Connections Between MV_n Algebras and *n*-valued Lukasiewicz-Moisil Algebras - $\mathrm{IV}^{1,2}$

Afrodita Iorgulescu

(Department of Computer Science, Academy of Economic Studies Piața Romană Nr.6 - R 70167, Oficiul Poștal 22, Bucharest, Romania Email: afrodita@inforec.ase.ro.)

Abstract: We introduce two chains of unary operations in the MV_n algebra of Revaz Grigolia; they will be used in establishing many connections between these algebras and *n*-valued Lukasiewicz-Moisil algebras (LM_n algebras for short). The study has four parts. It is by and large self-contained.

The main result of the first part is that MV_4 algebras coincide with LM_4 algebras. The larger class of "relaxed"- MV_n algebras is also introduced and studied. This class is related to the class of generalized LM_n pre-algebras.

The main results of the second part are that, for $n \ge 5$, any MV_n algebra is an LM_n algebra and that the canonical MV_n algebra can be identified with the canonical LM_n algebra.

In the third part, the class of good LM_n algebras is introduced and studied and it is proved that MV_n algebras coincide with good LM_n algebras.

In the present fourth part, the class of \oplus -proper LM_n algebras is introduced and studied. \oplus -proper LM_n algebras coincide (can be identified) with Cignoli's proper *n*valued Lukasiewicz algebras. MV_n algebras coincide with \oplus -proper LM_n algebras ($n \geq 2$). We also give the construction of an LM_3 (LM_4) algebra from the odd (respectively even)-valued LM_n algebra ($n \geq 5$), which proves that LM_4 algebras are as much important than LM_3 algebras; MV_n algebras help to see this point.

Key Words: *n*-valued Lukasiewicz-Moisil algebra, MV_n algebra Category: F.4.1.

8 \oplus -proper LM_n algebras

We have seen in [13] that MV_n algebras can be identified with good LM_n algebras. We shall see in this section that MV_n algebras can be also identified with \oplus -proper LM_n algebras, where the notion of \oplus -proper LM_n algebra is obtained from Cignoli's proper n-valued Lukasiewicz algebra, by slight changes.

Roberto Cignoli defined [5] the proper *n*-valued Lukasiewicz algebra starting from the Lukasiewiczian implication, \rightarrow , defined on $L_n = \{0, \frac{1}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$ by

$$x \rightarrow y = \min(1, 1 \Leftrightarrow x + y);$$

therefore, in this section, I shall rename the proper *n*-valued Lukasiewicz algebra as " \rightarrow -proper LM_n algebra". The table of \rightarrow in L_n is symmetric with respect to the second diagonal, therefore the \rightarrow -proper LM_n algebra was defined by

¹ C. S. Calude and G. Stefănescu (eds.). Automata, Logic, and Computability. Special issue dedicated to Professor Sergiu Rudeanu Festschrift.

 $^{^{2}}$ The first 2 parts appeared in *Discrete Mathematics*, volumes 181 and 202, respectively. The 3rd part was submitted for publication; copies may be obtained from the author.

Cignoli in the following way (cf. ([2], 9.2.3 and 9.2.4)): let

$$\begin{cases} S_n = \{(i,j) \in \mathbf{N}^2 \mid 3 \le i \le n \Leftrightarrow 2, \ 1 \le j \le n \Leftrightarrow 4, \ i > j\}, & \text{if } n \ge 5, \\ S_n = \emptyset, & \text{if } n < 5; \\ T_n = \{(i,j) \in \mathbf{N}^2 \mid 2 \le i \le n \Leftrightarrow 2, \ 1 \le j \le n \Leftrightarrow 3, \ i > j\}, & \text{if } n \ge 4, \\ T_n = \emptyset, & \text{if } n < 4, \end{cases}$$
(1)

let \Rightarrow be the generalization of the residuation considered by Moisil (cf.([2], 4.3.2)):

$$x \Rightarrow y = y \lor \bigwedge_{j=1}^{n-1} \left((r_j x)^- \lor r_j y \right), \quad x, y \in A,$$
(2)

and let F_{ij} , $(i, j) \in S_n$, be a family of binary operations on A such that

$$r_k(F_{ij}(x,y)) = \begin{cases} 0, & k \le i \Leftrightarrow j \\ d_i(x) \land d_j(y), & k > i \Leftrightarrow j, \end{cases}$$
(3)

for any $x, y \in A$, $(i, j) \in S_n$ and $k \in J = \{1, 2, ..., n \Leftrightarrow 1\}$, where if we put $r_0 x = 0$ and $r_n x = 1$ for any $x \in A$, then the unary operators d_i , $i = \overline{0, n \Leftrightarrow 1}$ are defined by:

$$d_i(x) = r_{n-i}x \wedge (r_{n-i-1}x)^-, \quad x \in A.$$
 (4)

Definition 8.1 ([5], 2.1) A \rightarrow -proper LM_n algebra is a structure

$$\mathcal{A}^{c} = (\mathcal{A}, \Rightarrow, (F_{ij})_{(i,j) \in S_{n}}),$$

where $\mathcal{A} = (A, \vee, \wedge, \bar{}, (r_j)_{j \in J}, 0, 1)$ is an LM_n algebra, \Rightarrow is a binary operation on A verifying (2) and F_{ij} , $(i, j) \in S_n$, are binary operations on A verifying (3), the unary operators d_i , $i = \overline{0, n \Leftrightarrow 1}$ being those from (4).

Example 8.2 ([5], 2.3) If we consider the canonical LM_n algebra, $\mathcal{L}_n = \mathcal{L}_n^{(LM_n)}$, then the structure

$$\mathcal{L}_n^c = \left(\mathcal{L}_n, \Rightarrow, (F_{ij})_{(i,j)\in S_n}\right)$$

is a \rightarrow -proper LM_n algebra, where

$$x \Rightarrow y = \begin{cases} 1, & x \le y \\ y, & x > y, \end{cases}$$
(5)

$$F_{ij}\left(\frac{r}{n \Leftrightarrow 1}, \frac{s}{n \Leftrightarrow 1}\right) = \begin{cases} \frac{n-1-i+j}{n-1}, & (r,s) = (i,j)\\ 0, & (r,s) \neq (i,j) \end{cases}$$
(6)

 and

$$d_j(\frac{i}{n \Leftrightarrow 1}) = \begin{cases} 0, & i \neq j, \\ 1, & i = j, & i \in \{0\} \cup J, \ j \in J. \end{cases}$$
(7)

 \mathcal{L}_n^c is called the *canonical* \rightarrow -proper LM_n algebra.

In every LM_n algebra we also have (cf. [5], again)

$$r_j x = \bigvee_{i=1}^j d_{n-i}(x), \quad j = \overline{1, n}.$$
(8)

Since we have started now from an MV_n algebra, i.e., a structure with the operation \oplus instead of \rightarrow , I shall modify Cignoli's definition in order to obtain the \oplus -proper LM_n algebra, i.e., the proper LM_n algebra starting from the canonical addition, \oplus , defined on L_n by: $x \oplus y = \min(1, x + y) = x^- \rightarrow y$.

Since the table of canonical \oplus is symmetric with respect to the principal diagonal (the operation \oplus is commutative), we define:

$$\begin{cases} U_n = \{(i,j) \in J^2 \mid 1 \le i \le n \Leftrightarrow 4, \ 1 \le j \le n \Leftrightarrow 4; \ i+j < n \Leftrightarrow 1\}, \ n \ge 5, \\ U_n = \emptyset, & n < 5; \\ V_n = \{(i,j) \in J^2 \mid 1 \le i \le n \Leftrightarrow 3, \ 1 \le j \le n \Leftrightarrow 3; \ i+j < n \Leftrightarrow 1\} \\ = \{(i,j) \in J^2 \mid 1 \le j \le n \Leftrightarrow 2 \Leftrightarrow i, \ 1 \le i \le n \Leftrightarrow 3\} \\ = \{(i,j) \in J^2 \mid 1 \le i \le n \Leftrightarrow 2 \Leftrightarrow j, \ 1 \le j \le n \Rightarrow 3\}, & n \ge 4, \\ V_n = \emptyset, & n < 4. \end{cases}$$
(9)

Then $|V_n| = 1 + 2 + \ldots + (n \Leftrightarrow 3) = \frac{(n-3)(n-2)}{2}$ and $V_n = U_n \cup \{(1, n \Leftrightarrow 3), (n \Leftrightarrow 3, 1)\}.$

Remark 8.3 We could take into account the commutativity of \oplus and define a smaller set:

$$\begin{array}{l} V_n' &= \{(i,j) \in J^2 \mid 1 \leq i \leq n \Leftrightarrow 3, \, 1 \leq j \leq n \Leftrightarrow 3, \, i+j < n \Leftrightarrow 1, j \geq i \} \\ &= \{(i,j) \in J^2 \mid i \leq j \leq n \Leftrightarrow 2 \Leftrightarrow i, \, 1 \leq i \leq [n/2] \Leftrightarrow 1 \} \end{array}$$

with $|V'_n| = 1 + 2 + \ldots + (n \Leftrightarrow 4) = \frac{(n-4)(n-3)}{2}$.

Proposition 8.4 For any $i, j \in J$ we have: (i) $(i, j) \in U_n \Leftrightarrow (n \Leftrightarrow 1 \Leftrightarrow i, j) \in S_n$ (ii) $(i, j) \in V_n \Leftrightarrow (n \Leftrightarrow 1 \Leftrightarrow i, j) \in T_n$.

Proof.

$$\begin{split} (i,j) \in U_n \Leftrightarrow 1 \leq i \leq n \Leftrightarrow 4, \, 1 \leq j \leq n \Leftrightarrow 4, \, i+j < n \Leftrightarrow 1 \\ \Leftrightarrow 4 \Leftrightarrow n \leq \Leftrightarrow i \leq \Leftrightarrow 1, \, 1 \leq j \leq n \Leftrightarrow 4, \, n \Leftrightarrow 1 \Leftrightarrow i > j \\ \Leftrightarrow 3 \leq n \Leftrightarrow 1 \Leftrightarrow i \leq n \Leftrightarrow 2, \, 1 \leq j \leq n \Leftrightarrow 4, \, n \Leftrightarrow 1 \Leftrightarrow i > j \\ \Leftrightarrow (n \Leftrightarrow 1 \Leftrightarrow i, j) \in S_n. \end{split}$$

Thus (i) holds. The proof of (ii) is similar.

Lemma 8.5 In any LM_n algebra

$$d_{n-1-i}(x^-) = d_i(x), \quad i = \overline{0, n \Leftrightarrow 1}.$$

Proof. In L_n let $x = \frac{j}{n-1}$; then $d_{n-1-i}(x^-) = d_{n-1-i}(\frac{n-1-j}{n-1}) = \begin{cases} 1, & n \Leftrightarrow 1 \Leftrightarrow j \\ 0, & \text{otherwise} \end{cases} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases} = d_i(x)$; then apply ([11], 2.8). \Box

Let \mathcal{A} be an LM_n algebra. We shall define a binary operation on A, \bigcirc , by:

$$x \bigcirc y = x^- \Rightarrow y$$
, i.e. $x \bigcirc y = y \lor \bigwedge_{j=1}^{n-1} (r_{n-j}x \lor r_j y), \quad x, y \in A$ (10)

and a family of binary operations, $(G_{ij})_{(i,j)\in U_n}$, by

$$G_{ij}(x,y) = F_{n-1-i,j}(x^{-},y).$$
(11)

Then G_{ij} verifies, for every $(i, j) \in U_n$ and $k \in J$:

$$r_k(G_{ij}(x,y)) = \begin{cases} 0, & k \le n \Leftrightarrow 1 \Leftrightarrow (i+j), \\ d_i(x) \land d_j(y), & k > n \Leftrightarrow 1 \Leftrightarrow (i+j). \end{cases}$$
(12)

Indeed, $r_k(G_{ij}(x,y)) =$

$$= r_k(F_{n-1-i,j}(x^-, y)) = \begin{cases} 0, & k \le (n \Leftrightarrow 1 \Leftrightarrow i) \Leftrightarrow j, \\ d_{n-1-i}(x^-) \land d_j(y), & k > (n \Leftrightarrow 1 \Leftrightarrow i) \Leftrightarrow j \end{cases}$$
$$= \begin{cases} 0, & k \le n \Leftrightarrow 1 \Leftrightarrow i \Leftrightarrow j, \\ d_i(x) \land d_j(y), & k > n \Leftrightarrow 1 \Leftrightarrow i \Leftrightarrow j, \end{cases}$$

by (11), (3) and Lemma 8.5. Hence we can give the following

Definition 8.6 A \oplus -proper LM_n algebra is a structure

$$\mathcal{A}^a = (\mathcal{A}, \bigcirc, (G_{ij})_{(i,j) \in U_n}),$$

where \mathcal{A} is an LM_n algebra, \bigcirc is a binary operation on A verifying (10) and G_{ij} , $(i, j) \in U_n$, are binary operations on A verifying (12), d_i , $i = \overline{0, n \Leftrightarrow 1}$ being those from (4).

Let \mathcal{A} be an LM_n algebra and let us consider the two kinds of proper LM_n algebras: \mathcal{A}^c and \mathcal{A}^a . The two structures can be identified, namely we have the following

Theorem 8.7 1) Let $\mathcal{A}^c = (\mathcal{A}, \Rightarrow, (F_{ij})_{(i,j)\in S_n})$ be a \rightarrow -proper LM_n algebra. Define

$$\alpha(\mathcal{A}^c) = (\mathcal{A}, \bigcirc, (G_{ij})_{(i,j) \in U_n})$$

by $x \bigcirc y = x^- \Rightarrow y$, $G_{ij}(x,y) = F_{n-1-i,j}(x^-,y)$. Then $\alpha(\mathcal{A}^c)$ is a \oplus -proper LM_n algebra. 2) Let $\mathcal{A}^a = (\mathcal{A}, \bigcirc, (G_{ij})_{(i,j) \in U_n})$ be a \oplus -proper LM_n algebra. Define

$$\beta(\mathcal{A}^a) = (\mathcal{A}, \Rightarrow, (F_{ij})_{(i,j) \in S_n})$$

by $x \Rightarrow y = x^{-} \bigcirc y$, $F_{ij}(x, y) = G_{n-1-i,j}(x^{-}, y)$. Then $\beta(\mathcal{A}^{a})$ is a \rightarrow -proper LM_{n} algebra. 3) The maps α , β are mutually inverse.

Proof. Obvious.

This theorem allows us to extend all the results concerning \rightarrow -proper LM_n algebras to \oplus -proper LM_n algebras. In the sequel I shall present some of these results.

Examples 8.8 (i) Let $\mathcal{L}_n = \mathcal{L}_n^{(LM_n)}$ be the canonical LM_n algebra. Then the structure

$$\mathcal{L}_n^a = (\mathcal{L}_n , \bigcirc, (G_{ij})_{(i,j) \in U_n})$$

is a \oplus -proper LM_n algebra, that I shall call the canonical \oplus -proper LM_n algebra, where 1

$$x \bigcirc y = x^- \Rightarrow y = \begin{cases} 1, & x^- \le y \\ y, & x^- > y, \end{cases}$$
(13)

$$G_{ij}\left(\frac{r}{n-1}, \frac{s}{n-1}\right) = \begin{cases} \frac{i+j}{n-1}, & (r,s) = (i,j)\\ 0, & (r,s) \neq (i,j), \end{cases}$$
(14)

since

$$G_{n-1-i,j}(x^{-},y) = G_{n-1-i,j}\left(\frac{n-1-r}{n-1},\frac{s}{n-1}\right)$$

$$= \begin{cases} \frac{(n-1-i)+j}{n-1}, & (n \Leftrightarrow 1 \Leftrightarrow r, s) = (n \Leftrightarrow 1 \Leftrightarrow i, j) \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{n-1-i+j}{n-1}, & (r,s) = (i,j) \\ 0, & \text{otherwise} \end{cases}$$

$$= F_{ij}\left(\frac{r}{n-1},\frac{s}{n-1}\right)$$

and d_j , $j \in J$ are those given by (7).

(ii) Take the canonical LM_5 algebra \mathcal{L}_5 ; $L_5 = \{0, 1/4, 2/4, 3/4, 1\}$ and its LM_5 subalgebras are: $S_{(1)} = L_5$, $S_{(2)} = \{0, 2/4, 1\} \simeq L_3$, $S_{(4)} = \{0, 1\} \simeq L_2$ and $S = \{0, 1/4, 3/4, 1\}$. We have $J = \{1, 2, 3, 4\}$ and hence

$$U_5 = \{(i,j) \in J^2 \mid 1 \le i \le 1, \ 1 \le j \le 1, \ i+j < 4\} = \{(1,1)\},\$$

$$G_{11}\left(\frac{r}{4}, \frac{s}{4}\right) = \begin{cases} 2/4, \ (r,s) = (1,1)\\ 0, \ (r,s) \ne (1,1) \end{cases} = \begin{cases} 1/4 \oplus 1/4, \ (r,s) = (1,1)\\ 0, \ (r,s) \ne (1,1). \end{cases}$$

Then

 $(\mathcal{S}_{(1)}, \bigcirc |_{S_{(1)}}, G_{11} |_{S_{(1)}}), (\mathcal{S}_{(2)}, \bigcirc |_{S_{(2)}}, G_{11} |_{S_{(2)}}) \text{ and } (\mathcal{S}_{(4)}, \bigcirc |_{S_{(4)}}, G_{11} |_{S_{(4)}}) \text{ are } \oplus \text{-proper } LM_5 \text{ subalgebras of } \mathcal{L}_5^a, \text{ hence they are } \oplus \text{-proper } LM_5 \text{ algebras, while } \mathcal{L}_5^a$ $(\mathcal{S}, \bigcirc |_S, G_{11}|_S)$ is not a \oplus -proper LM_5 subalgebra of \mathcal{L}_5^a , since $\bar{2}/4 \notin S$, and therefore it is not a \oplus -proper LM_5 algebra.

Remarks 8.9 (i) For $n \in \{2, 3, 4\}$, $U_n = \emptyset$, therefore in these cases any LM_n algebra is \oplus -proper. Recall that in these cases any LM_n algebra is \rightarrow -proper too.

(ii) For $n \geq 5$, not any LM_n algebra is \oplus -proper, since not any LM_n subal-

gebra of $\mathcal{L}_n^{(LM_n)}$ is a \oplus -proper LM_n subalgebra of \mathcal{L}_n^a (see Examples 8.8(ii)). (iii) For $n \geq 4$ we can extend the definition of G_{ij} for any $(i, j) \in V_n$ by setting (see ([5], 2.2)):

$$\begin{cases} G_{1,n-3}(x,y) = d_1(x) \wedge d_{n-3}(y) \wedge x^- \\ G_{n-3,1}(x,y) = d_{n-3}(x) \wedge d_1(y) \wedge y^- \end{cases}$$
(15)

Then G_{ij} satisfies the condition (12) for any $(i, j) \in V_n$.

Proposition 8.10 $G_{1,n-3}(x,y) = G_{n-3,1}(y,x), \quad x,y \in A.$

Proof. Obvious, by (15) and (4).

Example 8.11 Let n=5 and let us consider the canonical \oplus -proper LM_5 algebra, \mathcal{L}_5^a ; then we have:

$$\begin{aligned} G_{12}(x,y) &= d_1(x) \wedge d_2(y) \wedge x^- = \begin{cases} 1 \wedge 1 \wedge 3/4, & (x,y) = (1/4, 2/4) \\ 0, & (x,y) \neq (1/4, 2/4) \end{cases} \\ &= \begin{cases} 3/4, & (x,y) = (1/4, 2/4) \\ 0, & (x,y) \neq (1/4, 2/4) \end{cases} = \begin{cases} 1/4 \oplus 2/4, & (x,y) = (1/4, 2/4) \\ 0, & (x,y) \neq (1/4, 2/4). \end{cases} \end{aligned}$$

Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center of \mathcal{A} :

 $C(A) = \{ x \in A \mid r_j x = x, \text{ for every } j \in J \}.$

Lemma 8.12 Let $\mathcal{A}^a = (\mathcal{A}, \bigcirc, (G_{ij})_{(i,j) \in U_n})$ be $a \oplus$ -proper-LM_n algebra, $x, y \in A$ and $a, b \in C(A)$. Then the following properties hold:

(1) $G_{ij}(x,y) = G_{ji}(y,x),$ (2) $G_{ij}(x \lor a, y \land b) = G_{ij}(x,y) \land a^{-} \land b,$ (3) $G_{ij}(x \land a, y \lor b) = G_{ij}(x,y) \land a \land b^{-},$ (4) $G_{ij}(x,b) = G_{ij}(a,y) = 0.$

$$\begin{array}{l} Proof. \ \mathrm{By}\ ([2],\ 9.2.8), \ \mathrm{we}\ \mathrm{get} \\ (1) \quad G_{ij}(x,y) = F_{n-1-i,j}(x^-,y) = F_{n-1-j,i}(y^-,x) = G_{ji}(y,x), \\ (2) \quad G_{ij}(x \lor a, y \land b) = F_{n-1-i,j}\left((x \lor a)^-, y \land b\right) = \\ = F_{n-1-i,j}(x^-,y) \land a^- \land b = G_{ij}(x,y) \land a^- \land b, \\ (3) \quad G_{ij}(x \land a, y \lor b) = F_{n-1-i,j}\left((x \land a)^-, y \lor b\right) = \\ = F_{n-1-i,j}(x^-,y) \land a \land b^- = G_{ij}(x,y) \land a \land b^-, \\ (4) \quad G_{ij}(x,b) = F_{n-1-i,j}(x^-,b) = 0, \quad G_{ij}(a,y) = F_{n-1-i,j}(a^-,y) = 0. \end{array}$$

Proposition 8.13 Any \oplus -proper LM_n algebra is isomorphic to a subdirect product of a family of \oplus -proper LM_n subalgebras of the canonical \oplus -proper LM_n algebra, \mathcal{L}_n^a .

Definition 8.14 (See([5], (3.1)) or ([2], 9.2.12)) If $\mathcal{A}^a = (\mathcal{A}, \bigcirc, (G_{ij})_{(i,j) \in U_n})$ is a \oplus -proper LM_n algebra, define

$$\Psi^a(\mathcal{A}^a) = (A, \oplus, \cdot, {}^-, 0, 1),$$

where \oplus is defined by

$$x \oplus y = (x \bigcirc y) \lor x \lor \bigvee_{(i,j) \in V_n} G_{ij}(x,y)$$
(16)

and $x \cdot y = (x^- \oplus y^-)^-$.

Proposition 8.15 If \mathcal{L}_n^a is the canonical \oplus -proper LM_n algebra, then $\Psi^a(\mathcal{L}_n^a)$ is the canonical MV_n algebra, $\mathcal{L}_n = \mathcal{L}_n^{(MV_n)}$.

Proof. By ([2], 9.2.15), ([11], 1.11) and since $x \oplus y = x^- \to y$.

Theorem 8.16 If \mathcal{A}^a is a \oplus -proper LM_n algebra, then $\Psi^a(\mathcal{A}^a)$ is an MV_n algebra.

Proof. By Proposition 8.13, Proposition 8.15 and the converse of ([11], 1.12). \Box

Proposition 8.17 (See ([2], 9.2.14)) In every \oplus -proper LM_n algebra \mathcal{A}^a the following properties hold:

(i) $r_1(x \oplus y) = r_1(x \bigcirc y),$ (ii) $x \bigcirc y = r_1(x \oplus y) \lor y,$ (iii) If $a \in C(A)$, then $x \oplus a = x \lor a,$ (iv) If $b \in C(A)$, then $b \oplus x = b \lor x,$ (v) $0 \oplus x = x,$ (vi) $x \oplus y = 1$ iff $x^- \le y.$

Proof. For every $(i, j) \in V_n$ we have $i + j < n \Leftrightarrow 1 \Leftrightarrow n \Leftrightarrow 1 \Leftrightarrow (i + j) > 0 \Leftrightarrow (n \Leftrightarrow 1) \Leftrightarrow (i+j) \ge 1$. Hence $r_1G_{ij}(x, y) = 0$, by (5). But $r_1x \wedge x^- = 0 \le y$, therefore we get $r_1x \le r_1(x \bigcirc y)$. Consequently, $r_1(x \oplus y) = r_1(x \bigcirc y) \lor r_1x = r_1(x \bigcirc y)$, and thus (i) holds. Since $x \bigcirc y = y \lor \bigwedge_{i=1}^{n-1} (r_{n-i}x \lor r_iy)$, then $y \lor r_1(x \oplus y) = y \lor r_1(x \bigcirc y) = y \lor r_1(x \bigcirc y) = y \lor \bigwedge_{i=1}^{n-1} (r_{n-i}x \lor r_iy) = y \lor \bigwedge_{i=1}^{n-1} (r_{n-i}x \lor r_iy) = x \bigcirc y$ and thus (ii) holds. The remaining of the proof is routine. □

Definition 8.18 If $\mathcal{A} = (A, \oplus, \cdot, \bar{}, 0, 1)$ is an MV_n algebra, define

$$\Phi^a(\mathcal{A}) = (\Phi(\mathcal{A}), \bigcirc, (G_{ij})_{(i,j) \in U_n}),$$

where $\Phi(\mathcal{A})$ is defined by ([12], 5.19), \bigcirc is defined by (10) and (see ([5], (3.11)) or ([2], 9(2.27)))

$$G_{ij}(x,y) = (x \oplus y) \land d_i(x) \land d_j(y), \ (i,j) \in U_n, \ x, y \in A,$$

with d_i , $i = \overline{0, n \Leftrightarrow 1}$ given by (4).

Then we have the following

Theorem 8.19 (1) If \mathcal{A} is an MV_n algebra, then $\Phi^a(\mathcal{A})$ is a \oplus -proper LM_n algebra.

(2) The maps Φ^a and Ψ^a are mutually inverse.

Proof. To prove (1), $G_{ij}(x, y) = F_{n-1-i,j}(x^-, y) = (x^- \to y) \land d_{n-1-i}(x^-) \land d_j(y) = (x \oplus y) \land d_i(x) \land d_j(y)$, by ([2], 9(2.27)). (2) is obvious.

By Theorems 8.16 and 8.19, MV_n algebras are identified with \oplus -proper LM_n algebras. Since, by [13], MV_n algebras can also be identified with good LM_n algebras, it follows that we have the following

Corollary 8.20 Good LM_n algebras can be identified with \oplus -proper LM_n algebras.

Remark 8.21 For $n \in \{2, 3, 4\}$, LM_n algebras can be identified with good LM_n algebras and with \oplus -proper LM_n algebras, therefore they can be identified with MV_n algebras, as we have already seen in [11].

9 The construction of LM_3 (LM_4) algebra from the odd (respectively even)-valued LM_n algebra, $n \ge 5$.

Let $\mathcal{L}_n^{(MV_n)} = (L_n, \oplus, \cdot, ^-, 0, 1)$ be the canonical MV_n algebra $(n \geq 5)$ and $\mathcal{L}_n = (L_n, \vee, \wedge, ^-, (s_j)_{j \in J}, (s'_j)_{j \in J}, 0, 1)$ be the canonical $g.LM_n$ pre-algebra constructed by ([11], 3.9). The first result is that the determination principle is not verified in some points (i.e. \mathcal{L}_n is a proper pre-algebra):

Proposition 9.1 (i) If n = 2k + 1 $(k \ge 2)$, then

$$L_n = \left\{ 0, \frac{1}{2k}, \frac{2}{2k}, \dots, \frac{k \Leftrightarrow 1}{2k}, \frac{\mathbf{k}}{\mathbf{2k}} = \mathbf{C}, \frac{k+1}{2k}, \dots, \frac{2k \Leftrightarrow 1}{2k}, 1 \right\}$$

and there exist $x_1 = \frac{k}{2k} = C$ (C is the "center" point of L_n) and $x_2 = \frac{k+1}{2k}$, ..., $x_k = \frac{2k-1}{2k}$ (all in the second half of L_n), all distinct and such that:

 $s_j x_1 = s_j x_2 = \ldots = s_j x_k$, for every $j \in J$;

(ii) If $n = 2k \ (k \ge 3)$, then

$$L_n = \left\{0, \frac{1}{2k \Leftrightarrow 1}, \frac{2}{2k \Leftrightarrow 1}, \dots, \frac{k \Leftrightarrow 1}{2k \Leftrightarrow 1}, \frac{k}{2k \Leftrightarrow 1}, \dots, \frac{2k \Leftrightarrow 2}{2k \Leftrightarrow 1}, 1\right\}$$

and there exist $x_1 = \frac{k}{2k-1}$, $x_2 = \frac{k+1}{2k-1}$, ..., $x_{k-1} = \frac{2k-2}{2k-1}$ (all in the second half of L_n), all distinct and such that:

$$s_j x_1 = s_j x_2 = \ldots = s_j x_{k-1}$$
, for every $j \in J$.

Proof. First we prove (i) in four steps:

1. $s_1 x_1 = s_1 x_2 = \ldots = s_1 x_k = 0$; indeed, $s_1 x_i = x_i^{n-1} = 0$, by ([11], 1.14), for $i = \overline{1, k}$.

2. $s_2x_1 = 1$; indeed, $s_2x_1 = (2x_1)^{n-1}$ and $2x_1 = \min(1, 2x_1) = \min(1, \frac{2k}{2k}) = 1$, hence $s_2x_1 = 1^{n-1} = 1$, by ([11], 1.14).

3. $s_2x_2 = s_2x_3 = \ldots = s_2x_k = 1$; indeed, since $x_1 < x_2 < \ldots < x_k$, it follows that $s_2x_1 \le s_2x_2 \le \ldots \le s_2x_k$, by ([11], 3.8); we also have $s_2x_1 = 1$. 4. $s_jx_1 = s_jx_2 = \ldots = s_jx_k = 1$, for every $j = \overline{3, n \Leftrightarrow 1}$, by 3. and by the

4. $s_j x_1 = s_j x_2 = \ldots = s_j x_k = 1$, for every $j = 3, n \Leftrightarrow 1$, by 3. and by the axiom (G5) from [11]. Thus (i) holds. The proof of (ii) is similar.

Corollary 9.2 (i) If n = 2k + 1 $(k \ge 2)$, there exist $y_1 = \frac{1}{2k}$, $y_2 = \frac{2}{2k}$, ..., $y_{k-1} = \frac{k-1}{2k}$ (in the first half of L_n) and $y_k = \frac{k}{2k} = \mathbf{C}$ (C is the "center" of L_n), all distinct and such that:

$$s'_j y_1 = s'_j y_2 = \ldots = s'_j y_k = 0, \quad \text{for every } j = \overline{1, n \Leftrightarrow 2} \text{ and}$$
$$s'_{n-1} y_1 = s'_{n-1} y_2 = \ldots = s'_{n-1} y_k = 1 ;$$

(ii) If n = 2k $(k \ge 3)$, there exist $y_1 = \frac{1}{2k-1}$, $y_2 = \frac{2}{2k-1}$, ..., $y_{k-1} = \frac{k-1}{2k-1}$ (all in the first half of L_n), all distinct and such that:

$$s'_{j}y_{1} = s'_{j}y_{2} = \dots = s'_{j}y_{k-1} = 0, \quad \text{for every } j = \overline{1, n \Leftrightarrow 2} \text{ and}$$

 $s'_{n-1}y_{1} = s'_{n-1}y_{2} = \dots = s'_{n-1}y_{k-1} = 1.$

Proof. (i) follows by Proposition 9.1, since $y_1 = x_k^-$, $y_2 = x_{k-1}^-$, ..., $y_k = x_1^$ x_1 and by ([11], (G4)). (ii) follows by Proposition 9.1, since $y_1 = x_{k-1}^-, y_2 =$ $x_{k-2}^-, \ldots, y_{k-1} = x_1^-$ and by ([11], (G4)).

Remarks 9.3 (i) If n = 2k + 1 $(k \ge 2)$, we put $X = \{x_1, x_2, \dots, x_k\}$, $Y = \{x_1, x_2, \dots, x_k\}$ $\{y_1, y_2, \dots, y_k\}$; then $X, Y \subset L_n, X \cap Y = \{C\}, L_n = \{0\} \cup Y \cup X \cup \{1\}, Y$ and X are chains and $y \leq x$ for every $y \in Y$ and $x \in X$.

(ii) If n = 2k $(k \ge 3)$, we put $X = \{x_1, x_2, \ldots, x_{k-1}\}, Y = \{y_1, y_2, \ldots, y_{k-1}\}$; then $X, Y \subset L_n, X \cap Y = \emptyset, L_n = \{0\} \cup Y \cup X \cup \{1\}, Y$ and X are chains and y < x for every $y \in Y$ and $x \in X$.

I shall now put together all the elements of L_n for which s_i or s'_i coincide, for every $j \in J$, to obtain an algebra verifying the determination principle.

Definition 9.4 For n = 2k (k > 3), let us define the relation S on the canonical $g.LM_n$ pre-algebra \mathcal{L}_n by:

$$xSy$$
 if and only if either 1) $s_j x = s_j y$, for every $j \in J$ or
2) $s'_j x = s'_j y$, for every $j \in J$.

Remark that if $x, y \neq 0, 1$ in the above definition, then 1) means that $x, y \in$ X and 2) means that $x, y \in Y$, by Proposition 9.1, Corollary 9.2 and Remarks 9.3.

Proposition 9.5 The relation S is an equivalence relation on L_n , which verifies, for every $x, y, u, v \in L_n$, $j \in J$, the property: if xSy and uSv, then a) x^-Sy^- , b) $(x \lor u)S(y \lor v)$,

c) $(x \wedge u)S(y \wedge v)$,

d) one of the following holds

(i)
$$(s_j x) S(s_j y)$$
, for every $j \in J$ or
(ii) $(s'_j x) S(s'_j y)$, for every $j \in J$.

Proof. The reflexivity and the symmetry are immediate. To prove the transitivity, suppose xSy and ySz. By Proposition 9.1, Corollary 9.2 and Remarks 9.3, the element y cannot be in the same time in X and in Y, so there are only two posibilities: either $s_j x = s_j y$, $j \in J$ and $s_j y = s_j z$, $j \in J$, hence xSz, or $s'_j x = s'_j y$, $j \in J$ and $s'_j y = s'_j z$, $j \in J$, hence xSz again. Thus S is an equivalence relation. To prove now a), let $x, y \in L_n$ such that xSy. If 1) holds, then $(s_j x)^- = (s_j y)^-$, $j \in J \iff s'_{n-j}(x^-) = s'_{n-j}(y^-)$, $j \in J$, i.e. x^-Sy^- . If 2) holds, the proof is similar. Thus a) holds. To prove b), let xSy and uSv. There are four cases: (I) $s_j x = s_j y$, $j \in J$ and $s_j u = s_j v$, $j \in J$, which mean, by Proposition 9.1 and Remarks 9.3, that $x, y, u, v \in X$. Then $s_j(x \lor u) = s_j x \lor s_j u = s_j y \lor s_j v = s_j (y \lor v)$, for every $j \in J$, by ([11], (G1)); hence $(x \lor u)S(y \lor v)$. (II) $s_j x = s_j y$, $j \in J$ and $s'_j u = s'_j v$, $j \in J$, which mean, by Proposition 9.1, Corollary 9.2 and Remarks 9.3, that $x, y \in X$ and $u, v \in Y$. Then u, v < x, y and hence $x \lor u = x$ and $y \lor v = y$. Then $s_j(x \lor u) = s_j x = s_j y = s_j(y \lor v), \ j \in J, \text{ hence } (x \lor u)S(y \lor v).$ (III)

 $s'_j x = s'_j y, \ j \in J$ and $s'_j u = s'_j v, \ j \in J$, which mean, by Corollary 9.2 and Remarks 9.3, that $x, y, u, v \in Y$. Then $s'_j (x \lor u) = s'_j x \lor s'_j u = s'_j y \lor s'_j v = s'_j (y \lor v)$, hence $(x \lor u)S(y \lor v)$. (IV) $s'_j x = s'_j y, \ j \in J$ and $s_j u = s_j v, \ j \in J$, which mean that $x, y \in Y$ and $u, v \in X$. Hence x, y < u, v and then $x \lor u = u, \ y \lor v = v$. It follows $(x \lor u)S(y \lor v)$ and thus b) holds. The proof of c) is similar. Finally, to prove d), if xSy means 1) and $k \in J$, then $s_j(s_k x) = s_k x = s_k y = s_j(s_k y)$, by ([11], (G9)); hence $(s_k x)S(s_k y)$ for every $k \in J$. If xSy means 2) and $k \in J$, then $s_j(s'_k x) = s'_k x = s'_k y = s_j(s'_k y)$, for every $k \in J$. Thus d) holds. \Box

Theorem 9.6 If n = 2k $(k \ge 3)$, then the structure:

$$(L_n/S, \vee, \wedge, -, R_1, R_2, R_3, \hat{0}, \hat{1})$$

is an LM_4 algebra, isomorphic to the canonical LM_4 algebra, where $L_n/S = \{\hat{0} < \hat{y_1} < \hat{x_1} < \hat{1}\}$, with $\hat{y_1} = Y$, $\hat{x_1} = X$, $\hat{0} = \{0\}$, $\hat{1} = \{1\}$, $\hat{x} \lor \hat{y} = \widehat{x \lor y}$, $\hat{x} \land \hat{y} = \widehat{x \land y}$, $(\hat{x})^- = (\widehat{x^-})$ and R_1 , R_2 , R_3 are defined by the table: $\hat{x} \land \hat{0} \qquad \hat{y_1} \qquad \hat{x_1} \qquad \hat{1}$

$$\begin{array}{c|c} R_1 \\ \hline R_1 \\ \hline R_2 \\ s_{n-2}^{\prime} 0 = \hat{0} \\ \hline s_1^{\prime} y_1 = \hat{0} \\ \hline s_1 x_1 = \hat{1} \\ \hline s_1 x_1 = \hat{1} \\ \hline s_{n-1} x_1 = \hat{1} \\$$

Proof. Obvious, by Remarks 9.3 and Proposition 9.5 (see also ([12], Figure 1)). \Box

Definition 9.7 For n = 2k + 1 $(k \ge 2)$, let us define the relation H on the canonical $g.LM_n$ pre-algebra \mathcal{L}_n by:

$$xHy$$
 if and only if either 1) $s_j x = s_j y$, for every $j \in J$ or
2) $s'_j x = s'_j y$, for every $j \in J$ or
3) $s_j x = (s'_{n-j}y)^-$, for every $j \in J$ or
4) $s'_j x = (s_{n-j}y)^-$, for every $j \in J$.

Remark that if $x, y \neq 0, 1$ in the above definition, then 1) means that $x, y \in X, 2$ means that $x, y \in Y, 3$ means that $x \in X, y \in Y$ and 4) means that $x \in Y, y \in X$, by Proposition 9.1, Corollary 9.2 and Remarks 9.3.

Proposition 9.8 The relation H is an equivalence relation on L_n , which verifies, for every $x, y, u, v \in L_n$, $j \in J$, the property: if xHy and uHv, then a) x^-Hy^- , b) $(x \lor u)H(y \lor v)$, c) $(x \wedge u)H(y \wedge v),$ d') one of the following holds

(i)
$$(s_j x)H(s_j y)$$
, for every $j \in J$ or
(ii) $(s'_j x)H(s'_j y)$, for every $j \in J$ or
(iii) $(s_j x)H(s'_{n-j}y)^-$, for every $j \in J$ or
(iv) $(s'_j x)H(s_{n-j}y)^-$, for every $j \in J$.

Proof. The reflexivity is immediate. Let xHy. If 1) or 2) holds, then yHx; if 3) holds, then $(s_j x)^- = s'_{n-i} y$, for every $j \in J$, hence $s'_i y = (s_{n-i} x)^-$, for every $i \in J$, i.e. yHx; if 4) holds, the proof is similar. Thus H is symmetric. To prove the transitivity, suppose xHy and yHz. If $x, y, z \in X$ or if $x, y, z \in Y$, then it is obvious that xHz. If $x, y \in X$ and $z \in Y$, i.e. $s_j x = s_j y, j \in J$ and $s_j y = (s'_{n-j} z)^-$, for every $j \in J$, then $s_j x = (s'_{n-j} z)^-$, for every $j \in J$, hence xHz. If $x \in X$ and $y, z \in Y$, i.e. $s_j x = (s'_{n-j}y)^-$, for every $j \in J$ and $s'_j y = s'_j z$, for every $j \in J$, then $s_j x = (s'_{n-j}z)^-$, for every $j \in J$, i.e. xHz again. The proof is similar for the other cases. Thus H is an equivalence relation. To prove now a) we use ([11], 3.4(iii)). To prove b), let xHy and uHv. There are eight cases: (I) $x, y, u, v \in Y$, (II) $x, y, u, v \in X$, (III) $u, v \in Y, x, y \in X$, (IV) $x, y \in Y, u, v \in X$, (V) $x, u \in Y, y, v \in X$, (VI) $y, u \in Y, x, v \in X$, (VII) $x, v \in Y, y, u \in X$, and (VIII) $y, v \in Y, x, u \in X$. If, for instance, we are in the case (V), i.e. $s'_j x = (s_{n-j}y)^-$ and $s'_j u = (s_{n-j}v)^-$, then $x \lor u \in Y$ and $y \lor v = \max(y, v) \in X$, $y \land v = \min(y, v) \in X$, hence $s'_j (x \lor u) = s'_j x \lor s'_j u = s'_j x \lor s'_j v = s'_j$ $(s_{n-j}y)^- \lor (s_{n-j}v)^- = (s_{n-j}y \land s_{n-j}v)^- = (s_{n-j}(y \land v))^- = (s_{n-j}(y \lor v))^-$, for every $j \in J$, hence $(x \lor u)H(y \lor v)$. The proof is similar for the other cases. Thus b) holds. The proof for c) is similar. To prove d'), suppose that xHy means 3) for instance and let $k \in J$. Then $s_j(s_k x) = s_k x = (s'_{n-k} y)^- = (s'_{n-j}(s'_{n-k} y))^-$, for every $j \in J$, i.e. $(s_k x) H(s'_{n-k} y)$, by ([11], (G9), (G10), 3.10). The proof is similar in the cases (1), (2), (4).

Theorem 9.9 If n = 2k + 1 $(k \ge 2)$, then the structure:

$$(L_n/H, \vee, \wedge, \bar{}, R_1, R_2, \hat{0}, \hat{1})$$

is an LM₃ algebra, isomorphic to the canonical LM₃ algebra, where $L_n/H = \left\{ \hat{0} < \hat{C} < \hat{1} \right\}$, with $\hat{C} = Y \cup X$, $Y \cap X = \{C\}$, $\hat{0} = \{0\}$, $\hat{1} = \{1\}$, $\hat{x} \lor \hat{y} = \widehat{x \lor y}$, $\hat{x} \land \hat{y} = \widehat{x \land y}$, $(\hat{x})^- = (\widehat{x^-})$ and R_1 , R_2 are defined by the table: $\begin{array}{c|c} \hat{x} & \hat{0} & \hat{C} & \hat{1} \\ \hline R_1 & \widehat{s_1 0} = \hat{0} & \widehat{s_1 C} = \hat{0} & \widehat{s_1 1} = \hat{1} \\ R_2 & \widehat{s_{n-1} 0} = \hat{0} & \widehat{s_{n-1} C} = \hat{1} & \widehat{s_{n-1} 1} = \hat{1} \end{array}$

Proof. Obvious, by Remarks 9.3 and Proposition 9.8 (see also [12], Figure 2). \Box We remark now that the relations S and H can be embedded in more simply relations, with the same results:

Proposition 9.10 Let \mathcal{L}_n be the canonical $g.LM_n$ pre-algebra. (i) If n = 2k $(k \ge 3)$, let us define the relation S' for every $x, y \in L_n$ by:

$$xS'y$$
 if and only if $(s_1x = s_1y, s_2x = s_2y \text{ and } s_{n-1}x = s_{n-1}y)$

Then the following hold:

a) $S \subset S';$

b) S' is a congruence relation of the LM_4 pre-algebra

 $(L_n, \vee, \wedge, \bar{s}_1, s_2, s_{n-1}, 0, 1);$

c) The structure $(L_n/S', \vee, \wedge, \bar{R}_1, R_2, R_3, \hat{0}, \hat{1})$ is an LM_4 algebra, isomorphic to the canonical LM_4 algebra, where $R_1\hat{x} = \widehat{s_1x}, R_2\hat{x} = \widehat{s_2x}, R_3\hat{x} = \widehat{s_{n-1}x}$,

(i') If n = 2k + 1 $(k \ge 2)$, let us define the relation H' for every $x, y \in L_n$ by:

xH'y if and only if $(s_1x = s_1y \text{ and } s_{n-1}x = s_{n-1}y)$.

Then the following hold:

a') $H \subset H';$

b') H' is a congruence relation of the LM_3 pre-algebra

$$(L_n, \vee, \wedge, \bar{}, s_1, s_{n-1}, 0, 1);$$

c') The structure $(L_n/H', \vee, \wedge, \bar{R}_1, R_2, \hat{0}, \hat{1})$ is an LM_3 algebra, isomorphic to the canonical LM_3 algebra, where $R_1\hat{x} = \widehat{s_1x}, R_2\hat{x} = \widehat{s_{n-1}x}, \ldots$

Proof. Routine.

I shall generalize now the two constructions from Proposition 9.10 to arbitrary even, respectively odd - valued LM_n algebras, by ([12], 5.13).

Proposition 9.11 If n = 2k $(k \ge 3)$, let $(A, \lor, \land, \neg, (r_j)_{j \in J}, 0, 1)$ be an arbitrary LM_n algebra. Let us define the relation S'' on A by (see Proposition 9.10(i) and ([12], 5.10(ii), 5.13)):

x S'' y if and only if $(r_1 x = r_1 y, r_k x = r_k y \text{ and } r_{n-1} x = r_{n-1} y).$

Then S'' is a congruence relation of the LM_4 pre-algebra

$$(A, \vee, \wedge, \bar{r}, r_1, r_k, r_{n-1}, 0, 1).$$

Proof. Routine.

Theorem 9.12 If n = 2k $(k \ge 3)$, then the structure:

$$(A/S'', \vee, \wedge, \bar{}, R_1, R_2, R_3, \hat{0}, \hat{1})$$

is an LM_4 algebra, where $R_1\hat{x} = \widehat{r_1x}$, $R_2\hat{x} = \widehat{r_kx}$, $R_3\hat{x} = \widehat{r_{n-1}x}$.

Proof. To prove that $(A/S'', \vee, \wedge)$ is a distributive lattice we need to prove, by [22], that $\hat{x} \wedge (\hat{x} \vee \hat{y}) = \hat{x}$ and $\hat{x} \wedge (\hat{y} \vee \hat{z}) = (\hat{z} \wedge \hat{x}) \vee (\hat{y} \wedge \hat{x})$, which is simply routine. It is routine also to prove that $(A/S'', \vee, \wedge, \bar{}, \hat{1})$ is a De Morgan algebra and that the axioms (L1)-(L5) from [11] are verified. We verify now the axiom (L6) from [11]:

$$R_{j}\hat{x} = R_{j}\hat{y}, \text{ for } j = \overline{1,3}$$

$$\iff ((r_{1}x)S''(r_{1}y), (r_{k}x)S''(r_{k}y) \text{ and } (r_{n-1}x)S''(r_{n-1}y))$$

$$\implies (r_{1}x = r_{1}y, r_{k}x = r_{k}y \text{ and } r_{n-1}x = r_{n-1}y)$$

$$\iff xS''y \iff \hat{x} = \hat{y}.$$

Proposition 9.13 If n = 2k + 1 $(k \ge 2)$, let $(A, \lor, \land, \neg, (r_j)_{j \in J}, 0, 1)$ be an arbitrary LM_n algebra. Let us define the relation H'' on A by (see Proposition 9.10(i'), ([12], 5.10(ii'), 5.13)):

$$x H'' y$$
 if and only if $(r_1 x = r_1 y \text{ and } r_{n-1} x = r_{n-1} y)$.

Then H'' is a congruence relation of the LM_3 pre-algebra

$$(A, \vee, \wedge, \bar{r}, r_1, r_{n-1}, 0, 1).$$

Proof. Routine.

Theorem 9.14 If n = 2k + 1 $(k \ge 2)$, then the structure:

$$(A/H'', \vee, \wedge, \bar{}, R_1, R_2, \hat{0}, \hat{1})$$

is an LM_3 algebra, where $R_1\hat{x} = \widehat{r_1x}$, $R_2\hat{x} = \widehat{r_{n-1}x}$.

Proof. Routine.

Remarks 9.15 1.) If n = 2k + 1 $(k \ge 2)$, let \mathcal{A} be an LM_n algebra. We can generalize Proposition 9.13 and Theorem 9.14 (and also Proposition 9.10(i')) for the relations H''_j , $j = \overline{1,k}$, where for any $x, y \in A$:

 $x H''_i y$ if and only if $(r_j x = r_j y \text{ and } r_{n-j} x = r_{n-j} y).$

 H_j'' is a congruence relation of the LM_3 pre-algebra $(A, \vee, \wedge, r_j, r_{n-j}, 0, 1)$ and $H_1'' = H''$. See [2], pg.349. 2.) In [2], pg.349, the relations H'' and H_j'' , $j = 1, 2, \ldots, [\frac{n}{2}]$, are defined for any LM_n algebra and any n, **odd** or **even**, which is possible indeed; but it is now clear why the adequate case when the relations H'' and H''_j must be considered is the case: n be an **odd** number!

3.) All this study have proved that LM_4 algebras are as much important as LM_3 algebras and MV_n algebras have helped us to see that.

	De Morgan algebra		W algebra	MV algebra	De Me alg	organ ebra		
	g. LM_n pre- algebra with \rightarrow, \leftarrow ?		$\begin{array}{c} \text{Bounded} \\ W_n \\ \text{algebra} \end{array}$	$\begin{array}{c} \text{Relaxed} \\ MV_n \\ \text{algebra} \end{array}$	$egin{array}{ccc} { m g.} \ LM_n \ { m pre-algebra} \ { m with} \oplus,\cdot \end{array}$			
Heyting algebra $(A, \lor, \land, \Rightarrow, 0)$	LM_n	$ \begin{array}{c} \rightarrow \\ -\text{Proper} \\ LM_n \\ n=2,3, \end{array} $	W_n ?	MV_n	\oplus -Proper LM_n n=2,3,4	LM_n	$(A, \lor, \land, \bigcirc, 0)$?	

Figure 1:

10 Final remarks and open problems

(i) In the canonical LM_2 algebra (the canonical MV_2 algebra, the Boolean algebra) \mathcal{L}_2 , with $L_2 = \{0, 1\}$, both operations \oplus and \bigcirc coincide with the operation \lor .

(ii) If we consider the set $\mathcal{O}^{(l)} = \{ \lor, \land, \rightarrow, \neg, 0, 1 \}$ of logical operators, then there exist some basis of it, as for example: the canonical base $\mathcal{B}_1 = \{\lor, \land, \neg, 0, 1\}, \mathcal{B}_2 = \{\lor, \land, \neg\}, \mathcal{B}_3 = \{\lor, \neg\}, \mathcal{B}_4 = \{\land, \neg\}, \mathcal{B}_5 = \{\lor, \neg, 0\}, \mathcal{B}_6 = \{\land, \neg, 1\}, \mathcal{B}_7 = \{\rightarrow, \neg\}, \mathcal{B}_8 = \{\rightarrow, \neg, 1\}, \mathcal{B}_9 = \{\rightarrow, 0\}.$ The Boolean algebra is usually defined by using the canonical base, \mathcal{B}_1 . The De Morgan algebra is the structure which generalizes the Boolean algebra (i.e. uses the same base). If we consider the set $\mathcal{O}^{(a)} = \{\lor, \land, \oplus, \cdot, \neg, 0, 1\}$ of operators, then we can say, analogously, that there are different basis of it. The MV algebra was defined by Chang [3] as a structure $(A, \oplus, \cdot, \neg, 0, 1)$, i.e. by using the base $\{\oplus, \cdot, \neg, 0, 1\}$, and it was defined equivalently, in [6], as a structure $(A, \oplus, \neg, 0)$, i.e. by using the base $\{\oplus, \neg, 0\}$ of operators. It is proved in [21] that the MV algebra is isomorphic to the Wajsberg algebra (W algebra, for short), which is a structure $(A, \rightarrow, -, 1)$, i.e. defined by using the base $\{\rightarrow, -, 1\}$ of operators.

(iii) Our relaxed- MV_n algebras [11] are isomorphic to the n-bounded W algebras (bounded- W_n algebra, for short). One open problem is to define W_n algebras (a bounded- W_n algebra with an axiom corresponding to the axiom (M13) from [11]) (see ([12] 5.26)) and to establish the connection with \rightarrow -Proper LM_n algebras.

(iv) Let us define in a W-algebra the operation \leftarrow by q setting:

$$x \leftarrow y = (x^- \to y^-)^-.$$

Thus $x \leftarrow y = x^- \cdot y$ and $x \cdot y = x^- \leftarrow y$. Then another open problem is to define g.LM_n algebras with \rightarrow , \leftarrow .

(v) A general view of all mentioned structures and related structures is given in the table presented in the Figure 1, where "?" means that the structure must be defined and studied. The table has two sides, the left one and the right one. One side is the image in a kind of a "mirror" of the other side. The left side contains the structures related to the operation \rightarrow , while the right side contains the structures related to the operation \oplus ; the left side is related to the logic, while the right side is related to the algebra.

References

- [1] L. Beznea. θ -valued Moisil algebras and dual categories, Thesis, University of Bucharest, 1981 (Romanian).
- [2] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu. Lukasiewicz-Moisil algebras, Annals of Discrete Mathematics, 49, North-Holland, 1991.
- [3] C.C. Chang. Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467-490.
- [4] R. Cignoli. Algebras de Moisil de orden n, Ph.D. Thesis, Universidad Nacional del Sur, Bahia Blanca, 1969.
- R. Cignoli. Proper n-Valued Lukasiewicz Algebras as S-Algebras of Lukasiewicz n-Valued Propositional Calculi, *Studia Logica*, 41 (1982), 3-16.
- [6] R. Cignoli and D. Mundici. An elementary proof of Chang's completeness theorem for the infinite-valued calculus of Lukasiewicz, *Studia Logica*, 58 (1997), 79–97.
- [7] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici. Algebraic Foundations of many-valued Reasoning, to appear.
- [8] J. M. Font, A. J. Rodriguez, A. Torrens. Wajsberg Algebras, Stochastica, VIII, 1 (1984), 5–31.
- [9] R. Grigolia. Algebraic analysis of Lukasiewicz-Tarski's n-valued logical systems, in: Selected Papers on Lukasiewicz Sentential Calculi (R. Wójcicki and G. Malinowski, Eds.), Polish Acad. of Sciences, Ossolineum, Wroclaw, 1977, 81–92.
- [10] A. Iorgulescu. $(1 + \theta)$ -valued Lukasiewicz-Moisil algebras with negation (Romanian), Ph.D. Thesis, University of Bucharest, 1984.
- [11] A.Iorgulescu. Connections between MV_n algebras and *n*-valued Lukasiewicz-Moisil algebras I, *Discrete Mathematics*, 181(1-3) (1998), 155–177.
- [12] A.Iorgulescu. Connections between MV_n algebras and *n*-valued Lukasiewicz-Moisil algebras II, *Discrete Mathematics*, 202 (1999), 113-134.
- [13] A.Iorgulescu. Connections between MV_n algebras and *n*-valued Lukasiewicz-Moisil algebras III, submitted.

- [14] P. Mangani. On certain algebras related to many-valued logics (Italian), Boll. Un. Mat. Ital., (4) 8 (1973), 68–78.
- [15] Gr.C. Moisil. Le algebre di Lukasiewicz, An. Univ. C.I. Parhon, Acta Logica, 6 (1963), 97–135.
- [16] Gr.C. Moisil. Lukasiewiczian algebras, Computing Center, University of Bucharest (preprint)=[17], 311-324, 1968.
- [17] Gr.C. Moisil. Essais sur les logiques non-chrysippiennnes, Ed. Academiei, București, 1972.
- [18] Gr.C. Moisil. Ensembles flous et logiques à plusieurs valeurs, Centr. rech. math., Université de Montréal, mai, 1973.
- [19] D. Mundici. The C^{*}-algebras of three-valued logic, Logic Colloquium'88, Ferro, Bonotto, Valentini and Zanardo (Editors), Amsterdam, 1989, 61–77.
- [20] D. Ponasse. Algèbres floues et algèbres de Lukasiewicz, Rev. Roumaine Math. Pures Appl., XXIII, 1 (1978), 103-111.
- [21] A. J. Rodriguez, A. Torrens. Wajsberg Algebras and Post Algebras, Studia Logica, 53 (1994), 1–19.
- [22] M. Sholander. Postulates for distributive lattices, Canadian J. of Math., 3 (1951), 28–30.
- [23] W. Suchoń. Définition des foncteurs modaux de Moisil dans le calcul n-valent des propositions de Lukasiewicz avec implication et négation, *Reports on Mathematical Logic*, 2 (1974), 43-48.