) is a pure multiplicative relation it follows that all
pij for j = 1; : : : ; n(i) are in the same multiplicative component ai0 and all qij for
j = 1; : : : ; n(i) are in the same multiplicative component bi00 . Using the branching
and transposition operators (both versions, additive and multiplicative) we can
construct three mixed terms t1 : a! (a(p11)
 � � � 
 a(p1n(1)))� � � � � (a(pm1)

� � �
a(pmn(m))), t2 : (a(p11)
� � �
a(p1n(1)))�� � ��(a(pm1)
� � �
a(pmn(m)))!
b0, and t3 : b0 ! b such that t2 includes only combinations of additive transpo-
sitions and f = [[t1]] � [[t2]] � [[t3]] = [[t1 � t2 � t3]]. Moreover the relation [[t1]] is
surjective, the relation [[t2]] is bijective and the relation [[t3]] is total. Therefore
the demonic sequential composition of the three relations is the same with the
angelic sequential composition. ut

Example 3. Consider a = (a1
a2)� (a1
a3), b = (a2
a3)� (a1
a2
a3), and
f = f(1:1 7! 2:1; 1:2 7! 2:2) j (1:2 7! 1:1) j (2:1 7! 2:1; 2:2 7! 2:3) j (2:2 7! 1:2)g
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where a1; a2; a3 2 S. Then t1 : a! (a1 
 a2)� a2 � (a1 
 a3)� a3 is given by:

t1 = (a1
a2�<2 � a1
a3�<2) � (Ia1
a2 � ( �̂a10 
 Ia2)� Ia1
a3 � ( �̂a10 
 Ia3)),

t2 : (a1 
 a2)� a2 � (a1
 a3)� a3 ! a2� a3� (a1 
 a2)� (a1 � a3) is given by:

t2 = (a2a1
a2
=n � a3

a1
a3
=n) � (Ia2 �

a3
a1
a2

=n � Ia1
a3);

and t3 : a2 � a3 � (a1 
 a2)� (a1 � a3)! b is given by:

t3 = ((Ia2 
 �_
0
a3
)� (�_

0
a2

 Ia3)� (Ia1
a2 
 �_

0
a3
)� (Ia1 
 �_

0
a2

 Ia3))�

(2>�a2
a3 � 2>�a1
a2
a3):

A careful analysis of the above example points out that t1 is of the form
t11 � t12 where t11 is a sum of additive branching operators and t12 is a sum of
products of multiplicative branching operators. A similar thing is true for t3.
It is not hard to see that this property holds for the general case. Therefore a
re�ned version of Lemma 8 holds:

Corollary 9. Let a and b two sorts in additive normal forms. For each f in
MixRelS(a; b) there exist the mixed terms t1; : : : ; tn such that, for each i, ei-
ther ti is a sum of additive (branching and transposition) operators or ti is a
sum of products of multiplicative (branching and transposition) operators and
[[t1 � � � tn]] = f .

Theorem10. (Expressiveness.) Let a and b two arbitrary sorts. For each f
in MixRelS(a; b) there is a mixed term t such that [[t]] = f .

Proof. Let f 0 be the mixed relation of sort nfa ! nfb such that p0 7! q0 2 f 0

i� there exist p and q such that p 7! q 2 f , p 7! p0 2 [[disa]], q 7! q0 2 [[disb]].

Then the mixed term required by the theorem is t = disa � t0 � dis
�1
b where

dis
�1
b is the mixed term with the property [[dis�1

b ]] = [[disb]]
�1
. The mixed term

dis
�1
a exists because [[disa]] is an isomorphism. Recall that the relation [[dis ]]

preserves the maximal multiplicative worlds and therefore the demonic sequential
compositions given above are just those we need to be. ut

Theorem11. (Soundness.) Let E denote the set of axioms B1-2, AddB3-10,
MultB3-10, D1-10, SV1-20, AddS1-4, and MultS1-4. If E ` t1 = t2 then [[t1]] =
[[t2]].

Proof. It is a matter of routine to check that [[t1]] = [[t2]] for each axiom t1 = t2
in E.

For example, we check the axiom AddA4. The mixed relation denoted by the
left hand side is given by [[2>�a � a�<0]] = [[2>�a]] � [[a�<0]] = fj+1:p 7! p;+2:p 7!
pjg � f ga!0 = f ga�a!0 and the mixed relation denoted by the right hand side
is given by [[a�<0 � a�<0]] = f ga!0 � fga!0 = f ga�a!0. Obviously, the two
relations are equal. ut

Corollary 12. The category MixRelS whose objects are sorts over S and whose
arrows are mixed relations is an enriched semiringal category. The strict subcate-
gory x1x2x3x4-MixRelS of x1x2x3x4-relations is a x1x2x3x4-enriched semiringal
category. ut
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Theorem13. (Completeness) Let M be an x1x2x3x4-enriched symmetric
semiringal category and h : S�;
 !M a homomorphism of (�;
; 0; 1)-algebras.
Then there is a unique homomorphism of x1x2x3x4-enriched symmetric semirin-
gal categories H : x1x2x3x4-MixRelS !M which extends h.

Proof. We say a relation f : a! b is written in the additive mixed normal form
(shortly, additive mixnf) if it has the following shape (red is the inverse of dis )

f = disa � g � (r
1 � : : :� rk) � h � redb

where

{ g�1; h are additive normal form terms which represents functions | that is,
g is additive ad-term and h is additve da-term, and

{ r1; : : : ; rk are multiplicative normal form terms.

In the classifying MixNA notation of Section 1, g is a daaa-relation, h is an adaa-
relations and r1; : : : ; rk are aadd-relations. Moreover, in the particular case when g

and h are identities and k = 1 the resulting relational term is a sum of multiplicative
normal forms, while in the case r1; : : : ; rk are identities, the result is an additive
normal form.

Here we give the main lines of the proof of the Theorem.
We separate the axioms in

M1 (M;�; �; I; =n;�<k; k>�) ful�lls the angelic additive axioms AddA1{11 in Sec-
tion A;

M2 (M;
; �; I; X; �̂k; �_
k) ful�lls the forward-demonic multiplicative axioms

MultA1{11 in Section A;
M3 the scalar{vectorial axioms for the additive and multiplicative branching

constants hold, namely SV1{20 in Section A.

From the enriched semiringal category axioms it follows that:

M4 the additive branching constants �<k; k>� commute with arbitrary multi-
plicative terms (i.e., the additive strong axioms hold whenever f is a term
over (M;
; �; I; X; �̂k; �_

k));
M5 (a�<k 
 a�<l) � �a; k:::;a;a; k:::;a = a
a�<kl

k>�a 
 l>�a = �
a; k:::;a;a; k:::;a

� kl>�a
a

The proof of the completness part consists in two steps:

(a) each term may be brought to an additive normal form mixnf using the
axioms; and

(b) two additive mixnf forms which represent the same relation may be trans-
formed one into the other using the axioms.

For (a), we prove that sum, product and composition of additive mixed nor-
mal forms may be brought to a normal form via the axioms.

1. f � f 0: If f = disa � g � r � h � redb and f 0 = disa0 � g0 � r0 � h0 � redb0 are two
additive mixnfs, then using the distributivity of � over � one gets f � f 0 =
(disa�disa0)�(g�g0)�(r�r0)�(h�h0)�(redb�redb0). Since disa�disa0 = disa�a0

and redb � redb0 = redb�b0 the resulting term gives an additive mixnf for
sum.
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2. f 
 f 0: Suppose f = disa � g � r � h � redb and f 0 = disa0 � g0 � r0 � h0 � redb0 are
two additive mixnfs. Using the distributivity of 
 over � one gets f 
 f 0 =
(disa 
 disa0) � (g 
 g0) � (r 
 r0) � (h 
 h0) � (redb 
 redb0). Next, by the
distributivity of 
 over �, each term g
 g0; r
 r0, or h
h0 may be written
as a sum of (tensor) products. For the middle term r
 r0 it is clear that the
tensor product of two multiplicative normal forms ri
 r0j may be brought to
a multiplicative nf by the distributivity of 
 over �. The �rst (resp. last) term
is a sum of additive branching constants. By the distributivity of 
 over �,
one gets sums of terms c
 c0, where c and c0 are �<k (resp. k>�) constants;
then by axioms M5 one �nally gets an additive mixnf. (This method applies
to the bijections in g or h, as well. E.g., they may be written as a composite
of sums of identities I and transpositions =n.) The dis and red constants in
between the factors are anichilated, while the ones from the top (resp. the
bottom) contributes to the �nal dis (resp. red) factor.

3. f � f 0: Suppose f = disa � g � r � h � redb and f 0 = disb � g0 � r0 � h0 � redc
are two additive mixnfs. We apply the standard procedure of [CaS91] to
normalize the composite of two additive normal forms. By M1, one may
commute h and g0 to get f � f 0 = disa � g � r � a01(g

0) � � � c1(h) � r0 � h0 � redc
where a01(g

0) (resp. c1(h)) is an appropriate sum of the same type as g0

(resp. h) and � is an additive bijective term. Next, by the strong axioms
M4, a01(g

0) commutes with r (resp. c1(h) comutes with r0), hence one gets
f � f 0 = disa � g � a02(g

0) � b1(r) � � � b01(r
0) � c2(h) � h0 � redc where a02(g

0) (resp.
b1(r); b

0
1(r

0), or c2(h)) is an appropriate sum of the same type as g0 (resp.
r; r0, or h). By axioms M1 (for =n) � may be commuted with b1(r), say,
and thereafter it may be incorporated into a02(g

0). One gets a new term
f � f 0 = disa � [g � a03(g

0)] � [b2(r) � b01(r
0)] � [c2(h) � h0] � redc where a03(g

0) (resp.
b2(r)) is an appropriate sum of the same type as g0 (resp. r). By M1 axioms
the �rst and the last [: : :] factors may be brought to appropriate additive nf.
The middle [: : :] factor is a composite of sums of multiplicative nfs, and by
the distributivity of � over � it may be written as a sum of composites of
multiplicative nfs. By M2 axioms each term of the sum may be brought to
a multiplicative nf, hence an additive mixnf for f � f 0 is �nally obtained.

For (b), one has to notice that two additive normal form mixed terms which
represent the same mixed relation may be transformed one into the other using
the standard procedure in [CaS91]. (The reduction is based on the fact that the
set of multiplicative relations ri correspond to the multiplicative worlds, hence
their set is the same in both representation.) ut

Corollary 14. If t1 and t2 are two mixed terms such that [[t1]] = [[t2]] then
E ` t1 = t2 where E is de�ned as in Theorem 11. ut

Remark. The point of view taken in [CaS91, Ste94] is to get axiomatizations in a
\linear" setting, i.e. to avoid the use of the strong axioms of type S1{S4. (These
axioms allow to make copies of or to delete arbitrary morphisms.)

An interesting observation is that the additive strong axioms follow from the
distributivity axiom of the semiringal categories. Indeed, using a�<k = (1�<k 

Ia) � �1; k:::;1;a we get

f � b�<k
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= f � (1�<k 
 Ib) � �
1; k:::;1;b

= (I1 
 f) � (1�<k 
 Ib) � �
1;
k
:::;1;b

= (1�<k 
 Ia) � (Ik 
 f) � �
1;
k
:::;1;b

= (1�<k 
 Ia) � ((I1� k: : : �I1)
 f) � �
1; k:::;1;b

= (1�<k 
 Ia) � �
1; k:::;1;a

� (I1 
 f� k: : : �I1 
 f)

= a�<k � (f� k: : : �f)

(A similar fact holds for >�.)
For this reason, we had to weaken the semiringal category structure by requir-

ing that the distributivity axioms hold for particular classes of morphisms, only.
An x1x2x3x4-weak semiringal category is one where the distributivity axiom is
required for morphisms which are represented by x1x2x3x4-terms, only.

5 Conclusions

We have described some axiomatization results for the mixed relations used to
model interface-changing relations in parallel programs. The algebraic structures
involved are enriched weak symmetric semiringal categories. The option here
was to use an angelic-additive forward-demonic-multiplicative version, which
was induced by the standard set-theoretic semantics of MixNA.

Acknowledgments: We are grateful to C�at�alin Dima for some useful comments
on a previous draft of the paper. A preliminary version of these results was
presented to the 3rd RelMiCS Seminar, Hammamet, Tunisia, 1997 [Ste96b]; the
3rd author acknowledges with thanks the e�ort of Prof. Ali Jaoua to get �nancial
support for this participation.

A Axioms

A.1 Symmetric semiringal category axioms

B1 f � (g � h) = (f � g) � h
B2 Ia � f = f = f � Ib

AddB3 f � (g � h) = (f � g)� h
AddB4 I0 � f = f = f � I0

AddB5 (f � f 0) � (g � g0) = f � g � f 0 � g0

AddB6 Ia � Ib = Ia�b

AddB7 b
a=n �

a
b=n = Ia�b

AddB8 0
a=n = Ia

AddB9 b�c
a =n = (ba=n � Ic) � (Ib � c

a=n)
AddB10 (f � g) � dc=n =

b
a=n � (g � f) for f : a! c; g : b! d

MultB3-MultB10 denote the axioms obtained from AddB3-AddB10 by replacing
the additive operators with the corresponding multiplicative ones.
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Below we will use the derivated constants �a;b;c and �;c de�ned by the following
rules:
{ �a;b;c =

a�bXc � �c;a;b � (cXa � cXb)
{ �;c =

0Xc � �c;

D1 �a;0;d = Ia
d

D2 �a;b�c;d � (�a;b;c � Ia
d) = �a;b;c�d � (Ia
b � �a;c;d)

D3 �a;b;c �
a
c
a
b=n = (Ia 


c
b=n) � �a;c;b

D4 �1;b;c = Ib�c

D5 �a0
a00;b;c = (Ia0 
 �a00;b;c) � �a0;a00
b;a00
c

D6 �a0�a00;b;c�(�a0;a00;b��a0;a00;c) = �a0;a00;b�c�(�a0;b;c��a00;b;c)�(Ia0
b�
a00
b
a0
c =n�Ia00
c)

D7 �1; = I0

D8 �a0
a00; = (Ia0 
 �a00;) � �a0;
D9 �a0�a00; = �a0;a00;0 � (�a; � �a00;)
D10 (f 
 (g � h)) � �a0;b0;c0 = �a;b;c � ((f 
 g)� (f 
 h))
D11 (f 
 I0) � �a0; = �a;

A.2 Additional axioms for angelic additive dd-ssmc

AddA1 (2>�a � Ia) � 2>�a = (Ia � 2>�a) � 2>�a
AddA2 a

a=n � 2>�a = 2>�a
AddA3 (0>�a � Ia) � 2>�a = Ia

AddA4 2>�a � a�<0 = a�<0 � a�<0

AddA5 a�<2 � (a�<2 � Ia) = a�<2 � (Ia � a�<2)
AddA6 a�<2 �

a
a=n = a�<2

AddA7 a�<2 � (a�<0 � Ia) = Ia

AddA8 0>�a � a�<2 = 0>�a � 0>�a
AddA9 0>�a � a�<0 = I0

AddA10 2>�a � a�<2 = (a�<2 � a�<2) � (Ia � a
a=n � Ia) � (2>�a � 2>�a)

AddA11 a�<2 � 2>�a = Ia

A.3 Additional axioms for forward-demonic multiplicative dd-ssmc

The axioms are similar to the ones in the additive case. The only di�erence is
in the case of axiom A3.

MultA1 (�_
2
a 
 Ia) � �_

2
a = (Ia 
 �_

2
a) � �_

2
a

MultA2 aXa � �_
2
a = �_

2
a

MultA3 (�_
0
a 
 Ia) � �_

2
a =

�̂a
0 � �_

0
a

MultA4 �_
2
a � �̂

a
0 = �̂a

0 
 �̂a
0

MultA5 �̂a
2 � ( �̂

a
2 
 Ia) = �̂a

2 � (Ia 
 �̂a
2)

MultA6 �̂a
2 �

a
X
a = �̂a

2
MultA7 �̂a

2 � ( �̂
a
0 
 Ia) = Ia

MultA8 �_
0
a � �̂

a
2 = �_

0
a 
 �_

0
a

MultA9 �_
0
a � �̂

a
0 = I0

MultA10 �_
2
a � �̂

a
2 = ( �̂a2 
 �̂a

2) � (Ia 

a
X
a 
 Ia) � (�_

2
a 
 �_

2
a)

MultA11 �̂a
2 � �_

2
a = Ia
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A.4 Scalar vectorial axioms:

Multiplicative branching constants:

SV1 �̂0
2 = I0

SV2 �̂1
2 = I1

SV3 �̂a�b
2 = ( �̂a2 � �̂b

2) �(Ia
a � 0>�a
b � 0>�b
a � Ib
b) � �a;b;a;b
SV4 �̂a
b

2 = ( �̂a2 
 �̂b
2) � (Ia 


a
X
b 
 Ib)

SV5 �̂0
0 = 0>�1

SV6 �̂1
0 = I1

SV7 �̂a�b
0 = ( �̂a0 � �̂b

0) � 2>�1
SV8 �̂a
b

0 = �̂a
0 
 �̂b

0

SV9 �_
2
0 = I0

SV10 �_
2
1 = I1

SV11* �_
2
a�b = �a;b;a;b � (Ia
a � 0>�a
b � 0>�b
a � Ib
b) � (�_

2
a � �_

2
b)

SV12 �_
2
a
b = (Ia 
 aXb 
 Ib) � (�_

2
a 
 �_

2
b)

SV13 �_
0
0 = 1�<0

SV14 �_
0
1 = I1

SV15 �_
0
a�b = 1�<2 � (�_

0
a � �_

0
b)

SV16 �_
0
a
b = �_

0
a 
 �_

0
b

Additive branching constants: Their rules follows from the scalar-vectorial
rules for � and

SV17 a�<2 = (1�<2 
 Ia) � �1;1;a
SV18 a�<0 = (1�<0 
 Ia) � �;a
SV19 2>�a = �1;1;a � (2>�1 
 Ia)
SV20 0>�a = �;a � (0>�1 
 Ia)

Note: It is a problem with the meaning of the equality test in the case the
terms to be compared are of arbitrary type and not simple elements, or tuples
of elements. The choice SV11* above may look well, but is not valid in certain
natural semantics models MixRelS(D).

A.5 The strong commutativity axioms for branching constants

AddS1 0>�a � f = 0>�b
AddS2 2>�a � f = (f � f) � 2>�b
AddS3 f � b�<0 = a�<0

AddS4 f � b�<2 = a�<2 � (f � f)

MultS1 �_
0
a � f = �_

0
b

MultS2 �_
2
a � f = (f 
 f) � �_

2
b

MultS3 f � �̂b0 = �̂a
0

MultS4 f � �̂b2 = �̂a
2 � (f 
 f)
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