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Abstract: We introduce two chains of unary operations in the MV, algebra of Revaz
Grigolia; they will be used in establishing many connections between these algebras
and n-valued Lukasiewicz-Moisil algebras (LM, algebras for short). The study has four
parts. It is by and large self-contained.

The main result of the first part is that MVy algebras coincide with LM, algebras.
The larger class of “relaxed”-MV,, algebras is also introduced and studied. This class
is related to the class of generalized LM, pre-algebras.

The main results of the second part are that, for n > 5, any MV, algebra is an LM,
algebra and that the canonical MV, algebra can be identified with the canonical LM,
algebra.

In the third part, the class of good LM, algebras is introduced and studied and it is
proved that MV, algebras coincide with good LM, algebras.

In the present fourth part, the class of @-proper LM, algebras is introduced and
studied. ®-proper LM, algebras coincide (can be identified) with Cignoli’s proper n-
valued Lukasiewicz algebras. MV, algebras coincide with @-proper LM, algebras (n >
2). We also give the construction of an LM3z (LM,) algebra from the odd (respectively
even)-valued LM, algebra (n > 5), which proves that LM, algebras are as much
important than LM3 algebras; MV, algebras help to see this point.
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8 @-proper LM, algebras

We have seen in [13] that MV}, algebras can be identified with good LM, alge-
bras. We shall see in this section that MV,, algebras can be also identified with
@-proper LM, algebras, where the notion of ®-proper LM, algebra is obtained
from Cignoli’s proper n-valued Lukasiewicz algebra, by slight changes.

Roberto Cignoli defined [5] the proper n-valued Lukasiewicz algebra starting
from the Lukasiewiczian implication , —, defined on L,, = {0, ﬁ, R Z—:%, 1}
by

r — y = min(1, 1 &z +y);

therefore, in this section, I shall rename the proper n-valued Lukasiewicz algebra
as ” —-proper LM, algebra”. The table of — in L,, is symmetric with respect
to the second diagonal, therefore the —-proper LM, algebra was defined by

1 C. S. Calude and G. Stefinescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

2 The first 2 parts appeared in Discrete Mathematics, volumes 181 and 202,
respectively. The 3rd part was submitted for publication; copies may be obtained
from the author.
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Cignoli in the following way (cf. ([2], 9.2.3 and 9.2.4)):

let
Sn=1(,j) EN?|3<i<n&2,1<j<n&4,i>j}ifn>5,
T —{(i,j) EN?|2<i<no2 1<j<na3i>j}ifn>4, U
T, = 0, ifn <4,

let = be the generalization of the residuation considered by Moisil (cf.([2],
4.3.2)):

n—1

r=>y=yV /\((rj:v)_Vrjy), x,y € A, (2)
j=1

and let Fj;, (4,j) € Sy, be a family of binary operations on A such that

0, k<i®j
Tk(Fij(x:y)):{di(x)/\dj(y), k>z‘§jj, ¥

for any xz,y € A, (i,j) € S, and k € J = {1,2,...,n &1}, where if we put
rox = 0 and r,z = 1 for any z € A, then the unary operators d;, i = 0,n &1
are defined by:

di(z) =rp_ix A (Th—i—1z)”, =z € A. (4)
Definition 8.1 ([5], 2.1) A —-proper LM, algebra is a structure
A= (A, =, (Fij)(i,5)e5. )5
where A = (A4,V,A,,(r;)jes,0,1) is an LM, algebra, = is a binary operation

on A verifying (2) and Fj;, (i,7) € Sp, are binary operations on A verifying (3),
the unary operators d;, i = 0,n <1 being those from (4).

Example 8.2 ([5],2.3) If we consider the canonical LM, algebra, £,, = M),
then the structure
52 = (‘Cm =, (Fij)(i,j)es‘n)

is a —-proper LM, algebra, where

_J 1L z<y

miy‘{y, x>y, ©)

r s nol—itj (r,s) = (i,7)

Fi' — - .4 n—1 ’ U
J<n<:>1 m1> { 0, (rs)# (i) (6)

and

oy 0, i £ 7,

d](n<:>1)_{1; i=j, ie{0yulJ, jel. (7)

LS is called the canonical —-proper LM, algebra.
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In every LM, algebra we also have (cf. [5], again)

T = \/ dp—i(z), j=1,n. (8)

Since we have started now from an MV, algebra, i.e., a structure with the
operation @ instead of — , I shall modify Cignoli’s definition in order to
obtain the @-proper LM, algebra, i.e., the proper LM,, algebra starting from
the canonical addition, @ , defined on L, by: z @y = min(l,z+y) =z~ — y.

Since the table of canonical @ is symmetric with respect to the principal
diagonal (the operation @ is commutative), we define:

Up={(i,j)e J?|1<i<n&4,1<j<n&di+j<ne&l),n>5,

U, =0, n < 5;

Vo={(,j)€J?|1<i<n&3,1<j<nedjitj<nsl} 9
={(,j) € J?|1<j<n&2&i,1<i<n&3} )
={(,)) e J?|1<i<n&2&),1<j<n&3l, n >4,

Vn:w; n < 4.

Then | V;, |= 142+.. .+ (ne3) = @202 anq v, = U, U{(1,n8), (ne3,1)}.

Remark 8.3 We could take into account the commutativity of @ and define a
smaller set:

{(i,j) e J?|1<i<n&3,1<j<n&3,i+j<nel,j>i}
{(i,j)e J?|i<j<n&2si,1<i<[n/2) <1}

with | Vi |= 142+ ... + (n ©4) = (n=tn=5)

Proposition 8.4 For any i,j € J we have:
(i) (1,§) €U, & (neleij)e S,
(i1) (1,/) €V & (neleij)el,.

Proof.

(i,)) EUp, o 1<i<ned, 1<j<ned,i+j<nel
Sden<si<al,1<j<nednelesi>]
S3I<nelei<ne2,1<j<ned neslei >
& (nelei,j) es,.

Thus (i) holds. The proof of (ii) is similar. O

Lemma 8.5 In any LM, algebra

dp—1-i(z7) =di(z), i=0,nel.
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Proof. In L, let =z = #5 then d, 1 ;(z7) = dn,l,i(";i?') =
, nelei=nalej [1,i=j
{0, e )= {0, i#;. = d;(z); then apply ([11], 2.8). 0

Let A be an LM,, algebra. We shall define a binary operation on A, (), by:
n—1

rQuyu=z" =y, Iie wa:yV/\(rn_jerjy), r,y € A (10)
j=1

and a family of binary operations, (G;)(,jev, , by
G”(l',y) :anlfi,j(xivy)' (11)
Then G;; verifies, for every (i,j) € U, and k € J :

0, E<n&le(i+)),
ri(Gij(z,y)) = {dl(x) ANdj(y), k>n gl zgziﬁ (12)

Indeed, r¢(Gij(z,y)) =

_ 0

= T‘k(anlfi’j(l‘i,y)) = {dnli(m) A d’j(y), k]; (n &1 <:>Z) <:>j,

<
> (nelsi)s)

- 0, k<noloio]
T di(z) Adj(y), k> n el sisd,

by (11), (3) and Lemma 8.5.
Hence we can give the following

Definition 8.6 A $®-proper LM, algebra is a structure
A" = (A, O, (Gij)ijev.),

where A is an LM,, algebra, ) is a binary operation on A verifying (10) and
Gij, (i,7) € Uy, are binary operations on A verifying (12), d;, i = 0,n <1 being
those from (4).

Let A be an LM, algebra and let us consider the two kinds of proper LM,
algebras: A¢ and A®. The two structures can be identified, namely we have the
following

Theorem 8.7 1) Let A° = (A, =, (Fij)ijes,) be a —-proper LM, algebra.

Define
a(A%) = (A, O, (Gij)ijev,)

byz Qy=12" =y, Gij(z,y) = Fh_1-:,;(z7,y).

Then a(A°) is a ©-proper LM, algebra.

2) Let A* = (A, O, (Gij)(ijev,) be a ©-proper LM, algebra. Define

B(AY) = (A, =, (Fij)(i,5)es,)

byr=y=z"Quy, Fij(z,y) = Gn1-i;(x",y).

Then B3(A%) is a —-proper LM, algebra.
3) The maps a, B are mutually inverse.
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Proof. Obvious. a

This theorem allows us to extend all the results concerning —-proper LM,
algebras to @-proper LM, algebras. In the sequel I shall present some of these
results.

Examples 8.8 (i) Let £,, = £ be the canonical LM, algebra. Then the

structure
Ly = (Lo, O,(Gij)ihev,)

is a @-proper LM, algebra, that I shall call the canonical ®-proper LM,, algebra,
where

o ] 1, 2= <y
tQy==z =>Z/—{y, >y, (13)
85 (r,s) = (i,§)
(L 5 ) = n-1 ’
G” (n71’ nil) { 07 (7",8) # (Z’J)7 (14)
since
Gno1-ij(x7,y) = Gno1-i (—"Q:Ta nil)
_ [ helens) = (elei))
otherwise

_ {%ﬁﬂ (r,8) = (i)

, otherwise

= Fjj (ﬁ ﬁ)
and dj, j € J are those given by (7).
(ii) Take the canonical LM; algebra L5; Ls = {0,1/4,2/4,3/4,1} and its
LMj5 subalgebras are: S(1) = Ls, Sy = {0,2/4,1} ~ L3z, Sy = {0,1} = L
and S ={0,1/4,3/4,1}. We have J = {1,2, 3,4} and hence

Us={(i,j) € | 1<i<1,1<j<1,i+j<4}={(1,1)},

G (5.3) = {4 Sy _ (e = LD
4’4 0, (rys) # (1,1) 0, (r,s) # (1,1).
Then
(S(l)ao |S(1)5G11 |S(1)): (8(2)v O |5(2)7G11 |5(2)) and (8(4)v O |5(4)5G11 |S(4)) are
@-proper LMs5 subalgebras of £, hence they are @-proper LM; algebras, while
(S, Ols,G11 |s) is not a @-proper LM5 subalgebra of £¢, since 2/4 ¢ S, and
therefore it is not a @-proper LMj5 algebra.

Remarks 8.9 (i) For n € {2,3,4}, U,, = 0, therefore in these cases any LM,
algebra is @-proper. Recall that in these cases any LM, algebra is —-proper
too.
(ii) For n > 5, not any LM, algebra is ®-proper, since not any LM, subal-
gebra of LM s o @-proper LM, subalgebra of L£$ (see Examples 8.8(ii)).
(iii) For n > 4 we can extend the definition of G;; for any (i,j) € V, by
setting (see ([5], 2.2)):

le”*3(1‘)y) =d; (Z’) A dn73(y) ANx~
{ an?,,l(l’,y) = dnf?)(l') A d1 (y) N Y- (15)

Then Gj; satisfies the condition (12) for any (i, j) € V.
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Proposition 8.10 G, ,,_5(z,y) = Gp_31(y,z), =,y € A.
Proof. Obvious, by (15) and (4). O

Example 8.11 Let n=>5 and let us consider the canonical @&-proper LM; alge-
bra, £¢; then we have:

Gualoy) = da(o) Ada(y) A= = { A IASIG o 2R

— 3/4) (1‘,y) :(1/4)2/4) — 1/4692/47 (1‘,y) :(1/4)2/4)

0,  (=,y) #(1/4,2/4) 0, (z,y) #(1/4,2/4).

Let A be an LM,, algebra and let us consider the Boolean center of A:
C(A) ={z € A|rjz =z, for every j € J}.

Lemma 8.12 Let A* = (A, O, (Gij)(,j)ev,) be a D-proper-LM,, algebra, z, y
€Aanda, beC(A ) Then the followmg properties hold:

(1) GZJ( ) (y,x),
(Q)G”(a:Va y/\b):G”(m y)ANa~ AD,
(S)Glj(:r/\ayvb):G”( Y)yANaAb,
(4) Gij(x,b) = Gij(a,y) = 0.
of By ([2], 9.2.8), we get

(1) z (55 y) = Fn_1- m(x Y) = Fn—l—j,i(y_ax = Gji(y,.fl?),
(2) Gy (a:Va y/\b) Fn,l,iﬁj((mVa)*,y/\b) =

(3) ”(m/\a yVvb) = _1_l7]((x/\a)*,be) =
= I'n-1- z](x 7y)/\a/\b sz(mvy)/\a/\b )
(4) Gij(x,0) = F1-j(x7,b) =0, Gyj(a,y) = Fro1-ij(a™,y) = 0. a

Proposition 8.13 Any ®-proper LM, algebra is isomorphic to a subdirect prod-
uct of a family of ®-proper LM, subalgebras of the canonical ®-proper LM,
algebra, L.

Proof. By ([2], 9.2.11)). O

Definition 8.14 (See([5], (3.1)) or ([2], 9.2.12))
If A° = (A, O ,(Gij)(i,j)eUn) is a @-proper LM, algebra, define

Spa(Aa) = (A7 ®, _707 1)7
where & is defined by

ray=@Qy)Vvav \/ Giz,y) (16)
(1,§)EVn
andz-y=(z" Dy ).
Proposition 8.15 If L$ is the canonical ®-proper LM, algebra, then (L)

is the canonical MV, algebra, L,, = L%MV")_
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Proof. By ([2], 9.2.15), ([11], 1.11) and since c By =z~ — y. ad

Theorem 8.16 If A* is a ®-proper LM, algebra, then T*(A*) is an MV,
algebra.

Proof. By Proposition 8.13, Proposition 8.15 and the converse of ([11], 1.12). O

Proposition 8.17 (See ([2], 9.2.14)) In every ®-proper LM, algebra A the
following properties hold:

(1) r1(z ®y) =ri(zOy),

(ii)) t Qy=ri(zdy) Vy,

(iti) If a € C(A), thenx ®a ==z V a,

(iv) If b e C(A), thenb®x=bV x,

(v)0dx =z,

(vi)zdy=1if z= <y.
Proof. For every (i,j) € V,, wehave i+ j <nelonels(i+j) >0
(nel)e(i+j) > 1. Hence r1G4j(z,y) = 0, by (5). But mazAz~ = 0 < y, therefore
we get iz < ri(x Qy). Consequently, ri(z Dy) =ri(z Qy) Vriz =ri(zx Qy),
and thus (i) holds. Since t Qy =y V /\?:_11 (rn—iz Vry), then yVri(z®dy) =
yVriOQy) =yVryV AL (i Vry) =y VAL (o Vry) =2 Oy
and thus (ii) holds. The remaining of the proof is routine. |
Definition 8.18 If A= (A,®,-,7,0,1) is an MV, algebra, define

PU(A) = (2(A), O, (Gij)(i,j)eun )s

where @(A) is defined by ([12], 5.19), O is defined by (10) and (see ([5], (3.11))
or ([2], 9(2.27)))

Gz](may) = (1‘ @y) /\dz(m) A d,](y)) (27]) € Un: z,y € A)
with d;, i =0,n <1 given by (4).
Then we have the following

Theorem 8.19 (1) If A is an MV,, algebra, then °(A) is a ©- proper LM,
algebra.
(2) The maps ®* and ¥* are mutually inverse.

Proof. To prove (1), Gij(z,y) = Fpoi—ij(z ,y) = (= = y) Adp—1—i(z7) A

d;(y) = (& ® y) Adi(z) Ad; (), by (2], 9(2:27)).

(2) is obvious. |
By Theorems 8.16 and 8.19, M'V,, algebras are identified with ®-proper LM,

algebras. Since, by [13], MV, algebras can also be identified with good LM,

algebras, it follows that we have the following

Corollary 8.20 Good LM, algebras can be identified with &-proper LM, alge-
bras.

Remark 8.21 Forn € {2,3,4}, LM, algebras can be identified with good LM,
algebras and with ®-proper LM,, algebras, therefore they can be identified with
MYV, algebras, as we have already seen in [11].
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9 The construction of LMg (LM,) algebra from the odd
(respectively even)-valued LM,, algebra, n > 5.

Let C%MV") = (L,,®,,,0,1) be the canonical MV,, algebra (n > 5) and
Ly = (Ln,V,A,7,(s5)jes,(8})jes ,0,1) be the canonical g.LM, pre-algebra
constructed by ([11], 3.9). The first result is that the determination principle is
not verified in some points (i.e. £,, is a proper pre-algebra):

Proposition 9.1 (i) If n =2k + 1 (k > 2), then

1 2 kel k k+1 2k &1
Ln: )_)_)"'7—7_207 y ot 7]-
{0 2k’ 2k 2k 7 2k 2k 2k }
and there exist T1 = % = C (C is the 7center” point of L,) and x5 =
%, e Ty = 2';—;1 (all in the second half of L, ), all distinct and such that:
5jT1 = 8;Ty = ... = 8Ty, for every j € J;
(i) If n = 2k (k > 3), then
.~ 1o 1 2 kel k 2k 2
T 2kel’ 2kl T 2kel’ 2kl T 2kel]
and there exist x1 = %L_l, Ty = Qkk%ll, e TR = g,’;—:% (all in the second half

of L), all distinct and such that:
§jT1 = S;Tz = ... = SjTp—1, for every j € J.

Proof. First we prove (i) in four steps:

1. s121 = s129 = ... = syx = 0; indeed, s1x; = :r?_l = 0, by ([11], 1.14),
fori=1,k.

2. sor; = 1;indeed, soz; = (221)" ! and 2z; = min(1, 2z1) = min(1, %) =
1, hence syz; = 171 =1, by ([11], 1.14).

3. S2Ty = S9x3 = ... = S2xp, = 1; indeed, since z1 < 22 < ... < xp, it
follows that sazy < s2x2 < ... < samg, by ([11], 3.8); we also have sy = 1.

4. sjz1 = sjx = ... = sz = 1, for every j = 3,n <1, by 3. and by the
axiom (G5) from [11]. Thus (1) holds. The proof of (ii) is similar. ad

Corollary 9.2 (i) If n = 2k + 1 (k > 2), there emist y1 = 3z, Y2

%, N T k2—_kl (in the first half of L,) and yp = % = C (C is the
“center” of Ly,), all distinct and such that:
siyy = siya = ... = sjyr =0,  for every j =1,n &2 and
Spo1Y1 =Sy Y2 = ... =S, 1Yp = 1 ;
(ii) If n = 2k (k > 3), there exist y1 = 52—, Y2 = 50> - » Yh—1 = 2’”16;_11

(all in the first half of L, ), all distinct and such that:
siyr = sjyz = ... = sjyk—1 =0, for every j =1,n &2 and

! o _ — ! —
Sn—1Y1 = Sp—1Y2 = - = Sp_1Yk—-1 = 1.
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Proof. (i) follows by Proposition 9.1, since y; =, y2 =T}y, ... ,Yp = ] =
z1 and by ([11], (G4)). (ii) follows by Proposition 9.1, since y; = z;,_,, y2 =
Ty_o, .- Yk—1 =7 and by ([11], (G4)). o
Remarks 9.3 (i) f n =2k+ 1 (k > 2), weput X = {xy, 22, ..., 2z}, ¥V =
{y1, y2, ..., yp}; then X, Y CL,, XNY ={C}, L, ={0}UYUXU{1}, Y
and X are chains and y <z foreveryy € Y and z € X.

i) ¥n =2k (k > 3), we pit X = {z1,22,...,2-1}, Y =
{y1,¥2, -+, yk—1}; then X, Y CL,, XNY =0, L, ={0}UYUXU{1}, Y

and X are chains and y < x for every y € Y and z € X.

I shall now put together all the elements of L,, for which s; or s; coincide,
for every j € J, to obtain an algebra verifying the determination principle.

Definition 9.4 For n = 2k (k > 3), let us define the relation S on the canonical
g.LM, pre-algebra L, by:

xSy if and only if either 1) s;z = sjy, foreveryje J or
2) shx = sy, for everyj € J.
Remark that if 2, y # 0, 1 in the above definition, then 1) means that z, y €
X and 2) means that z, y € Y, by Proposition 9.1, Corollary 9.2 and Remarks
9.3.

Proposition 9.5 The relation S is an equivalence relation on L, which veri-
fies, for every x, y, u, v € L, , j € J, the property: if xSy and uSv, then

a) x=Sy~,

b) (zVu)S(yVw),

¢c) (zAu)S(y Av),

d) one of the following holds

(1) (sjx)S(sjy), foreveryjeJ or
(i) (sjx)S(sjy), for everyj € J.

Proof. The reflexivity and the symmetry are immediate. To prove the transi-
tivity, suppose xSy and ySz. By Proposition 9.1, Corollary 9.2 and Remarks
9.3, the element y cannot be in the same time in X and in Y, so there are only
two posibilities: either s;z = s;y, 7 € J and sjy = s;z, j € J, hence z5z%,
or six = siy, j € J and sy = s}z, j € J, hence xSz again. Thus S is an
equivalence relation. To prove now a), let z, y € L,, such that zSy. If 1) holds,
then (s;z)” = (s;y) ", j€J s, _;(x7)=s,_;(y), j€J, ie. z~Sy~.

If 2) holds, the proof is similar. Thus a) holds. To prove b), let xSy and
uSv. There are four cases: (I) sjz = s;y, j € J and sju = sjv, j € J,
which mean, by Proposition 9.1 and Remarks 9.3, that z, y, u, v € X. Then
sj(x Vu) = sjz Vsju = sjyVs;jv = sj(yVw), for every j € J, by ([11],
(G1)); hence (z Vu)S(y Vo). (I) sjz = s;y, j € J and sju = siv, j € J,
which mean, by Proposition 9.1, Corollary 9.2 and Remarks 9.3, that z, y € X
and u,v € Y. Then u,v < z,y and hence x Vu = = and y Vv = y. Then

sj(x Vu) = sjz = s;y = sjlyVw), j € J, hence (x Vu)S(y Vv v). (III)
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six = sy, j € J and su = sjv, j € J, which mean, by Corollary 9.2 and Re-
marks 9.3, that =, y, u, v € Y. Then s} (zVu) = sjzVsju = sjyVsiv = s} (yVv),
hence (zVu)S(yVv). (IV) stz =sty, j € J and sju = s;v, j € J, which mean
that z, y € Y and u, v € X. Hence z, y < u, vand thenzVu=wu, yVv =o.
It follows (z V u)S(y V v) and thus b) holds. The proof of ¢) is similar. Finally,
to prove d), if Sy means 1) and k € J, then s;(spx) = spx = spy = s;(sky),
by ([11], (G9)); hence (syx)S(sky) for every k € J. If Sy means 2) and k € J,
then s;(s,,z) = s,z = s,y = sj(siy), by ([11], (G10)), hence (s, z)S(s},y), for
every k € J. Thus d) holds. ad

Theorem 9.6 Ifn = 2k (k > 3), then the structure:
(Ln/S,V,/\, _7R17R27R3767 i)

is an LMy algebra, isomorphic to the canonical LM, algebra,
where L,/S = {0 < i <x1 <1}, with g1 =Y, 77 = X, 0={0}, 1 =
{1}, 2V =aVy, e ANj=x Ay, (£)~ = (z~) and Ry, Ry, Ry are defined by
the table:

z

o

=

)
—

T

Ry 5’1020 s’lylzf) si7,=0 s1=1
R2Sl 0:05272]/1:0 sg\a:l:i 82121

Rs|s!, _0=0s)_y1=1s,_121 =18,11=

Proof. Obvious, by Remarks 9.3 and Proposition 9.5 (see also ([12], Figure 1)).
O

Definition 9.7 For n = 2k + 1 (k > 2), let us define the relation H on the
canonical g.L M, pre-algebra L, by:

xHy if and only if either 1) s]:n = s]y, for everyj € J or

2) sjx = sjy, foreveryjeJ or
3) sjx = (s,_;y), foreveryje.J or
4) shw = (s,—jy)~, foreveryje J.

Remark that if 2, y # 0, 1 in the above definition, then 1) means that z, y €
X, 2) means that z, y € Y, 3) means that x € X,y € Y and 4) means that
z €Y,y € X, by Proposition 9.1, Corollary 9.2 and Remarks 9.3.

Proposition 9.8 The relation H is an equivalence relation on Ly, which ver-
ifies, for every x, y, u, v € Ly, j € J, the property: if tHy and uHv, then
a) x " Hy™,

b) (zVu)H(yVv),
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¢) (& AwH(yAv),
d’) one of the following holds

(0) (sjx)H(s;y)

(sjy), for everyjeJ or
(ii) (sjz)H(s}y), foreveryj € J or
( !

(s5)
(ii) (sjz)H(sp—;y)~, for everyj € J or
(sx)H (sn—jy)~, for everyj € J.

Proof. The reflexivity is immediate. Let zHy. If 1) or 2) holds, then yHux; if 3)
holds, then (s;z)~ = s;,_;y, for every j € J, hence sjy = (sn—iz)~, for every
i € J, i.e. yHz; if 4) holds, the proof is similar. Thus H is symmetric. To prove
the transitivity, suppose tHy and yHz. If x,y,z € X orif z,y, 2 € Y, then
it is obvious that zHz. If z, y € X and z € Y, ie. sj2 = s;y, j € J and
sjy = (s,_;2) ", for every j € Jjthen s;z = (s;,_;z)~ , for every j € J, hence
zHz Ifx € Xandy, z €Y, le sjz = (s%_jy)_, for every j € J and s;y = s;-z,
for every j € J, then s;x = (s,_,z)~, for every j € J, i.e. tHz again. The proof
is similar for the other cases. Tl'jlus H is an equivalence relation. To prove now
a) we use ([11], 3.4(iii)). To prove b), let xHy and uHwv. There are eight cases:
M z,y,u,v ey, M) zyuveX, ) uw,veY z,yeX, (IV)
z,yeY, uy,veX, (V) z,ueY, yveX, (VI) y,ueV, z,velX,

(VII) z,veY, y,ue X, and (VII) y,veY, z,uec X. I for instance, we
are in the case (V), i.e. iz = (sn—;y)~ and sju = (sp—;jv)~, then zVu € Y and
y Vo =max(y,v) € X, y Av=min(y, v) € X, hence s}(z Vu) = sz Vsiu=
($n—¥) " V($n—jv) " = (Sn—jy Asn_jv)" = (sn—j(yAv))" = (sn_j(yVv)), for
every j € J, hence (zVu)H (yVwv). The proof is similar for the other cases. Thus
b) holds. The proof for c) is similar. To prove d’), suppose that zHy means 3)

for instance and let k € J. Then s;(sxz) = spz = (57, _1y)" = ($5,—; (57, _x¥)) ",
for every j € J, ie. (sgx)H(s],_.y), by ([11], (G9), (G10), 3.10). The proof is
similar in the cases (1), (2), (4). O

Theorem 9.9 Ifn =2k + 1 (k > 2), then the structure:
(Ln/H,\/,/\, _7R17R2767 i)
1s an LM3 algebra, isomorphic to the canonical LMjs algebra,
where L, H = {O <0< i}, with C =Y UX, YNX ={C}, 0=1{0},1=

{1}, 2vg=aVy, tAj=a Ay, ()" = (F) and Ry, Ra are defined by the
table:
z

e}
(@)
—

Ry 3’10:6 s’lC:(j s11=1

Rsls’ _.0=0s

Proof. Obvious, by Remarks 9.3 and Proposition 9.8 (see also [12], Figure 2). O
We remark now that the relations S and H can be embedded in more simply
relations, with the same results:
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Proposition 9.10 Let L, be the canonical g.LM,, pre-algebra.
(i) If n = 2k (k > 3), let us define the relation S' for every x, y € L,, by:

xS'y if and only if (517 = s1y, 2T = s2y and s,_1T = Sp_1Y).
Then the following hold:
a) SCS';
b) S' is a congruence relation of the LM, pre-algebra

(Lnava/\a_asl »52,5n—1 707 1)7

¢) The structure (L, /S’ ,V,A, ,Ry,Ry,R3,0,1) is an LM, algebra, iso-
morphic to the canonical LMy algebra, where Ri% = 51x, RoZ = 52%, R3% =
Sp—1T, -

(i) If n = 2k + 1 (k > 2), let us define the relation H' for every x,y € L, by:
zH'y if and only if (s12 = s1y and s, 1T = s,_1Y).
Then the following hold:
«’) HC H';
b’) H' is a congruence relation of the LM3 pre-algebra

(Lnava/\a_asl ySn—1, 07 1)7

¢’) The structure (L, /H' ,V,A,”, Ry, Ry ,0,1) is an LMs algebra, isomor-

—

phic to the canonical LMj3 algebra, where RiZ = 512, Ro = sp_1x, .

Proof. Routine. a
I shall generalize now the two constructions from Proposition 9.10 to arbi-
trary even, respectively odd - valued LM, algebras, by ([12], 5.13).

Proposition 9.11 If n = 2k (k > 3), let (A,V,A, 7, (rj)jes,0,1) be an ar-
bitrary LM, algebra. Let us define the relation S" on A by (see Proposition
9.10(i) and ([12], 5.10(ii), 5.13) ):
xS"y if and only if (rix =71y, rrTz =Ty andr, 1T =T 1Y).
Then S" is a congruence relation of the LM, pre-algebra
(A,V,A, ,71,7,7n-1,0,1).

Proof. Routine. a
Theorem 9.12 If n = 2k (k > 3), then the structure:

(A/S",V,N, ,Ri,Ry,Rs,0,1)

is an LM, algebra, where R\& =Tz, RoZ =Tx, R32 =71, 1.
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Proof. To prove that (A/S",V,A) is a distributive lattice we need to prove, by
[22], that ZA(ZVg) =T and EA(gV 2) = (2AZ)V (g A Z), which is simply
routine. It is routine also to prove that (4/S",V, A, ~,1) is a De Morgan algebra
and that the axioms (L1)-(L5) from [11] are verified. We verify now the axiom
(L6) from [11]:

RjZE = Rj]j, forj = m
= ((mz)S"(ry), (ryx)S" (rry) and (rp—17)S" (rn-1y))
= (mx=ry, rgx =ryandr,_12 = rp_1y)
25"y <= 2 =14.
O

Proposition 9.13 If n = 2k + 1 (k > 2), let (A,V,A,,(rj)jes,0,1) be an
arbitrary LM, algebra. Let us define the relation H'" on A by (see Proposition
9.10(7’), ([12], 5.10(ii’), 5.18) ):
xH"y if and only if (riz =nriy andrp—10 =rp_1y).

Then H" is a congruence relation of the L M3 pre-algebra

(A,V,A, 7 ,r1,7p—1,0,1).
Proof. Routine. a
Theorem 9.14 Ifn =2k + 1 (k > 2), then the structure:

(A/H",V,AN, ,Ri,Ry,0,1)

is an LMj3 algebra, where RiZ =Tz, RoZ =7, 1.
Proof. Routine. a

Remarks 9.15 1.) If n = 2k + 1 (k > 2), let A be an LM, algebra. We can
generalize Proposition 9.13 and Theorem 9.14 (and also Proposition 9.10(i’)) for

the relations H]’.’, j = 1,k, where for any z, y € A:

xHl'y if and only if (rjz =rjyand r, jz =r, y).

H} is a congruence relation of the LM3 pre-algebra (A,V,A,r;,mn—;,0,1) and
H{!' = H" . See [2], pg.349.

2.) In [2], pg.349, the relations H" and H}, j =1,2,...,[3], are defined
for any LM, algebra and any n, odd or even, which is possible indeed; but it
is now clear why the adequate case when the relations H" and H} must be
considered is the case: n be an odd number!

3.) All this study have proved that LM, algebras are as much important as
LM; algebras and MV, algebras have helped us to see that.
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De Morgan W MV De Morgan

algebra algebra || algebra algebra

g. LM, Bounded- || Relaxed- g. LM,

pre- algebra Wh MV, pre-algebra

with —, algebra || algebra with @, -
?

— Wh MV, S) LM,
LM,
-Proper ? -Proper
Heyting (A7 V, A, O, 0)
LM, LM, ?
algebra
(Av VA, =, 0) n:2,3,4 n:2,3,4
Figure 1:

10 Final remarks and open problems

(i) In the canonical LM, algebra ( the canonical MV, algebra, the Boolean
algebra) Lo , with Lo = {0,1}, both operations @ and () coincide with the
operation V.

(ii) If we consider the set O = {v,A,—,~,0,1} of logical operators,
then there exist some basis of it, as for example: the canonical base By =
{V7A7_7071}7 By = {Vaf\:_}a 83 = {Va_}a By = {/\7_}7 85 = {V7_70}7
Bs = {A, 7,1}, By = {—,"}, Bs = {—, 7,1}, By = {—,0}. The Boolean al-
gebra is usually defined by using the canonical base, By. The De Morgan algebra
is the structure which generalizes the Boolean algebra (i.e. uses the same base).
If we consider the set O(®) = {V,A\,®,-,7,0,1} of operators, then we can say,
analogously, that there are different basis of it. The MV algebra was defined by
Chang [3] as a structure (4,®,-,7,0,1) , i.e. by using the base {®,-, ~,0,1},
and it was defined equivalently, in [6], as a structure (A, ®,~,0) , i.e. by using
the base {®, 7,0} of operators. It is proved in [21] that the MV algebra is iso-
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morphic to the Wajsberg algebra (W algebra, for short), which is a structure
(A,—, 7, 1), i.e. defined by using the base {—, ~, 1} of operators.

(iii) Our relaxed-MV;, algebras [11] are isomorphic to the n-bounded W al-
gebras (bounded-W,, algebra, for short). One open problem is to define W,, alge-
bras (a bounded-W,, algebra with an axiom corresponding to the axiom (M13)
from [11]) (see ([12] 5.26)) and to establish the connection with —-Proper LM,
algebras.

(iv) Let us define in a W-algebra the operation < by q setting:

z—y=(x —y)

Thus x + y =z~ -y and x -y = 2~ < y. Then another open problem is to
define g.LM,, algebras with —, + .

(v) A general view of all mentioned structures and related structures is given
in the table presented in the Figure 1, where ” 7 ” means that the structure
must be defined and studied. The table has two sides, the left one and the right
one. One side is the image in a kind of a "mirror” of the other side. The left side
contains the structures related to the operation —, while the right side contains
the structures related to the operation @; the left side is related to the logic,
while the right side is related to the algebra.
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