
The Light Control Case Study:
A Synopsis

Egon Börger
(Università di Pisa, Italy

boerger@di.unipi.it)

Reinhard Gotzhein
(Universität Kaiserslautern, Germany

gotzhein@informatik.uni-kl.de)

Abstract:  In this synopsis, we classify the solutions to the LCCS contained in this Special Issue
according to a number of criteria. Furthermore, we provide brief descriptions of the focus of each
solution, the major achievements and possible shortcomings. We leave it to the reader to establish
a ranking of the different approaches, taking into account that the objectives of the contributions
differ from each other and influence in particular the choice of languages, methods, and tools.
Therefore, the synopsis is mainly based on information received from the authors, it does not
present an in-depth analysis of the solutions. Nevertheless, we hope that this synopsis supports
the reader in finding the right access to this Special Issue.

Key Words: requirements engineering, formal specification, case study

1  Classification of Solutions

The results of the classification are shown in Tables 1 and 2. Solutions are listed in
alphabetical order. We classify the solutions to the LCCS according to the following
criteria:

• Coverage: the degree of completion in terms of specified needs and treated
parts of the building

• Effort: measured in person days (8 hours of work per day) spent on the case
study

• Means of Presentation: lists the main description techniques applied in the case
study

• Description Style: classifies the solutions into operational and property-oriented
specifications

• Modularity: indicates whether the specification is subdivided into meaningful
parts that can be understood independently

• Traceability: indicates whether the units of the problem description, i.e., the
needs, can be easily associated with the specification units

• Reusability: indicates the support of reuse, and the reuse approach
• Tool Support: lists the main tools that have been used in the case study
• Validation: indicates what has been validated, and by what method
• Verification: indicates what has been verified, and by what method

Journal of Universal Computer Science, vol. 6, no. 7 (2000), 582-585
submitted: 3/7/00, accepted: 18/7/00, appeared: 28/7/00  Springer Pub. Co.



Solution:
Authors [nr] Coverage Effort

[days]
Means of

Presentation
Description

Style Modularity

Börger,
Riccobene,
Schmid [1]

 all needs
 entire floor

14 Abstract State
Machines

operational and
property-oriented

yes
(rule macros)

Groot,
Hooman [2]

 all user needs
 the rooms

20 PVS notation
(higher order
logic)

mainly
property-oriented

yes
(theories)

Heitmeyer,
Bharadwaj [3]

 all needs
 single office

12 SCR notation operational yes
(tables)

Kronenburg,
Peper [4]

 all needs
 entire floor

20-25 FOREST (real-
time TL, OO)

property-oriented yes
(classes)

Smith,
Fidge [5]

 10 needs
 single office

10-15 timed trace
notation

property-oriented yes
(components)

Thompson,
Whalen,
Heimdahl [6]

 all needs (no
 response time)
 entire floor

n.a. RSML-e operational yes

Table 1: Classification of solutions (part 1)

Solution:
Authors [nr]

 Trace-
 ability Reusability Tool Support Validation Verification

Börger,
Riccobene,
Schmid [1]

 yes yes
(parame-
terization)

AsmGofer
(execution)

correctness
(simulation),
completeness

consistency

Groot,
Hooman [2]

 yes yes
(theories)

PVS
(type checking,
theorem proving)

correctness
(review,
putative proofs)

correctness
(type checks),
consistency
(interactive)

Heitmeyer,
Bharadwaj [3]

 yes yes
(framework)

SCR* Toolset
(editing, analysis,
simulation),
Salsa (analysis)

correctness
(inspection, user
 scenarios)

consistency
(automatic)

Kronenburg,
Peper [4]

 yes yes
(patterns,
classes)

xforest (editing,
syntax checking,
ps- and html-
projections)

completeness
 (traceability),
correctness
(review)

completeness
(manual)

Smith,
Fidge [5]

 yes yes (incr.
development)

- - -

Thompson,
Whalen,
Heimdahl [6]

 not
 easily

not addressed NIMBUS

(simulation),
prototyping tool

correctness
(user scenarios)

correctness
(automatic
type checks)

Table 2: Classification of solutions (part 2)

583Boerger E., Gotzhein R.: The Light Control Case Study: A Synopsis



2  Description of Solutions

We now provide brief descriptions of each solution, its focus, the major achievements
and possible shortcomings (listed in alphabetical order). The descriptions are mainly
based on information received from the authors, they do not present an in-depth analysis
of the solutions.

Solution 1: E. BÖRGER, E. RICCOBENE, J. SCHMID: CAPTURING
REQUIREMENTS BYABSTRACTSTATE MACHINES

A complete1 formal requirement specification using an Abstract State Machine (ASM)
model, removing inconsistencies and ambiguities. This specification is refined into a
version that is executable with AsmGofer.

The focus of the work has been to provide a rigorous, well structured and traceable
specification of the problem description that is executable and compilable to
implementation languages such as C++.

Solution 2: A. DE GROOT, J. HOOMAN: ANALYZING THE LIGHT CONTROL
SYSTEM WITH PVS
A formal requirement specification covering the needs for the rooms of the building has
been developed, using PVS notation, a strongly type higher-order logic. The interactive
theorem prover PVS has been applied to check for consistency and correctness.

The focus of this work has been to provide a framework for a straightforward
translation of informal needs into a formal specification. The objective was also to do
this at several levels of abstraction, starting from requirements that are stated purely in
terms of observations users can make, and gradually refining it through actuators and
sensors. Some ambiguities  and conflicts in the informal problem description have been
detected and resolved. A possible drawback is the readability of the specification for
people unfamiliar with PVS.

Solution 3: C. HEITMEYER, R. BHARADWAJ: APPLYING THE SCR
REQUIREMENTSMETHOD

A specification of the required system behavior in the SCR (Software Cost Reduction)
tabular notation has been developed for a single office. This specification identifies the
relevant environmental quantities, partitioning them into monitored and controlled
quantities; identifies the system modes (to make the specifications concise); specifies
the required relation the system must enforce by describing the values of the controlled
quantities in response to changes in the monitored quantities. Entry of the SCR
requirements specification into the SCR toolset automatically generates code for an
executable system prototype. Additionally, some system design activities are reported.

The focus of the work has been on the application of the SCR method and toolset
for the specification, analysis, and simulation of the system requirements, system
design, and software requirements of a single office. The authors mention that although
the timing behaviour of the system has been specified, techniques for analyzing this
behaviour are not yet available.

1. "Complete" in this context means that all needs of the problem description are
addressed, and that the entire floor has been specified.

584 Boerger E., Gotzhein R.: The Light Control Case Study: A Synopsis



Solution 4: M. KRONENBURG, C. PEPER: APPLICATION OF THE FOREST
APPROACH

A complete formal requirement specification has been developed, using the FoReST
approach. FOREST provides a notation that integrates real-time temporal logic and
object-oriented structuring concepts. Furthermore, the FOREST process model supports
incremental requirements engineering and customer feedback, based on a partial
translation of formalized needs.

The focus of the work has been on the creation of a precise and intelligible
requirement specification, and on the generation of html documents supporting various
traceability relations through hyper links. A shortcoming is the current lack of tool
support for semantic analyses.

Solution 5: G. SMITH, C. FIDGE: INCREMENTAL DEVELOPMENT OFREAL-TIME
REQUIREMENTS

A requirement specification has been developed for 10 needs and a single office, using
a timed trace notation based on the timed refinement calculus of Mahony.

Focus of the work has been the incremental development of (possibly changing)
requirements. The method mixes requirements engineering steps (requirements
specification) with formal development (refinement). The solution demonstrates the
complete development from high-level needs to all implementation details for a single
office. A drawback is the at present limited tool support for the notation. Scaling to the
full system is possible, although not very elegant in the notation.

Solution 6: J. M. THOMPSON, M. W. WHALEN, M. P. HEIMDAHL :
REQUIREMENTSCAPTURE AND EVALUATION IN NIMBUS

Complete formal, executable system and software requirements specifications have
been developed, using RSML-e (Requirements State Machine Language without
events). Furthermore, interface prototypes to evaluate both specifications have been
produced.

The objective has been to demonstrate the effectiveness of specification-based
prototyping in the NIMBUS environment, a toolset supporting RSML-e. The need for
arrays in the notation has been identified as the only real shortcoming of the approach.

585Boerger E., Gotzhein R.: The Light Control Case Study: A Synopsis


