
Incremental Development of Real-Time Requirements:

The Light Control Case Study

Graeme Smith
Software Veri�cation Research Centre,
University of Queensland, Australia

smith@svrc.uq.edu.au

Colin Fidge
Software Veri�cation Research Centre,
University of Queensland, Australia

cjf@svrc.uq.edu.au

Abstract: System requirements frequently change while the system is still under de-
velopment. Usually this means going back and revising the requirements speci�cation
and redoing those development steps already completed. In this article we show how
formal requirements can be allowed to evolve while system development is in progress,
without the need for costly redevelopment. This is done via a formalism which allows
requirements engineering steps to be interleaved with formal development steps in a
manageable way. The approach is demonstrated by a signi�cant case study, the Light
Control System.
Key Words: Requirements engineering; Formal speci�cation; Re�nement; Embedded
systems; Real-time systems
Category: D.2.1 Requirements/Speci�cations; D.2.4 Software/Program Veri�cation;
J.7 Computers in Other Systems; C.3 Special-Purpose and Application-Based Systems

1 Introduction

In the literature, formal software development is usually described as a linear
process in which an abstract requirements speci�cation is `re�ned', by a sequence
of formal steps, to a concrete implementation [Morgan, 1990]. However, this pro-
cess is predicated on the existence of a perfect requirements speci�cation which
anticipates all of the necessary system functionality, and allows for all the speci�c
characteristics of the �nal implementation. In practice, however, requirements
change during the development of a system and it is impossible to have prior
knowledge of the �nal implementation technology. Programmers are therefore
forced to undertake informal steps in which they revise their requirements speci-
�cation, and redo much of their formal development to date, as the requirements
are updated and the implementation becomes better de�ned.

Here we instead introduce a notion of `realisation' which allows system re-
quirements to evolve in a well-structured way as the formal development pro-
gresses [Smith, 2000]. The overall approach allows formal development (re�ne-
ment) steps to be interleaved with requirements engineering (realisation) steps.
As usual, the re�nement steps allow a requirements speci�cation to be trans-
formed to a more speci�c design. By contrast, our realisation steps allow a spec-
i�cation or design to be changed, either by introducing new requirements or by
modifying existing ones. Importantly, the realisation steps transform not only

Journal of Universal Computer Science, vol. 6, no. 7 (2000), 704-730
submitted: 23/12/99, accepted: 20/4/00, appeared: 28/7/00  Springer Pub. Co.

speci�cations, but also any formal properties already proven about those speci�-
cations. This allows formal reasoning carried out on the original speci�cation to
be reused after the speci�cation has been modi�ed, avoiding the need to repeat
development steps and formal proofs.

We illustrate the approach by the incremental speci�cation and development
of part of the Light Control System, a signi�cant case study involving both
functional and timing requirements [Problem Description, 2000].

2 Previous and Related Work

The need to allow requirements speci�cations to evolve has been recognised for
some time [Swartout and Balzer, 1982]. One reason for wanting this capability is
that the practical limitations of implementation languages and hardware cannot
usually be anticipated when the initial requirements document is written. This
is particularly true of embedded real-time systems. Such systems interact with
their environment via sensors and actuators, both of which introduce hardware-
speci�c errors in timing (due to processing and propagation delays) and precision
(due to the e�ects of quantization and bounded ranges).

Previously, this problem has been addressed by specifying the ideal behaviour
of a real-time system independently from a description of the errors (precisions
and tolerances) inherent in the environmental interface [van Schouwen et al.,
1993]. This approach has been adopted in the U.S. Naval Research Laboratory's
Software Cost Reduction methodology [Heitmeyer, 1996]. It has also been shown
how to modify a speci�cation in the Z notation to include physical limitations
[Hayes, 1990] and, more generally, how to modify such speci�cations by changing
their input and output representations [Hayes and Sanders, 1995]. In a broader
context, this problem has also been addressed by the process of `deidealizing'
initial requirements by allowing them to be weakened [van Lamsweerde et al.,
1995], and by the `retrenchment' method of weakening speci�cations written in
the B notation [Banach and Poppleton, 1998].

Other reasons why requirements must evolve is that they may initially be in-
complete, may be subject to change from in
uences outside the project, or may
be too complex to specify fully. Previously, these issues have been addressed
by introducing notions of `fundamental' versus `changeable' requirements in or-
der to manage the introduction of additional services into telephone networks
[Bredereke, 1998]. Another approach is the notion of having `default' assertions
in speci�cations in order to capture properties which hold unless overridden
[Guerra, 1999]. Both of these approaches assume some a priori knowledge of
which parts of the speci�ed functionality may change.

Our approach deals directly with all of these challenges [Smith, 2000]. In
particular, it di�ers from all the previous work mentioned above in that it al-
lows formal development steps to be arbitrarily interleaved with requirements
engineering steps, and does not need any advance knowledge of which parts of
the requirements speci�cation are subject to change. Indeed, the approach is
complete, in the sense that any changes can be made [Smith, 2000].

705Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

3 De�nitions

This section brie
y introduces the notations and rules used to develop the formal
requirements for the Light Control System. We use a timed-trace speci�cation
notation, coupled with formal rules for re�nement and realisation.

3.1 Speci�cation Notation

Our speci�cation notation is based on Mahony's timed re�nement calculus, a for-
malism speci�cally designed for describing embedded real-time systems [Mahony
and Hayes, 1992; Mahony, 1992; Fidge et al., 1998b].

Let T denote the time domain. All time-varying properties of the system are
assumed to be represented by timed traces, i.e., functions from the time domain
to the value of the variable at that time. For instance, given a variable property v
capable of assuming values from set T , it is represented in the formalism as a
function of type T! T . Below we assume that all variables have this underlying
representation, and simply refer to v as having range type T .

Predicates on the system state are expressed using a set-theoretic notation
in which the basic modelling unit is the time interval, i.e., a non-empty set of
contiguous times [Fidge et al., 1998b]. In this article we use the notation hPi to
denote the set of all intervals in which �rst-order predicate P is true at every
time in the interval. (The interval endpoints may be either open or closed.) For
conciseness, a timed-trace variable v may appear in predicate P without explicit
indexing, in which case it is assumed to be indexed implicitly by all times in
the interval. For instance, the set of intervals h0 < vi comprises all intervals in
which expression `0 < v(t)' is true at every time t in the interval. The reserved
symbol � may be used in predicate P to refer to the duration of the intervals.

Relationships between sets of time intervals are expressed using standard set
operators such as \, [and �. To simplify speci�cation of requirements involving
sequences of intervals, a concatenation operator is introduced for joining sets of
intervals end-to-end. Given two sets of intervals hP1i and hP2i, then `hP1i ; hP2i'
is the set of intervals formed by joining intervals from hP1i to intervals from
hP2i, provided that their endpoints meet at the same point in time [Fidge et al.,
1998b].

Requirements are then expressed as speci�cation statements of the form
x : [A;E]. This says that we are required to achieve the e�ect described by
predicate E , by modifying only variables in the list x. In doing so, we may make
use of an assumption predicate A describing the expected behaviour of the in-
puts [Mahony, 1992]. If assumption A is merely `true' then it can be omitted.
Predicates A and E are constructed using the various time-interval notations
described above.

Variables in the list x may be regarded as outputs of the system and may not
occur free in A. All other variables occurring free in predicates A and E may be
regarded as inputs. For a speci�cation statement to be well-structured, it must
be the case that E does not constrain any input variables [Mahony, 1992].

Several operators on speci�cation statements are available. For instance, it is
often useful to introduce local variables that are neither inputs or outputs. For
example, variables y are local in the construct x;y : [A;E] n (y).

706 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Three further operators can be used to compose speci�cations [Figure 1].
Parallel composition of two independent speci�cations S1 and S2 without com-
munication is denoted S1 jS2. Piping composition, where outputs of speci�cation
S1 are equated with identically-named inputs in S2, is denoted S1>>S2 [Mahony,
1992]. We also introduce a feedback operator which allows local variables x to
be used as both outputs and inputs, denoted [� x0 n x] � S . Here speci�cation
S may de�ne outputs x in its e�ect predicate, and may use assumptions about
the corresponding inputs x0 in its assumption predicate. (Variables x0 are the
same as x, but are annotated di�erently to distinguish their role as inputs.)

x

u yPiping
x

Parallel

v

u

y

x

Feedback
0

u y

x

Figure 1: Compositional operators on speci�cation statements

3.2 Re�nement Rules

Re�nement of a requirements speci�cation formally transforms it by introducing
implementation detail. The re�nement relation S1 v S2 says that speci�cation
S1 is implemented by the more detailed speci�cation S2.

Two basic re�nement rules for transforming the predicates within speci�ca-
tion statements are as follows [Mahony, 1992].

Re�nement Rule 1 (Weaken assumption)

x : [A1;E] v x : [A2;E] provided A1) A2

Re�nement Rule 2 (Strengthen e�ect)

x : [A;E1] v x : [A;E2] provided A) (8x � E2) E1)

Notice that these rules may only be applied provided that the proof obliga-
tions on the right can be formally veri�ed. (Re�nement Rule 2 also applies to
speci�cations without an explicit assumption A. Similarly for other such rules
below.)

Re�nement can also be used to introduce compositional operators. The rule
for adding local variables to a speci�cation is as follows [Mahony, 1992].

707Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Re�nement Rule 3 (Introduce local variables) Assume that y \ x = ?

and variables y are not free in predicates A and E.

x : [A;E] v x;y : [A;E] n (y)

The e�ect predicate E can be subsequently strengthened to make use of the
introduced variables y. Conversely, a local variable can be removed if it is not
used in any predicates.

Re�nement Rule 4 (Remove local variables) Assume that y \x = ? and
variables y are not free in predicate E.

x;y : [A;E] n (y) v x : [A;E]

Re�nement rules for introducing the parallel, piping [Mahony, 1992] and feed-
back operators are given below. Let P [x n y] denote predicate P with all free
occurrences of variables in list x replaced by the correspondingly positioned
variables in list y.

Re�nement Rule 5 (Introduce parallelism) Assume x \ y = ? and vari-
ables x do not appear free in predicate E2 and y do not appear free in E1.

x;y : [A;E1 ^ E2] v x : [A;E1] j y : [A;E2]

Re�nement Rule 6 (Introduce piping) Assume x\ y = ? and variables y
do not appear free in predicate E1.

y : [A;E1 ^ E2] v x : [A;E1]>> y : [A ^ E1;E2]

Re�nement Rule 7 (Introduce feedback) Assume variables x0 do not ap-
pear free in predicates A and E1.

x;y : [A;E1] n (x) v [� x0 n x] � x;y : [A;E2] provided E2[x0 n x] = E1

3.3 Realisation Rules

Realisation of a requirements speci�cation formally transforms it by introducing
additional functionality or by changing existing functionality [Smith, 2000]. This
is done in such a way that the properties of the original speci�cation are trans-
formed in a well-structured way. The satisfaction relation S ` P indicates that
speci�cation S satis�es the properties de�ned by predicate P . As the realisation
rules are less familiar than those for re�nement, we also o�er brief proofs of their
correctness.

The general realisation rule for modifying the inputs and outputs of a speci-
�cation is as follows. This rule, as well as transforming the speci�cation, trans-
forms all properties P of the speci�cation as shown below. Let list u be the
input and output variables being modi�ed and F be a predicate relating u and
the fresh local variables u0. If variables u are inputs then their modi�ed values
must satisfy the original speci�cation's assumption A. This is because the ability
to achieve the original speci�cation's e�ect E may depend on this assumption.
This is captured below by the proviso on predicates A and F .

708 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Realisation Rule 1 (Modify e�ect) Assume variables u0 do not appear free
in predicates A and E.

If x : [A;E] ` P

then x;u0 : [A;E [u n u0] ^ F] n (u0) ` 9u0 � P [u n u0] ^ F

provided A) (8u0 � F) A[u n u0])

Proof:

x : [A;E] ` P

� 8x � A ^ E) P

� 8x � (9u0 � E [u n u0] ^ A[u n u0])) (9u0 � P [u n u0])

� 8x � (9u0 � E [u n u0] ^ A[u n u0] ^ F)) (9u0 � P [u n u0] ^ F)

V `via the proviso on F and A'

8x � A ^ (9u0 � E [u n u0] ^ F)) (9u0 � P [u n u0] ^ F)

� `via the semantics of local variables [Mahony, 1992]'

x;u0 : [A;E [u n u0] ^ F] n (u0) ` 9u0 � P [u n u0] ^ F

2

This rule is monotonic. When the speci�cation being modi�ed is a component
of a larger speci�cation, and the other components of the larger speci�cation
do not refer to the variables being modi�ed, then the properties of the larger
speci�cation are also transformed in the same way. The proof of this follows
directly from the de�nitions of the compositional operators.

The following rule allows an assumption about the inputs to be added to a
speci�cation. It transforms the speci�cation's properties as follows.

Realisation Rule 2 (Add assumption) Assume variables x do not appear
free in A2.

If x : [A1;E] ` P

then x : [A1 ^ A2;E] ` A2) P

Proof:

x : [A1;E] ` P

� 8x � A1 ^ E) P

V 8x � (A1 ^ A2) ^ E) (A2) P)

� `via the semantics of speci�cation statements [Mahony, 1992]'

x : [A1 ^ A2;E] ` A2) P

2

As with Realisation Rule 1, this rule also extends to some systems of which
the transformed speci�cation is a component. In this case, the added assumption
must not refer to variables which appear free in other components.

709Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

4 The Light Control System

The Light Control System is a challenge problem in system speci�cation and
requirements engineering [Problem Description, 2000]. It consists of an informal
requirements document describing a planned control system for the lighting in a
university building. The system is required to maintain a desired level of illumi-
nation in occupied rooms and hallways. In this article we formally develop the
requirements for a single o�ce. (Some slight simpli�cations are also made to the
o�ce description to avoid unnecessary repetition in the exposition. For instance,
we do not distinguish between the two separate light �xtures in an o�ce.)

The requirements document contains a natural-language requirements speci-
�cation in the form of various system `needs' [Problem Description, 2000]. These
are presented from the perspective of either the `user' (room occupant) or `facil-
ity manager' (building superintendent). For instance, the user wants the lights
to stay on if they leave the room for a short time, whereas the facility manager
wants the lights to go o� when a room is unoccupied to save energy. The spe-
ci�c needs relevant to the part of the case study we consider are described in
detail below, as each is formalised [Sections 5.1{5.3]. The Light Control System
requirements document is (deliberately) unclear in places, so we occasionally
indicate design decisions made to resolve ambiguities.

The requirements document also describes selected details of the intended
implementation. Each o�ce has an external window and contains a ceiling
light, motion detector and a control panel [Figure 2]. External light sensors are
mounted outside the building. The room's occupant can select a desired level of
illumination via the control panel. If nothing is chosen, there is a safe, default
level of illumination. The motion detector enables the control system to detect
whether the room is currently occupied. The outside light sensor measures the
amount of daylight entering the o�ce's window, and can thus help reduce en-
ergy costs by informing the control system when additional internal lighting is
unnecessary. The control panel also contains a push button which can be used
to manually switch the light on or o�. To illustrate our ability to extend re-
quirements, we initially ignore this feature and then introduce it towards the
end of the paper. Certain physical characteristics of the sensors and actuators
are described in the requirements document, and we also introduce these as our
formal requirements evolve.

Omitted from this article are a number of needs concerning hallways and
stairwells. We have also ignored some of the user-interface requirements for re-
porting malfunctions and energy consumption. There is no speci�c impediment
to incorporating these features in our formalism, but it would be impossible to
do them all justice in a single article.

5 Engineering the Light Control System Requirements

Our requirements engineering process interleaves both formal re�nement and
realisation steps [Figure 3]. Starting with the informal Light Control System re-
quirements document, we produce an initial formal speci�cation of the various
system needs in the timed re�nement calculus notation [Section 5.1]. This is then
re�ned to introduce the motion detector and outside light sensor to the speci�ca-
tion [Section 5.2.1]. However, at this level of abstraction, these components are

710 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Control
 Panel

Detector
 Motion

Sensor
Light

Light

Figure 2: An o�ce

described as `ideal' devices, with no consideration given to their physical limita-
tions. It would be impossible to further re�ne such speci�cations to a practical
implementation. Therefore, we next undertake a realisation step, to relax the
requirements on the speed and accuracy of the devices [Section 5.2.2]. A further
re�nement then instantiates the speci�c timing and precision characteristics pro-
vided for these devices in the Light Control System document [Section 5.2.3]. Up
to this point, we ignore certain requirements entirely. In particular, there is a
`need' for the room's occupant to have access to a push-button override, and there
are fault-tolerance requirements relating to failure of the sensors. Fortunately,
our realisation steps allow these features to be introduced late in the design pro-
cess [Sections 5.3.1 and 5.3.2]. Finally, further realisation and re�nement steps
introduce a feedback loop to the control system [Section 5.3.3], completing our
formal design.

5.1 Overall Speci�cation

Here we present an initial, abstract speci�cation of the Light Control System, as
elicited from the facility manager and user needs relevant to our simpli�ed view
of an o�ce. We purposefully ignore certain requirements and implementation
concerns in order to avoid the initial speci�cation being too complicated, but will
take advantage of the realisation process to introduce them later. This section
describes the input and output variables, various predicates formally de�ning
system requirements, and then collects these all together as a formal speci�cation
statement.

5.1.1 Variables and Constants

We begin by introducing some important system variables and constants. Let B
be type Boolean, N the natural numbers, and R+ the non-negative reals.

711Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

specification
Initial Specification

with ‘ideal’

Refinement
(Section 5.2.1)

Realisation
(Section 5.2.2)

Specification
with realisable

sensors

(Section 5.2.3)
Refinement

Specification
with sensor

characteristics

Specification with

fault tolerance and
push button

with limited
Specification

light output
Formal development

Requirements engineering

sensors

Refinement
(Section 5.3.3)

(Sections 5.3.1 and 5.3.2)
Realisation

(Section 5.3.3)
Realisation

Specification
(Section 5.1)

requirements

Informal

specification
Design

with

light
dimmable

Figure 3: Summary of Light Control System requirements development

Three time-varying environmental properties form the overall inputs to our
speci�cation. Variable person, of range type B , is true only when someone is in
the room. Variable chosen, of range type N, always equals the last illumination
level (in lux) chosen by the room's occupant. If no level has ever been chosen
then its value is arbitrary. Variable daylight , of range type R+ , always equals
the level of daylight illumination entering the window. (Recall that these vari-
ables are implicitly modelled as functions from the time domain [Section 3.1]. In
particular, daylight is modelled as a di�erentiable function [Fidge et al., 1998a].)

712 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Our top-level speci�cation has only one observable output. Variable light , of
range type R+ , represents the illumination (in lux) being produced by the ceiling
light.

We also introduce some (time invariant) constants. Constant default , of
type N, denotes the default value for the light when nothing has been chosen
by the room's occupant. It must be greater than 14 lux, the minimum illumi-
nation required for safety [Problem Description, 2000]. Constants t1 and t3, of
type T, are non-negative durations (in seconds) required for timeouts associated
with the Light Control System's behaviour.

Finally, we will use a local variable in the initial speci�cation below. Let
desired , of range type N, represent the illumination level desired by the control
system. (Under certain circumstances this may di�er from the occupant's chosen
illumination level.)

5.1.2 Facility Manager's Needs

The manager of the lighting in the building has certain requirements relating
to energy e�ciency. The �rst is captured by requirement FM1 of the Light
Control System document [Problem Description, 2000]. When we reproduce such
requirements here, we sometimes make minor changes either for our simpli�ed
o�ce view or to remove ambiguity from the original requirement. Cases of the
latter are indicated by italics.

FM1: Use daylight to achieve the desired light setting of each occupied
room whenever possible.

The italicised text in this case indicates that the notion of a `desired' light setting
is only relevant when the room is occupied. In particular, the light may be o�
when the room is unoccupied.

In our formalism, requirement FM1 is captured by the following predicate.

FM 1
def
= hperson ^ daylight > desiredi � hlight = 0i ^

hperson ^ daylight < desiredi � hlight + daylight = desiredi

The �rst conjunct states that if the room is occupied, and the level of daylight
entering the window already meets the desired level, then the ceiling light should
not be used. This is expressed by using the subset relation to require all time
intervals in the left-hand set to also appear in the right-hand set. The second
conjunct of FM 1 states that if the room is occupied and the illumination from
daylight is less than that desired, then the ceiling light should produce just
enough additional illumination to meet the desired level.

The second facility manager need we consider concerns the requirement to
conserve energy when a room is unoccupied [Problem Description, 2000].

FM3: The ceiling light in a room has to be o� when the room is unoc-
cupied for at least T3 minutes.

713Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

This is captured by the following predicate. Let formal constant t3 be the number
of seconds equivalent to T3 minutes.

FM 3
def
= h: person ^ � > t3i � htruei ; hlight = 0i

This predicate states that if the room is unoccupied, then after T3 minutes
the ceiling light must be o�. On the left we have all intervals where the room
is unoccupied, with a duration exceeding T3 minutes. All such intervals must
also be in the set on the right, which is characterised by an initial, unspeci�ed
subinterval (property `true'), followed by a subinterval in which the light is o�.

5.1.3 User Needs

The occupant of a room also has particular needs. The �rst relates to their ability
to choose the desired `light scene' [Problem Description, 2000].

U2: As long as the room is occupied, the chosen light scene has to be
maintained.

This is formalised as follows.

U 2
def
= 8n : N � hpersoni \ (hchosen 6= ni ; hchosen = ni)

� htruei ; hdesired = ni

The predicate states that if the room is continuously occupied, and a new value
n is chosen for the illumination, i.e., the value of chosen changes from some
other value to n, then from that time the desired light setting must equal n.
(All intervals in the left-hand set contain a point at which chosen changes.
Furthermore, these intervals, which must also appear in the right-hand set, may
be arbitrarily small. This constrains the point from which desired must equal n
to be the same as the point where chosen changes.)

A subtle consequence of predicate U 2 is that we do not recognise the act of
instantaneously changing the chosen value from n to n. For such a `change' to be
perceptible to our speci�cation, we assume that there must be some duration,
no matter how short, during which the value of chosen takes some value other
than n.

The next two needs de�ne the light scene that must be established when
someone �rst enters a room, depending on how long it has been left unoccupied.

U3: If the room is reoccupied within T1 minutes after the last person
has left the room, the previous light scene has to be reestablished until
a new light scene is chosen.

We assume the value of the formal constant t1 is the number of seconds
equivalent to T1 minutes.

U 3
def
= 8n;m : N � (hperson ^ desired = ni ; h: person ^ � 6 t1i ;

hperson ^ chosen = mi)
� htruei ; hdesired = ni

714 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

The predicate states that if the room is occupied with a desired illumination
of n lux, and is then unoccupied for no more than T1 minutes, and is then
reoccupied and a new value of chosen is not supplied (i.e., chosen remains con-
stant), then the desired light scene must still be n. (Note that on reentering the
room, the occupant's `chosen' light scene, m, may be di�erent from the `desired'
value n actually used. This situation can occur if the light scene when the person
left the room was the `default' one, rather than the `chosen' one.)

U4: If the room is reoccupied after more than T1 minutes since the last
person has left the room, the default light scene has to be established
until a new light scene is chosen.

This is formalised as follows.

U 4
def
= 8n : N � h: person ^ � > t1i ; hperson ^ chosen = ni

� htruei ; hdesired = defaulti

This predicate states that if the room has been unoccupied for more than T1
minutes, and after it is reoccupied the chosen value remains constant, then the
desired light scene must be the default. (In the unlikely event that someone enters
the room and chooses a new light scene at exactly the same instant, predicate
U 4 says that the default value still applies. The occupant must choose their new
value some, possibly in�nitesimal, time after reentering the room for it to have
an e�ect.)

5.1.4 Initial Speci�cation

Our initial speci�cation of the overall Light Control System has three environ-
mental inputs, person, daylight and chosen, and one output to the environment,
light [Figure 4].

daylight

chosen

light

person

OR

Figure 4: Top-level view of the Light Control System

The formal speci�cation statement needs to ensure that all of the facility
manager's and user's needs are met. This is done by conjoining all the needs
de�ned above into a single O�ce Requirements predicate OR.

OR
def
= FM 1 ^ FM 3 ^ U 2 ^ U 3 ^ U 4

The speci�cation of the whole system then uses OR as its e�ect predicate, and
hides the local variable desired .

desired ; light : [OR] n (desired)

715Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

5.2 Physical Limitations

In this section, we show how physical limitations of the implementation technol-
ogy can be introduced into the requirements speci�cation. Firstly, we re�ne the
overall system to introduce the motion detector and light sensor [Figure 5].

person

chosen

daylight ols

imd

lightLS

MD

CS

Figure 5: Control system and sensors

5.2.1 Re�ning the Initial Speci�cation

We now transform the initial speci�cation to a form closer to the intended im-
plementation. The re�nement introduces two new local variables: imd , of range
type B , represents the signal from the motion detector and ols , of range type R+ ,
represents the signal from the light sensor.

The sensors are introduced as components which provide the control system
with environmental information. In the re�nement below we use the following
Motion Detector MD and Light Sensor LS predicates.

MD
def
= imd = person

LS
def
= ols = daylight

These are ideal behaviours in which both sensors exactly match the properties
they are tracking. For brevity in the re�nement, we also introduce the following
Control System predicate CS . It has the same behaviour as the previous o�ce
requirements, but substitutes the sensor outputs for the environmental properties
they represent.

CS
def
= OR[person; daylight n imd ; ols]

Re�nement of the overall system requirements [Figure 4] to a design incor-
porating sensors [Figure 5] is done via the following formal steps.

desired ; light : [OR] n (desired)

v `by Re�nement Rule 3, to introduce variables imd and ols '

imd ; ols ; desired ; light : [OR] n (desired ; imd ; ols)

v `by Re�nement Rule 2, to introduce predicates MD and LS '

imd ; ols ; desired ; light : [MD ^ LS ^ OR] n (desired ; imd ; ols)

716 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

v `by Re�nement Rule 6, to separate the sensors from the controller'

(imd ; ols : [MD ^ LS]>> desired ; light : [MD ^ LS ;OR]) n (desired)

v `by Re�nement Rule 2, to use sensor outputs'

(imd ; ols : [MD ^ LS]>> desired ; light : [MD ^ LS ;CS]) n (desired)

v `by Re�nement Rule 1, to eliminate unnecessary assumption'

(imd ; ols : [MD ^ LS]>> desired ; light : [CS]) n (desired)

v `by Re�nement Rule 5, to separate the two sensors'

((imd : [MD] j ols : [LS])>> desired ; light : [CS]) n (desired)

Usually, the next step in a formal development of this speci�cation would be
to re�ne the sensors to more closely match their �nal implementations. How-
ever, in practice, such devices are inevitably limited in their reaction and data-
conversion speeds, and the resolution and range of values they can represent.
Therefore, a formal re�nement of the sensor speci�cations above is not possible
because these physical limitations have not been allowed for. For example, pred-
icate MD states that the motion detector instantaneously reports the presence
of a person in the room. No implementation could ever satisfy this requirement.
Fortunately, our realisation laws o�er a way forward, rather than going back to
revise the development so far.

5.2.2 Realising the Sensors

Here we show how the `ideal' sensor speci�cations introduced above can be trans-
formed to realisable (i.e., implementable) ones. This is done using our realisation
rules [Section 3.3] which also transform established properties already proven
about the initial system speci�cation.

5.2.2.1 Motion Detector

In practice, a motion detector has a �nite response time. Therefore, its output
cannot equal variable person (as in the ideal case) but is a `delayed' version of
this variable. We use function delay to model the e�ect of delaying a signal by
a duration d [Figure 6].

delay = � d : T � (� t : T � t � d)

We can now transform our ideal motion detector, i.e., imd : [MD], to one
that has some arbitrary delay d . We de�ne the following predicate in which a
fresh variable persondel , of range type B , is used to represent a delayed version
of function person.

MDdel
def
= MD [person n persondel] ^ (9 d : T � persondel = person � delay(d))

We then apply Realisation Rule 1 to imd : [MD] to produce the following
speci�cation.

imd ; persondel : [MDdel] n (persondel)

717Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

f delay(d)

Time

d d

Time

f

Figure 6: E�ect of delay on a function f

The initial system speci�cation [Section 5.1] satis�ed several formal proper-
ties such as U 4, the requirement to (instantaneously) establish default lighting
when someone enters the room after it has been left unoccupied for a signi�cant
period. However, after the above realisation step, our system no longer satis�es
this property because it may take some time to detect that someone has entered
the room. Nevertheless, Realisation Rule 1 allows us to transform U 4 so that
the following corresponding property of the new speci�cation can be discovered.

9 persondel : T! B �

U 4[person n persondel] ^ (9 d : T � persondel = person � delay(d))

� 9 persondel : T! B �

(8n : N �

h: persondel ^ � > t1i ; hpersondel ^ chosen = ni

� htruei ; hdesired = defaulti) ^

(9 d : T � persondel = person � delay(d))

� 9 d : T �

(8n : N �

h: person � delay(d) ^ � > t1i ; hperson � delay(d) ^ chosen = ni

� htruei ; hdesired = defaulti)

� 9 d : T �

(8n : N �

h: person ^ � > t1i ; hperson ^ � = di ; hperson ^ chosen = ni

� htruei ; hdesired = defaulti)

Therefore, in the new speci�cation, default lighting is only guaranteed to be es-
tablished after the room has been occupied for d seconds. This fact was derived

718 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

straightforwardly from property U 4 which was known to hold for the initial spec-
i�cation. In general, this approach is more e�cient than deriving such properties
from the new speci�cation alone.

5.2.2.2 Light Sensor

As well as a response delay, a practical light sensor is limited in the resolution and
range of values it can generate. In our case this can be modelled by associating
an error range with the input variable daylight . We de�ne the following predicate
LSerr to represent the behaviour of the light sensor with an error up to e lux.
Here fresh variable daylighterr , of range type R

+ , denotes the perceived, rather
than actual, level of daylight.

LSerr
def
= LS [daylight n daylighterr] ^

(9 e : R+ � (8 t : T � daylighterr (t) 2 daylight(t) � e))

Ideal sensor requirement ols : [LS] is then transformed to the following spec-
i�cation using Realisation Rule 1.

ols ; daylighterr : [LSerr] n (daylighterr)

Again, the realisation rule allows us to derive properties of the new speci�-
cation from the old one. For example, the following predicate can be deduced
from requirement FM 1 and hence from the initial speci�cation.

hperson ^ daylight < desiredi � hlight + daylight = desiredi

It says that when the room is occupied, and there is insu�cient daylight, then
the ceiling light must make up the shortfall. From this, and Realisation Rule 1,
we can determine that the following is a property of the new speci�cation.

9 daylight : T; R
+ �

hperson ^ daylighterr < desiredi � hlight + daylighterr = desiredi ^

(9 e : R+ � (8 t : T � daylighterr (t) = daylight(t) � e))

� hperson ^ daylight + e < desiredi � hlight + daylight 2 desired � ei

In other words, the ceiling light is only guaranteed to be used if the actual level
of daylight falls short of the desired level by at least the error margin e. Also, the
actual illumination in the room may vary from the desired value by up to e lux.

In practice, to produce an output which is guaranteed to always remain
within a certain range of an input, it is necessary to have some knowledge about
the input's maximum rate of change. We would therefore like to add an assump-
tion about the rate of change of daylight to our light sensor speci�cation. This
can be done via a further transformation using Realisation Rule 2. This assump-
tion can also capture a bound on the input range. Let constant R, of type R+ ,
be the maximum rate of change of daylight (in lux/second), and constant B , of
type N, be the maximum brightness measurable by the light sensor (in lux). We
de�ne a Daylight Characteristics predicate DC to capture the assumptions. Let
f 0 be the derivative of function f , and j � j denote magnitude.

DC
def
= 8 t : T � jdaylight 0(t)j 6 R ^ daylight(t) 6 B

719Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Using Realisation Rule 2, the light sensor requirements can then be trans-
formed to the following speci�cation.

ols ; daylighterr : [DC ;LSerr] n (daylighterr)

Realisation Rule 2 also tells us that the property proven above about the light
sensor speci�cation with bounded error can be further transformed as follows.

(8 t : T � jdaylight 0(t)j 6 R ^ daylight(t) 6 B))

hperson ^ daylight + e < desiredi � hlight + daylight 2 desired � ei

That is, the requirement to produce an acceptable value for light , within the error
range e, holds only if daylight changes no faster than R and does not exceed B .

5.2.3 Re�ning the Sensors

We can now formally re�ne our sensor speci�cations to include the implemen-
tation-speci�c device characteristics provided by the Light Control System re-
quirements document [Table 1].

Sensor

motion detector

light sensor 1 lux

Resolution Range

1-10000 lux

Reaction Time Conversion Time

1s10ms

1s

Table 1: Sensor characteristics [Problem Description, 2000]

5.2.3.1 Motion Detector

We de�ne a speci�c motion detector predicate MD1 capturing a 1 second delay
between person and imd as follows.

MD1
def
= imd = person � delay(1)

The motion detector speci�cation [Section 5.2.2.1] is then re�ned straightfor-
wardly to include this speci�c lag in responsiveness.

imd ; persondel : [MDdel] n (persondel)

v `by Re�nement Rules 2 and 4, instantiating d as 1'

imd : [MD1]

720 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

5.2.3.2 Light Sensor

Our aim here is to re�ne the light sensor speci�cation [Section 5.2.2.2] to a design
which periodically samples the outside light level. We �rst introduce a function
sample which, given a duration T representing the sampling period, maps all
times t to the most recent whole multiple of T [Figure 7]. Let `div' denote integer
(truncating) division.

sample = �T : T � (� t : T � (t div T) � T)

T 2T 3T 4T 5T0
Time

Value

f
f sample(T)

Figure 7: E�ect of sample on a function f

The actual light sensor has a 10 millisecond reaction time [Table 1] and so,
rather than sampling at time T , will sample at time T +0:01. Furthermore, due
to its conversion delay, the sampled value is not available until another second
has passed, i.e., at time T +1:01. This sampled value may also have up to 1 lux
error due to the sensor's limited resolution [Figure 8].

Our earlier light sensor speci�cation [Section 5.2.2.2] required that the output
remains within e lux of the input [Figure 8]. In general, this property will be
satis�ed provided the value sampled at time T +0:01 is still within e lux of the
actual daylight value T +1 seconds later, i.e., at time 2T +1:01, when the next
sample becomes available. Since the sample at time T +0:01 may err by as much
as 1 lux, the level of daylight must change by no more than e � 1 lux in T + 1
seconds. Therefore, given that R is the maximum rate of change of the daylight,
we require the property that R 6 (e � 1)=(T + 1) lux/second. To achieve this,
we must select a sampling period T such that T 6 (e � 1)=R � 1.

We de�ne the following predicate LST to model a light sensor with sampling
period T . A fresh variable daylightres , of range type R

+ , represents a value that is
always within 1 lux of daylight , to account for the resolution error. This variable
is sampled using the sample function delayed by 10 milliseconds and then the
whole signal is delayed a further 1 second to model the light sensor's conversion
delay.

LST
def
= (8 t : T � daylightres (t) 2 daylight(t) � 1) ^

ols = (daylightres � (sample(T) � delay(0:01))) � delay(1)

721Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

0

1

2

3

4

T 2T 3T

T+0.01

T+1.01

0
Time

ols

daylight

e

e

Illumination
(lux)

Figure 8: Light sensor input (daylight) versus output (ols)

Our previous light sensor speci�cation [Section 5.2.2.2] can then be re�ned
as follows.

ols ; daylighterr : [DC ;LSerr] n (daylighterr)

v `by Re�nement Rule 3, to introduce local variable daylightres '

ols ; daylighterr ; daylightres : [DC ;LSerr] n (daylighterr ; daylightres)

v `by Re�nement Rules 2 and 4'

ols ; daylightres : [DC ;LST] n (daylightres)

The proof obligation associated with the application of Re�nement Rule 2 can
be proven correct provided that the value chosen for period T is related to R
and e as explained above.

5.3 New Requirements

Here we show how the realisation rules can also be used to deal with new re-
quirements. In our development so far we have ignored the requirements for fault
tolerance and the push button for the ceiling light. We now introduce these re-
quirements and re�ne our speci�cation to a particular target architecture, which
includes a `dimmable light' component, described in the Light Control System
requirements document [Problem Description, 2000].

5.3.1 Fault Tolerance

In response to sensor failure, the control system must provide a stepwise degra-
dation of its functionality. Two requirements associated with this fault tolerant
behaviour are relevant to our simpli�ed view: NF1 and NF4 [Problem Descrip-
tion, 2000].

722 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

NF1: If any outdoor light sensor does not work correctly, the control
system for rooms should behave as if the outdoor light sensor had been
submitting the last correct measurement of the outdoor light constantly.

Our goal is to add this functionality to the control system component of our
speci�cation, i.e., desired ; light : [CS] [Section 5.2.1]. To do this we introduce
an additional auxiliary input variable ols status , of range type B , to denote the
status (working or failed) of the light sensor, and a local variable olsft , of range
type R+ , to denote the value that the fault-tolerant control system uses in place
of the value from the light sensor. The additional requirement is then speci�ed
by the following predicate.

NF1
def
= (8 r : R+ � hols status ^ ols = ri ; h: ols statusi � holsft = ri) ^

hols statusi � holsft = olsi

The �rst conjunct models the situation when the sensor fails, that is, when
ols status changes from `true' to `false'. In this case olsft stays equal to r , the last
`good' value of ols before the failure. The second conjunct models the situation
when the sensor has not failed, in which case olsft equals the actual value of ols .

NF4: If any motion detector of a room does not work correctly, the
control system should behave as if the room were occupied.

This requirement is also added to the control system component of our spec-
i�cation. We introduce an additional input imd status , of range type B , to rep-
resent the status of the motion detector, and a local variable imdft , of range
type B , to denote the value that the fault-tolerant control system uses in place
of the value from the motion detector. The additional requirement is speci�ed
by the following predicate.

NF4
def
= h: imd statusi � himdft i ^

himd statusi � himdft = imdi

The �rst conjunct deals with the situation where the motion detector has failed,
i.e., when imd status is false, in which case imdft must equal `true' to indicate
that the room is occupied. The second conjunct models the situation where the
motion detector is working, in which case imdft equals the actual value of imd .

To add these requirements to the control system speci�cation, we use Real-
isation Rule 1 to conjoin the new requirements to the e�ect predicate, and to
introduce the new local variables imdft and olsft . Since we require the control
system to use these local variables in place of its original imd and ols inputs, we
de�ne the following Fault-Tolerant Control System predicate CSft .

CSft
def
= CS [imd ; ols n imdft ; olsft]

The revised control system speci�cation resulting from application of Realisation
Rule 1 is then as follows.

desired ; light ; olsft ; imdft : [CSft ^ NF1 ^ NF4] n (imdft ; olsft)

723Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

5.3.2 Push Button

An o�ce must have a push button which enables the ceiling light to be turned o�,
overriding the control system [Problem Description, 2000]. The e�ect of pushing
the button is described in the following text from the requirements document
which we label PB.

PB: A ceiling light in an occupied room shows the following behaviour
when the corresponding push button is pushed:
(i) if the ceiling light is on, it will be switched o�
(ii) otherwise it will be switched on.
There is no other way to switch the ceiling light in an occupied room on
or o�.

To add this requirement to our control system speci�cation, we introduce a
new input button, of range type B . Since pushing the button toggles the system
state, we let the transitions of this variable (from `true' to `false' or `false' to
`true') represent the instants when the button is pushed. Later, this particular
abstract representation could be re�ned to a more concrete one where, for exam-
ple, the state change is triggered by the rising edge of a voltage signal indicating
closure of a circuit [Figure 9].

pushed
button button

pushed

Time

Time

button
(concrete)

(abstract)
button

true

false

 on

 off

Figure 9: A possible re�nement of button

We also introduce two local variables. Variable light on, of range type B ,
denotes whether the light is switched on according to the push button. So far, the
control system component has directly produced output light . So that this output
can now be overridden by the push button, we instead introduce a local variable
lightreq , of range type R

+ , which denotes the level of illumination requested by
the control system. The additional requirement is then captured by the following

724 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Push Button predicate PB .

PB
def
= hpersoni \ (h: buttoni ; hbuttoni [hbuttoni ; h: buttoni)

= hlight oni ; h: light oni [h: light oni ; hlight oni ^

h: light oni � hlight = 0i ^

hlight oni � hlight = lightreqi

The �rst conjunct states that if the room is occupied and variable button changes
value, then variable light on also changes value. The second conjunct states that
when light on is `false' then the ceiling light must be o� (regardless of the value
of the control system's lightreq output). The third conjunct states that when
light on is `true', the external output light equals the value of variable lightreq
generated by the control system.

Since the fault-tolerant control system will now produce an internal value
lightreq , rather than directly generating light , we de�ne the following Control
System Request predicate CSreq which substitutes output lightreq for light .

CSreq
def
= (CSft ^ NF1 ^ NF4)[light n lightreq]

The push button requirement PB is then conjoined to the control system spec-
i�cation using Realisation Rule 1 (preceded by Re�nement Rule 3 to introduce
light on), resulting in the following speci�cation.

desired ; light ; olsft ; imdft ; lightreq ; light on :

[CSreq ^ PB] n (imdft ; olsft ; lightreq ; light on)

5.3.3 Design Speci�cation with Dimmable Light

The Light Control System requirements propose an internal architecture for the
overall system which includes a Light Controller component LC and a Dimmable
Light component DL [Problem Description, 2000]. A feedback loop enables the
controller to tell whether the light is on or o� [Figure 10].

dimmer

light_on

active

pulsechosen

daylight

person

button

light
LC

DL

Figure 10: Structure of system including dimmable light

725Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

The behaviour of the dimmable light is described in the following text from
the requirements document [Problem Description, 2000] which we label as re-
quirement DL1.

DL1: Inputs to a dimmable light are created by a pulse to toggle the
light, by a dimmer to set the current dim value, and by a control system
active signal to show the status of the control system. If this signal is
not sent every 60s, the dimmable light switches to fail safe mode, i.e.,
dim value is assumed to be 100%.

In order to introduce this structure to our speci�cation, we need to model this
fail safe mode and, therefore, must de�ne what is meant by `100%' illumination.
Our speci�cation so far has placed no bound on the level of light requested by the
user or supplied by the ceiling light. This is clearly unimplementable, so we must
perform another realisation step before our re�nement. Let constant Max , of
type N, be the maximum illumination (in lux) of the ceiling light. The following
Bounded Choice predicate BC then places a limit on the chosen illumination
value.

BC
def
= chosen 6 Max

Using Realisation Rule 2, we add this predicate as an assumption to the control
system speci�cation above [Section 5.3.2] as follows.

desired ; light ; olsft ; imdft ; lightreq ; light on :

[BC ;CSreq ^ PB] n (imdft ; olsft ; lightreq ; light on)

In other words, the control system is only required to produce the desired level of
illumination provided that the user does not request more light than the system
can generate.

Requirement DL1 introduces three signals which must be sent between the
controller and the dimmable light. Variable dimmer , of range type R+ , repre-
sents the level of illumination (in lux) requested of the dimmable light by the
controller. Variable pulse, of range type B , is used by the controller to switch the
light on or o�. It is interpreted in the same manner as button, i.e., a transition
(from `true' to `false' or `false' to `true') is deemed to represent the instant a pulse
occurs. Variable active, also of range type B , is used by the controller to indicate
that it is working. It is `false' except at single instants of time corresponding to
the sending of the active signal. Again, these two signal abstractions could be
re�ned to match a number of di�erent hardware implementations [Figure 11].

Informal requirement DL1 is formalised by the following predicate.

DL1
def
= h: pulsei ; hpulsei [hpulsei ; h: pulsei

� hlight oni ; h: light oni [h: light oni ; hlight oni ^

hlight on ^ activei ; hlight on ^ � 6 60i � hlight = dimmeri ^

hlight on ^ : active ^ � > 60i � htruei ; hlight = Max i

The �rst conjunct states that transitions of controller signal pulse must toggle
the dimmable light's state. The second says that the light output will equal the

726 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

(concrete)
active

(abstract)
active

Time

Time

(concrete)

(abstract)
pulse

pulse

Time

Time

false

true true

false

 on

 off

 on

 off

Figure 11: Possible re�nements of pulse and active

value requested by variable dimmer , provided the controller has indicated that
it is active within the last 60 seconds. The third conjunct says that at the end
of any interval exceeding 60 seconds, where no active signal has been produced
by the controller, the light output should equal its maximum value.

An additional controller requirement (not explicitly stated in the Light Con-
trol System requirements document) is needed to ensure that requirements FM3,
U3 and U4 are met by the restructured system. We label this requirement DL2.

DL2: The pulse is triggered when the light is o� and a person enters an
unoccupied room, and when the light is on and T3 minutes has expired
with the room being unoccupied.

This is formalised by the following predicate.

DL2
def
= h: person ^ : light oni ; hpersoni

� h: pulsei ; hpulsei [hpulsei ; h: pulsei ^

hpersoni ; (h: person ^ � > t3i \ (htruei ; hlight oni))

� h� = t3i ; (h: pulsei ; hpulsei [hpulsei ; h: pulsei)

The �rst conjunct captures the triggering of pulse whenever a person enters an
unoccupied room. The second captures the triggering of a pulse T3 minutes after
a room has been unoccupied, provided the light is on.

We use the following predicates in the re�nement. Firstly, a Light Controller
predicate LC consists of the control system properties already de�ned above, but
with dimmer as output, rather than lightreq . It also has the new requirement DL2
with sensor inputs imdft and olsft substituting for values from the environment.

LC
def
= CSreq [lightreq n dimmer] ^ DL2[person; daylight n imdft ; olsft]

727Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

Secondly, a Dimmable Light predicate DL consists of the push-button properties
described above, but with dimmer as its input instead of lightreq , plus the new
requirements de�ned by predicate DL1.

DL
def
= PB [lightreq n dimmer] ^ DL1

Re�nement to the suggested system architecture [Figure 11] then proceeds
via the following formal steps.

desired ; light ; olsft ; imdft ; lightreq ; light on :

[BC ;CSreq ^ PB] n (imdft ; olsft ; lightreq ; light on)

v `by Re�nement Rule 3, to introduce pulse, dimmer and active'

desired ; light ; olsft ; imdft ; lightreq ; light on; pulse; dimmer ; active :

[BC ;CSreq ^ PB] n (imdft ; olsft ; lightreq ; light on; pulse; dimmer ; active)

v `by Re�nement Rule 2, given property DL2'

desired ; light ; olsft ; imdft ; light on; pulse; dimmer ; active :

[BC ;LC ^ DL] n (imdft ; olsft ; light on; pulse; dimmer ; active)

v `by Re�nement Rule 7, to feedback light on'

[� light on0 n light on] �

desired ; light ; olsft ; imdft ; light on; pulse; dimmer ; active :

[BC ;LC [light on n light on0] ^ DL]

n(imdft ; olsft ; pulse; dimmer ; active)

v `by Re�nement Rule 6, to separate controller and light'

[� light on0 n light on] �

(desired ; olsft ; imdft ; pulse; dimmer ; active :

[BC ;LC [light on n light on0]]>>

light ; light on : [BC ^ LC [light on n light on0];DL])

n(imdft ; olsft)

v `by Re�nement Rule 1, to remove assumption from dimmable light'

[� light on0 n light on] �

(desired ; olsft ; imdft ; pulse; dimmer ; active :

[BC ;LC [light on n light on0]]>> light ; light on : [DL])

n(imdft ; olsft)

This completes our overall development process. Of course, the principles of
re�nement and realisation would allow us to take this process further, introduc-
ing, for example, jitters in the perfect delays we have speci�ed, however this
goes beyond the information in the requirements document [Problem Descrip-
tion, 2000]. Starting from an informal set of natural-language requirements, we
have incrementally developed a detailed, precise formal speci�cation. While this
speci�cation models only a single o�ce, we fully expect the approach to scale
up to a speci�cation comprising multiple o�ces using conjunction to combine
parameterised, but otherwise identical, o�ce speci�cations. Similarly, hallways

728 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

and other types of rooms could be added. Component speci�cations could also
ultimately be transformed to code, where appropriate, using the sequential real-
time re�nement calculus of Hayes and Utting [Hayes and Utting, 1997].

6 Conclusion

We have shown, via a signi�cant case study, how requirements engineering and
formal development steps may coexist. The approach avoids the need to redo
development steps due to changes in requirements, yet retains all the advantages
of a veri�able, auditable formal development process. Although the �nal design
does not correspond exactly to the initial requirements formally speci�ed, there
is a complete documented path between these requirements and the design. Tool
support for the notation is currently being developed [Cerone, 2000].

Acknowledgements

This research was supported by Australian Research Council Large Grant A49801500,
A Uni�ed Formalism for Concurrent Real-Time Software Development.

References

[Banach and Poppleton, 1998] Banach, R. and Poppleton, M. Retrenchment: An en-
gineering variation on re�nement. In Bert, D., editor, Proceedings of B-98, volume
1393 of LNCS, pages 129{147. Springer-Verlag.

[Bredereke, 1998] Bredereke, J. Requirements speci�cation and design of a simpli-
�ed telephone network by functional documentation. Technical Report 367, CRL,
MacMaster University.

[Cerone, 2000] Cerone, A. Axiomatisation of an interval calculus for theorem prov-
ing. Technical Report 00-05, Software Veri�cation Research Centre, University of
Queensland.

[Fidge et al., 1998a] Fidge, C., Hayes, I., and Mahony, B. De�ning di�erentiation
and integration in Z. In Staples, J., Hinchey, M., and Liu, S., editors, IEEE
International Conference on Formal Engineering Methods (ICFEM '98), pages 64{
73. IEEE Computer Society.

[Fidge et al., 1998b] Fidge, C., Hayes, I., Martin, A., and Wabenhorst, A. A set-
theoretic model for real-time speci�cation and reasoning. In Jeuring, J., editor,
Mathematics of Program Construction (MPC'98), volume 1422 of LNCS, pages
188{206. Springer-Verlag.

[Guerra, 1999] Guerra, S. Defaults in the Speci�cation of Reactive Systems. PhD
thesis, Department of Computer Science, University College London.

[Hayes, 1990] Hayes, I. Specifying physical limitations: A case study of an oscilloscope.
Technical Report 167, Department of Computer Science, University of Queensland.
Revised 1993.

[Hayes and Sanders, 1995] Hayes, I. and Sanders, J. Speci�cation by interface sepa-
ration. Formal Aspects of Computing, 7(4):430{439.

[Hayes and Utting, 1997] Hayes, I. and Utting, M. A sequential real-time re�nement
calculus. Technical Report 97-33, Software Veri�cation Research Centre, University
of Queensland.

[Heitmeyer, 1996] Heitmeyer, C. Requirements speci�cations for hybrid systems. In
Alur, R., Henzinger, T., and Sontag, E., editors, Hybrid Systems III, volume 1066
of LNCS. Springer-Verlag.

[Mahony, 1992] Mahony, B. The Speci�cation and Re�nement of Timed Processes.
PhD thesis, Department of Computer Science, University of Queensland.

729Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

[Mahony and Hayes, 1992] Mahony, B. and Hayes, I. A case-study in timed re�ne-
ment: A mine pump. IEEE Transactions on Software Engineering, 18(9):817{826.

[Morgan, 1990] Morgan, C. Programming from Speci�cations. Prentice Hall.
[Problem Description, 2000] The Light Control Case Study: Problem Description.

Journal of Universal Computer Science, Special Issue on Requirements Engineer-
ing (This Volume).

[Smith, 2000] Smith, G. Stepwise development from ideal speci�cations. In Edwards,
J., editor, Australasian Computer Science Conference (ACSC 00), volume 22(1)
of Australian Computer Science Communications, pages 227{233. IEEE Computer
Society.

[Swartout and Balzer, 1982] Swartout, W. and Balzer, R. On the inevitable intertwin-
ing of speci�cation and implementation. Communications of the ACM, 25(7):438{
440.

[van Lamsweerde et al., 1995] van Lamsweerde, A., Darimont, R., and Massonet, P.
Goal-directed elaboration of requirements for a meeting scheduler: Problems and
lessons learnt. In Second IEEE Symposium on Requirements Engineering (RE'95),
pages 194{203. IEEE Computer Society.

[van Schouwen et al., 1993] van Schouwen, A., Parnas, D., and Madey, J. Documen-
tation of requirements for computer systems. In First IEEE Symposium on Re-
quirements Engineering (RE'93), pages 198{207. IEEE Computer Society.

730 Smith G., Fidge C.: Incremental Development of Real-Time Requirements ...

