
Requirements Capture and Evaluation in Nimbus:

The Light-Control Case Study 1

Je�rey M. Thompson

University of Minnesota

Department of Computer Science and Engineering

Minneapolis, MN 55455

thompson@cs.umn.edu

Michael W. Whalen

University of Minnesota

Department of Computer Science and Engineering

Minneapolis, MN 55455

whalen@cs.umn.edu

Mats P.E. Heimdahl

University of Minnesota

Department of Computer Science and Engineering

Minneapolis, MN 55455

heimdahl@cs.umn.edu

Abstract: Evaluations of methods and tools applied to a reference problem are useful
when comparing various techniques. In this paper, we present a solution to the challenge
of capturing the requirements for the Light Control System case study, which was
proposed before the Dagstuhl Seminar on Requirements Capture, Documentation, and
Validation in June of 1999.

The paper focuses primarily on how the requirements were speci�ed: what techniques
were used, and what the results were. The language used to capture the requirements is
RSML�e; a state-based speci�cation language with a fully speci�ed formal denotational
semantics. In addition, the Nimbus environment { a toolset supporting RSML�e{ is
used to visualize and execute the high-level requirements.

Keywords: light control system, speci�cation-based prototyping, formal requirements
modeling, state-based speci�cation languages, requirements execution and simulation.

Category: D2.1 Requirements Speci�cations { Languages

1 Introduction

In this paper we present a solution to the challenge of capturing the requirements
for the Light Control System (LCS) case study described in [PD00] 2.

1 This work has been partially supported by NSF grants CCR-9624324 and CCR-
9615088, and University of Minnesota Grant in Aid of Research 1003-521-5965.

2 The case study is available at http://www.rn.informatik.uni-kl.de/�recs.

Journal of Universal Computer Science, vol. 6, no. 7 (2000), 731-757
submitted: 30/12/99, accepted: 20/4/00, appeared: 28/7/00  Springer Pub. Co.

The solution in this paper is captured in a fully formal, executable, state-
based modeling language called RSML�e (Requirements State Machine Lan-
guage without events). We will demonstrate how the language is used to capture
the system requirements for the Light Control System and how our requirements
engineering environment, Nimbus (based around RSML�e), is used to dynami-
cally validate and evaluate the system requirements. Furthermore, we will show
how RSML�e is used to re�ne the system requirements to software requirements
and how Nimbus can assist in this process|an approach we call speci�cation-
based prototyping [Thompson et al., 1999].

The paper's focus is on how the requirements speci�cation e�ort was com-
pleted and what was learned about the original informal requirements speci�ca-
tion in the process. Our goal is to give the reader a basic understanding of the
capabilities of RSML�e and the Nimbus environment. The completed formal re-
quirements speci�cation and the models of the environment (sensors, actuators,
and process) are too lengthy to include in this report. The full speci�cation is
nevertheless available for review on-line3.

In the next section we will present our general view of control systems of
the type presented in the Light Control System case study. We will discuss our
view of the system and software requirements as well as a proposed structur-
ing of the requirements speci�cation. In [Section 3] we present the high-level
structure of our view of the Light Control System and the system scope. [Sec-
tion 4] and [Section 5] present the requirements of the Light Control System in
RSML�e and demonstrate how the requirements can be dynamically evaluated
in the Nimbus environment. The process of re�ning the system requirements
to software requirements, and how to dynamically evaluate the re�nement steps
in Nimbus, is discussed in [Section 6]. [Section 7] contains an evaluation of the
project and our approach as applied to the Light Control System, and provides
some recommendations and discuss directions for future research.

2 The General Modeling Approach

The primary application domain for RSML�e and the Nimbus environment is
safety critical applications; that is, applications where malfunction of the soft-
ware may lead to death, injury, or environmental damage. Most, if not all, such
systems are some form of a process control system where the software is par-
ticipating in the control of a physical system. In this section we will provide a
general overview of our modeling approach and describe what information must
be captured in the system requirements speci�cation and the software require-
ments speci�cation.

2.1 Control Systems

A general view of a software controlled system can be seen in [Fig. 1]. This
model consists of a process, sensors, actuators, and a software controller. The
process is the physical process we are attempting to control. The sensors mea-
sure physical quantities in the process. These measurements are provided as
input to the software controller. The controller makes decisions on what ac-
tions are needed and commands the actuators to manipulate the process. The

3 The full LCS speci�cation as well as information on our tools are available at
www.cs.umn.edu/crisys/lcs/

732 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

goal of the software control is to maintain some properties in the physical
process. Thus, understanding how the sensors, actuators, and process behave
is essential for the development and evaluation of correct software. The im-
portance of this systems view has been repeatedly pointed out in the litera-
ture [Parnas and Madey, 1991],[Leveson et al., 1994], [Heitmeyer et al., 1996].

Process

Sensors Actuators

Controller
Software
Output

Software
Input

Controlled
Variables

Monitored
Variables

Figure 1: Traditional feedback process control model

To reason about this type of software controlled systems, David Parnas
and Jan Madey de�ned what they call the four-variable model (outside square
of [Fig. 2]) [Parnas and Madey, 1991]. In this model, the monitored variables
(MON) are physical quantities we measure in the system and controlled vari-
ables (CON) are physical quantities we will control. The requirements on the
control system are expressed as a mapping (REQ) from monitored to controlled
variables. For instance, a requirement may be that \when a room is occupied,
there must be safe illumination." Naturally, to implement the control software
we must have sensors providing the software with measured values of the mon-
itored variables (INPUT), for example, an indication if there is a person in the
room. The sensors transform MON to INPUT through the IN relation; thus,
the IN relation de�nes the sensor functions. To adjust the controlled variables,
the software generates output that activates various actuators that can manipu-
late the physical process, for instance, a means to vary the illumination level in
the room. The actuator function OUT maps OUTPUT to CON. The required
behavior of the software controller is de�ned by the SOFT relation that maps
INPUT to OUTPUT.

The requirements on the control system are expressed with the REQ relation;
the system requirements shall always be expressed in terms of quantities in the
physical world. To develop the control software, however, we are interested in
the SOFT relation. Thus, we must somehow re�ne the system requirements (the
REQ relation) into the software requirements (the SOFT relation).

2.2 Structuring SOFT

The IN and OUT relations are determined by the sensors and actuators used
in the system. For example, to measure the light level in a room we may use
a photo resistor coupled with an A/D converter that provides us an estimate
of the light level as an integer. Similarly, to control the light level we may use

733Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

REQ
MON CON

INPUT OUTPUT

IN

SOFT

OUT

Process

Sensors Actuators

Controller
Software
Output

Software
Input

Controlled
Variables

Monitored
Variables

Figure 2: The four variable model for process control systems

dimmers and the light �xtures in the room. Equipped with the REQ relation
(mapping MON to CON), the IN relation (mapping MON to INPUT), and the
OUT relation (mapping OUTPUT to CON) we can derive the SOFT relation.
The question is, how shall we create SOFT and what is the best way to structure
SOFT in a language such as RSML�e?

As mentioned above, the system requirements should always be expressed in
terms of the physical process. These requirements are likely to change over the
lifetime of the controller (or family of similar controllers). The sensors and ac-
tuators are likely to change independently of the requirements as new hardware
becomes available or the software is used in subtly di�erent operating environ-
ments; thus, all three relations; REQ, IN, and OUT, are likely to change over
time. If any of the REQ, IN, or OUT relations change, the SOFT relation must
be modi�ed. To provide a smooth transition from system requirements (REQ)
to the software speci�cation (SOFT) and to isolate the impact of requirements,
sensor, and actuator changes, Steven Miller at Rockwell Collins has proposed to
structure the software speci�cation SOFT based heavily on the relations in the
four variable model [Miller, 1999],[Thompson et al., 1999].

MON CONINPUT OUTPUT
IN SOFT OUT

SOFTREQ OUT-1IN-1

Figure 3: The SOFT relation can be split into three composed relations. The

SOFTREQ relation is based on the original requirements (REQ) relation.

734 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Miller proposed splitting the SOFT relation into three pieces, IN�1, OUT�1,
and SOFTREQ([Fig. 3]). IN

�1 takes the measured input and reconstructs an
estimate of the physical quantities in MON. The OUT�1 relation maps the
internal representation of the controlled variables to the output needed for the
actuators to manipulate the actual controlled variables. Given the IN�1 and
OUT�1 relations, the SOFTREQ relation will now be essentially isomorphic to
the REQ relation and, thus, be robust in the face of likely changes to the IN and
OUT relations (sensor and actuator changes). Such changes would only a�ect the
IN�1 and OUT�1 portions of the software speci�cation. Thus, the structuring
approach outlined in this section will isolate the impact of system changes in the
software speci�cation SOFT.

In the rest of this paper we illustrate how this framework for requirements
speci�cation and re�nement is used. We will demonstrate how the REQ rela-
tion is captured in RSML�e and how it can be validated through execution and
simulation in Nimbus. We will also demonstrate how the REQ relation is re-
�ned to the SOFT relation and how the Nimbus environment supports dynamic
evaluation of the various models created throughout the re�nement process. The
result of this process will be a formal speci�cation of SOFT that, in Nimbus,
also serves as a prototype of the control software.

3 The Light Control System

The informal requirements for the Light Control system were provided by the
problem description included in the call for papers [PD00]. This description pro-
vided us with a rough idea of the functionality of the system, but left many areas
of the system underspeci�ed, or, more seriously, speci�ed in a way that contra-
dicted other requirements in the system. What follows is our interpretation of
the requirements of the system, with a few changes and additions to provide
a complete and consistent description of the system. First, we will clarify the
physical structure of the components of the system. Then, we can set the system
boundaries and identify the monitored (MON) and controlled (CON) variables.

3.1 System Structure

The physical structure of the system and the control software boundaries are
outlined in [Fig. 4]. The control software is in the center of the diagram. The
Light Control System can be thought of as a set of small control systems, each of
which control the light level for a given room or hallway. Because the behaviors
of the rooms and hallways are independent of one another, we can model each
system separately and then combine the speci�cations into a complete control
system for a
oor or a building.

We view a system as a collection of components connected by communication
channels. A graphical representation of the collection of system components and
communication channels for a single room can be seen in [Fig. 5]. The compo-
nents are connected to the channels through interfaces and can send messages
over the channels. A message is a collection of �elds holding the atomic pieces of
information communicated between the components. The only information
ow
between the components is through the unidirectional channels.

Dividing up the speci�cations in this way allows us to focus on small parts of
the system and makes the task of analyzing these pieces simpler. In general, the

735Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Software Control System
(Specified in RSML-e)

Door Sensors

Hallway
Specification

Light Sensors

Motion Sensors

Facility Manager
Console

Room
Specification

Event Log
Manager

Light Banks

Room Control
Panels

Figure 4: The software control system boundaries for the Light Control System.

Bank A Status

Bank B Status

Door Sensor

Light Sensor

Motion Sensor

Door Sensor

Light Sensor

Motion Sensor

Facility Manager Console

Malfunction Energy
Usage

Manual
Shutoff

Light Bank A

Light Bank B

Control System Active

Bank B
Command

RSML-e Requirements
Model for Room

Bank A
Command

Room Control Panel

Status Control

Figure 5: The room model and its interconnections.

736 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

hallway can be viewed as providing a subset of the functionality provided by the
rooms. For this reason, as well as space concerns, the remainder of this paper
will focus on the speci�cation of the system and software requirements for the
rooms only (the full speci�cations for rooms and hallways are available on-line).

3.2 Monitored and Controlled Variables

The �rst step in a requirements modeling project is to de�ne the system bound-
aries and identify the monitored and controlled variables; the monitored and
controlled variables exist in the physical system and act as the interface between
the proposed controller (software and hardware) and the system to be controlled.

In this paper we will not go into the details of how to scope the system
requirements and identify the monitored and controlled variables|guidelines
to help identify monitored and controlled variables are covered in, for exam-
ple, [Miller, 1999],[Faulk et al., 1992], [Jackson, 1995].

In the case of the Light Control System, we identi�ed, for example, the
presence of a person in a room as a monitored variable and the light level in
the room as a controlled variable. Both are clearly concepts in the physical
world, and thus suitable candidates as monitored and controlled variables for
the requirements speci�cation. A complete list of the monitored and controlled
variables we identi�ed in the LCS for a room are de�ned in [Tab. 1].

4 Modeling the REQ Relation

After we have determined the scope of our system we are ready to capture REQ.
Since our work is based around a modeling language called RSML�e, we start
the section with a short introduction to the notation before we discuss the Light
Control System requirements.

4.1 Introduction to RSML�e

RSML�e is based on Requirements State Machine Language (RSML) devel-
oped by the Irvine Safety Research group under the leadership of Nancy Leve-
son [Leveson et al., 1994]. RSML�e was developed as a requirements speci�ca-
tion language speci�cally for embedded control systems. One of the main design
goals of RSML�e was readability and understandability by non-computer profes-
sionals such as users, engineers in the application domain, managers, and repre-
sentatives from regulatory agencies. RSML�e is based on hierarchical �nite state
machines [Harel and Pnueli, 1985], [Harel, 1987], [Harel et al., 1990] and state-
based data
ow languages [Heitmeyer et al., 1996], [Heitmeyer et al., 1995a].
RSML�e supports parallelism, hierarchies, and guarded transitions. The main
di�erences between RSML�e and RSML are the addition in RSML�e of rigor-
ous speci�cations of the interfaces between the environment and the control
software, and the removal of internal broadcast events [Leveson et al., 1999],
[Heimdahl et al., 1998].

An RSML�e speci�cation consists of a collection of state variables, I/O vari-
ables, interfaces, functions,macros, and constants, which will be brie
y discussed
below.

In RSML�e, the state of the model is the values of a set of state variables,
similar to mode classes in SCR [Heitmeyer et al., 1995b]. These state variables

737Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Monitored Variables:

Name Range Description

System Variables:
Light Level 0..10000 Lux The amount of light in the room
Occupied Boolean TRUE if room is occupied
Light Level Undetectable Boolean Used for light sensor failure.
Occupied Undetectable Boolean Used for motion or door sensor

failure.
Window Light Bank Intensity 0..100 Percent intensity of Window Light

Bank
Wall Light Bank Intensity 0..100 Percent intensity of Wall Light

Bank
Operator Inputs:

Chosen1 LS Button InVar Boolean Chooses/Replaces light scene 1
Chosen2 LS Button InVar Boolean Chooses/Replaces light scene 2
Chosen3 LS Button InVar Boolean Chooses/Replaces light scene 3
Default LS Button InVar Boolean Chooses/Replaces default light

scene
Set LS Button InVar Boolean If TRUE and another LS button

is pressed, replaces the light scene
with the current light scene.

T1 1..1440 minutes Timeout to reestablish default
light scene

T3 1..1440 minutes Timeout to shut o� lights
FacM Shuto� Boolean Allows fac. man. to remotely shut

o� lights.

Controlled Variables:
Name Range Description

System Variables:
Con Window Light Bank Intensity 0..100 Intensity of Window Light Bank
Con Wall Light Bank Intensity 0..100 Intensity of Wall Light Bank

Outputs to Operator:
Failed Boolean TRUE if system detects compo-

nent failure.

Table 1: The monitored and controlled variables for the Light Control System in

a room.

738 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

can be organized in parallel or hierarchically to describe the current state of
the system. Parallel state variables are used to represent the inherently parallel
or concurrent concepts in the system being modeled. Hierarchical relationships
allow child state variables to present an elaboration of a particular parent state
value. Hierarchical state variables allow a speci�cation designer to work at mul-
tiple levels of abstraction, and make models simpler to understand.

Light_Control_System_Room
Light_Maintenance_Modes

Room_Occupied

Room_Occupied_Eq

Maintain_Light_Scene

User_Set_Mode

Room_Empty

Occupancy_Undetectable

Chosen_Light_Scene

Chosen1_LS

Chosen2_LS

Chosen3_LS

Default_LS

Failure_Modes

Ok

Failed

Figure 6: The state machine for the requirements model of the Light Control

System in an individual room

For example, consider the Light Control System for an individual room.
The state variable hierarchy used to model the requirements on this system
could be represented as in [Fig. 6]. This representation includes both paral-
lel and hierarchical relationships of state variables. Light Maintenance Modes,
Chosen Light Scene and Failure Modes are three parallel state variables, and
Room Occupied Eq is a child state variable of Light Maintenance Modes

Next state functions in RSML�e determine the value of state variables. These
functions can be organized as transitions or condition tables. Condition tables
describe the conditions under which a state variable assumes each of its possible
values. Transitions describe the condition under which a state variable is to
change value. A transition consists of a source value, a destination value, and
a guarding condition. A transition is taken (causing a state variable to change
value) when (1) the state variable value is equal to the source value, and (2)
the guarding condition evaluates to true. The two next state function types are
logically equivalent and mechanized procedures exist to ensure that types of next
state functions are complete and consistent [Heimdahl and Leveson, 1996].

The state functions are placed into a partial order based on data dependencies
and the hierarchical structure of the state machine. State variables are data-
dependent on any other state variables, macros, or I/O variables that are named
in their transitions or condition tables. If a variable is a child variable of another
state variable, then it is also dependent on its parent variable. The value of the
state variable must be computed after the items on which it is data-dependent
have been computed. For example, the value of the Room Occupied Eq state
variable would be computed after the Light Maintenance Modes state variable,
because its value is dependent on whether or not Light Maintenance Modes is in

739Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

the Room Occupied state.
Conditions are simply predicate logic statements over the various states and

variables in the speci�cation. The conditions are expressed in disjunctive normal
form using a notation called and/or tables [Leveson et al., 1994] (see [Fig. 7],
[Fig. 8], etc.). The far-left column of the and/or table lists the logical phrases.
Each of the other columns is a conjunction of those phrases and contains the
logical values of the expressions. If one of the columns is true, then the table
evaluates to true. A column evaluates to true if all of its elements match the
truth values of the associated columns. An asterisk denotes \don't care."

I/O Variables in the speci�cation are the quantities that are available to
the interfaces of the speci�cation. Input variables allow the analyst to record
the monitored variables (MON) or values reported by various external sensors
(INPUT) which are received in a message. Output variables provide a place to
capture the controlled variables (CON) or the values of the outputs (OUTPUT)
of the system prior to sending them out in a message.

Interfaces, discussed brie
y in [Section 3.1], encapsulate the boundaries be-
tween the RSML�e speci�cation and the external world.

To further increase the readability of the speci�cation, RSML�e contains
many other syntactic conventions. For example, it allows expressions used in
the predicates to be de�ned as functions (e.g., TotalIntensity()), and familiar
and frequently used conditions to be de�ned as macros (e.g., OccupancyUnde-
tectable()). Functions in RSML�e are mathematical functions that are used to
abstract complex calculations. A macro is simply a named and/or table that
is used for frequently repeated conditions and is de�ned in a separate section of
the document.

The LCS has a number of di�erent timing properties which must be recorded.
RSML�e views time as a continuously increasing input variable with a user de-
�ned granularity. From this formal de�nition, we have built a number of di�erent
time expressions (for example, the analyst can get the time that various vari-
ables were assigned or changed value). This allows timing properties to be easily
expressed. The speci�c time expressions used in the LCS will be introduced as
they are used. For more information on the formal semantics of RSML�e, please
see [Whalen, 2000].

4.2 Overview of REQ

Our choice of the various monitored and controlled quantities places certain
constraints on what can, and cannot, be speci�ed in the REQ relation. If the
monitored and controlled variables are chosen appropriately, then the speci�ca-
tion of the REQ relation will be focused on the issues which are central to the
requirements on the system.

In the Light Control System, some of the informal needs from the problem
description will not be represented in the REQ relation or they will be repre-
sented in an abstract form. For example, the problem description states that
\If any outdoor light sensor or the motion detector of a room does not work
correctly, the user of this room has to be informed" (U8) [PD00]. The REQ re-
lation does not include any notion of a motion detector nor of the outdoor light
sensors. Instead, we use the monitored quantities for the light level in the room
and whether the room is occupied.

Often when starting to construct the REQ relation, it is helpful to examine
the controlled variables of the system. It is necessary to determine what condi-
tions partition the value of a particular controlled variables (i.e., what modes

740 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

e�ect the controlled variable) and under what scenarios various outputs should
be generated. In this light control system, the controlled variables are the inten-
sity of the window and wall light groups in the oÆce and the failure indication
operator output. For now, we will focus on the window and wall intensity vari-
ables.

From the problem description, it becomes clear that there are two main
activities which a�ect the way that the REQ relation must determine the values
of the controlled variables. First, the REQ relation must be able to capture and
use the various user set points (U6, U7, and U9 [PD00], page 9). Second, the
control system should somehow maintain the light level in the rooms (FM1 on
page 10 and U2 on page 9). Furthermore, it would appear that these two tasks
occur concurrently. The following two subsections consider these two tasks.

4.3 User Functionality

In this section, we will consider the maintenance of the various set points by the
user and the way in which they are modeled in our version of the REQ relation.
This is the simplest of the two main tasks of the REQ relation. Nevertheless, by
constructing a formal speci�cation, several issues with the de�nition of a light
scene were exposed.

In the problem description, the room control panel (RCP) is described by U7,
U9, and U12. U12 states that the RCP is a mobile, stand-alone device; therefore,
a reasonable design for such a device seemed to be to keep the controls as simple
as possible. Our design of the RCP is shown in [Fig. 12].

We envisioned the user selecting a light scene by simply pressing its associated
button and setting a light scene by �rst adjusting the light in the room using the
top two control groups and then pressing the \set" button while pressing one of
the light scene buttons (i.e., similar to the functionality of a typical car radio).

This seems a simple, and intuitive solution; nevertheless, the de�nition of
a light scene given in the problem description states that a name is associated
with each light scene. In order to allow the user to enter a name, a more complex
interface would seem to be in order. However, this would (1) add signi�cantly to
the cost and complexity of the RCP and (2) probably not add much, if anything,
in terms of functionality and user satisfaction. Therefore, we decided to simplify
the de�nition of the light scene so that the light scene is simply selected with a
button on the RCP (Scene 1, Scene 2, Scene 3).

To model the light scenes, we use three state variables to capture the light
level (measured in Lux). [Fig. 7] shows the RSML�e de�nition for the state
variable for the �rst light scene. As part of the de�nition of any non-enumerated
type state variable in RSML�e, the expected minimum and maximum of the
variable are given. This, and other criteria, were outlined in [Ja�e et al., 1991].

There are two possible assignments to the Chosen1 LS Light Level vari-
able. The �rst covers the case that the user is pressing the \set" button
and the button for light scene 1. This condition is determined by checking
whether the button in pressed (Chosen1 LS Button InVar is the input vari-
able for the button, it is equal to kPressed if button is pressed). Similarly, the
Set Light Scene Button InVar must also equal kPressed. If these two predicates
are true, then the state variable records the value of the monitored variable for
the current light level in the room (Light Level InVar). Otherwise, the variable's
value must stay the same. In RSML�e this must be explicitly speci�ed (the sec-
ond case in [Fig. 7]). The other light scenes (chosen2, chosen3, and default) all
have similar de�nitions for the capture of the desired light level.

741Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

State Variable

Chosen1_LS_Light_Level

Type: INTEGER

Units: lux

Expected Min: 0

Expected Max: 10000

:= Light_Level_InVar IF

Chosen1_LS_Button_InVar = ButtonPressType::kPressed T

Set_Light_Scene_Button_InVar = ButtonPressType::kPressed T

:= PREV_STEP(Chosen1_LS_Light_Level) IF

Chosen1_LS_Button_InVar = ButtonPressType::kPressed T F F

Set_Light_Scene_Button_InVar = ButtonPressType::kPressed F T F

Figure 7: Capturing the Light Level in a Light Scene

The light scene de�nition in the problem description states that the scene
consists of the light level and an option: window, wall, or both. Furthermore, if
the selection is both, then both light banks are used equally to obtain the desired
light level. The control system can detect whether or not both light banks are on
and thereby determine the value of this option when the set button was pressed.
Nevertheless, we reasoned that the user would almost always have both light
banks on to some degree or other.

Imagine what would happen if the user (1) adjusted the lights as desired, for
example, 40% window and 60% wall; (2) set this to the �rst light scene; and (3)
pressed the �rst light scene button. Clearly, this light scene uses both the wall
and the window light groups. But, if the light scene stores the \both" option,
then when the users presses the button for the �rst light scene, the window light
group will be raised in illumination and the wall light group will be lowered.
This behavior does not seem intuitive. Therefore, we expanded the de�nition of
a light scene so that it consists of the light level in the room plus intensity of
the window light group (0 - 100) and the intensity of the wall light group. Using
this information, we can maintain the proportion (window/wall) that the user
has selected and thereby, in our opinion, provide a better control behavior for
the system.

4.4 Maintaining the Light Level

After the user has chosen the light level and distribution(between window and
wall) for the room, this light scene must be maintained. Also, there are a num-
ber of requirements related to the user leaving the room and whether or not

742 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

room occupancy is detectable that need to be considered when computing the
values of the controlled variables. This section discusses the control behavior for
maintaining the light level and light distribution in the room.

The control system clearly behaves di�erently depending on the occupancy
of the room; if there is a person in the room, the control system must maintain
the light level in the room. If there is no one in the room, the control system
must determine whether or not to shut o� the lights.

State Variable

Light_Maintenance_Modes

Location: Light_Control_System_Room

:= Room_Occupied IF

Occupied_InVar = TRUE T

Occupied_Detectable_InVar = TRUE T

:= Occupancy_Undetectable IF

Occupied_Detectable_InVar = TRUE F

:= Room_Empty IF

Occupied_InVar = TRUE F

Occupied_Detectable_InVar = TRUE T

Figure 8: Light Maintenance Modes in the REQ Relation

[Fig. 6] shows this partitioning of the Light Maintenance Modes. Each mode
has certain conditions under which it is active. These conditions are speci�ed
with a state variable de�nition as shown in [Fig. 8]. These modes depend on two
monitored variables (see [Tab. 1]) Occupancy Detectable and Room Occupied,
which determine whether we can detect the occupancy status of the room, and
if so, whether or not the room is occupied. Note that because this is a speci�ca-
tion of REQ, the monitored variables are actually the input quantities. Thus, in
[Fig. 8], the monitored quantities have the suÆx InVar (this is a naming con-
vention that we commonly use in RSML�e speci�cations, not something which
is enforced by the tool). Also, we have adopted the convention for boolean vari-
ables of writing the more lengthy expression \X var = TRUE" rather than simly
\X var" which would be a valid boolean expression by itself. Nimbus, of course,

743Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

allows either convention to be used.
The way that we have chosen to describe the control of the light level in the

room is as follows: (1) the light level in the room is compared with the light
level required by the current light scene, (2) if light level is not equal to the light
level speci�ed in the current light scene, the light intensity of the window/wall
light banks are adjusted proportionally up or down by a small increment. Then,
the system will poll the light level again within a short amount of time and
eventually, the light in the room will comply with the selected light scene.

There is an issue, however, with the fact that it is not desirable to have the
control system chage the light intensity at the same time as the user attempts
to adjust it; that is, the control system should not �ght the user for control over
the lights. Thus, it is necessary to partition the Room Occupied mode into two
sub-modes: one where the system is receiving user input and should produce no
control actions and one where the system is responsible for maintaining the light
level in the room. This partition can be seen in [Fig. 6].

The current light scene is the basis of the control of the light in the room.
First, it is computed and then it is used to determine the values of the controlled
variables. The current light scene, like any other light scene, consists of a light
level (in lux) and the intensity of the window and wall light banks.

[Fig. 9] shows the state variable de�nition for the light level of the current
light scene. On the right, the cases are labeled to clarify the presentation in this
paper; this labeling is not a part of RSML�e. The �rst case in the de�nition
simply states that the light level will be updated to the current light level in the
room if the user is setting the controls for the room. This ensures that as the
user makes changes to the lights, the changes are maintained, not reset, by the
system.

The second group of cases in [Fig. 9] (cases 2-5) handles the user pressing one
of the light scene buttons on the RCP. If the user presses one of these buttons,
the light level associated with the selected light scene is used as the current light
scene and will thus be maintained by the system.

The sixth case determines the light level in the room if the room is unoccu-
pied. The lights are shut o� (the light level set to zero) if the room is empty and
either T3 has passed or the facility manager has issued the shuto� command.
T3 is measured from the time that the Light Maintenance Modes state variable
assumes the value Room Empty (the TIME ENTERED part of line 2). If the
facility manager issues a shuto� command, this is indicated by the reciept of a
message at the FacM Shuto� interface. The MESSAGE AT expression in line 3
of the condition table is true if this is the case.

The speci�cation determines whether the room has been reoccupied by ex-
amining the Light Maintenance Modes state variable. In order to detect a change
in the variable, the speci�cation must be able to reason about previous values of
the variable. RSML�e allows this through the use of the PREV STEP expres-
sion, which returns the value its sub-expression had at the close of the previous
computation of the RSML�e speci�cation. In case 7, the room is reoccupied if
the Room Occupied Eq state variable has the value Maintain Light Scene and
in the previous step, the Light Maintenance Modes state machine did not have
the value Room Occupied 4. When the room is reoccupied, then the light level is
determined by whether or not T1 has passed (case seven). The function Reoccu-

4 Note that the \.." notation in the �gure before the state variable names is used to
indicate that the RSML�e parser should search through the state variable tree to
�nd the given state variable. This notation avoids having to specify full path names
within the speci�cation, as duplicate names are allowed in the tree.

744 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Case 8:
Otherwise, the light
level should remain
constant

Output Variable

Current_LS_Light_Level

Type: INTEGER

Units: lux

Expected Min: 0

Expected Max: 10000

:= Light_Level_InVar IF

..Room_Occupied_Eq IN_STATE User_Set_Mode T

:= Chosen1_LS_Light_Level IF

Chosen1_LS_Button_InVar = ButtonPressType::kPressed T

Set_Light_Scene_Button_InVar = ButtonPressType::kNotPressed T

:= Chosen2_LS_Light_Level IF

Chosen2_LS_Button_InVar = ButtonPressType::kPressed T

Set_Light_Scene_Button_InVar = ButtonPressType::kNotPressed T

:= Chosen3_LS_Light_Level IF

Chosen3_LS_Button_InVar = ButtonPressType::kPressed T

Set_Light_Scene_Button_InVar = ButtonPressType::kNotPressed T

:= Default_LS_Light_Level IF

Default_LS_Button_InVar = ButtonPressType::kPressed T

Set_Light_Scene_Button_InVar = ButtonPressType::kNotPressed T

:= 0 IF

..Light_Maintenance_Modes IN_STATE Room_Empty T T

TIME >= ..Light_Maintenance_Modes TIME_ENTERED Room_Empty +
T3_InVar

T *

MESSAGE_AT(FacM_Shutoff) * T

:= Reoccupied_Light_Level() IF

..Room_Occupied_Eq IN_STATE Maintain_Light_Scene T

PREV_STEP (..Light_Maintenance_Modes IN_STATE Room_Occupied) F

:= PREV_STEP(Current_LS_Light_Level) IF

..Room_Occupied_Eq IN_STATE Maintain_Light_Scene T

PREV_STEP (..Light_Maintenance_Modes IN_STATE Room_Occupied) T

Case 1:
The user is setting
the light level

Case 2-5:
The user has
pressed one of the
light scene buttons
on the room control
panel.

Case 6:
The room is empty
and the lights
should be turned off

Case 7:
The room is
reoccupied.

Figure 9: Current Light Scene Light Level in the REQ relation

745Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

pied Light Level returns the default light level if T1 has passed and the chosen
light level otherwise. Due to space constraints, this simple function will not be
shown.

Finally, the light level will remain the same if the user is not making changes
to the light level and room has not been recently reoccupied.

Once the light level is computed, it is compared with the monitored light
level in the room. The actual sampling of the light level is performed by the
Light Level InInterface. If the light needs to be increased/decreased, it is done
so while maintaining the proportion of window light to wall light speci�ed in
the current light scene. The details of this part of the speci�cation will not be
included in this report due to space considerations.

5 Execution of the REQ Relation in Nimbus

Now that we have an initial version of the REQ speci�cation, it is possible to
analyze it and simulate it in a realistic environment using the Nimbus tools for
requirements modeling. The Nimbus tools provide support for analysis, simula-
tion, and speci�cation construction. Nimbus is currently being used at the Uni-
versity of Minnesota, Massachusetts Institute of Technology, NASA, and other
sites.

Assurance that the requirements speci�cation (system or software) pos-
sesses desired properties can be achieved through (1) manual inspections, (2)
formal veri�cation of the desired properties, or (3) simulation and testing of
the speci�cation. To achieve the high level of con�dence in the correctness re-
quired in a safety-critical system, all three approaches must be used in con-
cert. One environment, called Nimbus, under development at the University
of Minnesota provides support for all these activities [Thompson et al., 1999],
[Thompson and Heimdahl, 1999]. This is the environment which we have used
to capture and evaluate the required behavior of the Light Control System.

The three V&V techniques �ll complementary roles within the validation
and veri�cation process. Manual inspections and visualization provide the spec-
i�cation team, customers, systems engineers, and regulatory representatives the
means to informally verify that the behavior described formally in the speci�ca-
tion matches the desired \real world" behavior of the system. Formal analysis
is helpful to determine if the speci�cation possesses desirable properties, for in-
stance, if the speci�cation is complete and consistent, and whether unsafe states
are reachable. Simulation and testing are necessary to provide additional assur-
ance that the speci�cation captures the desirable behavior and is free of faults.
In this report we will focus on the capabilities for execution and simulation
available in Nimbus.

5.1 The Nimbus Environment

The execution and simulation capabilities Nimbus environment are based on
the ideas that (1) the engineers would like to have an executable speci�cation of
the system early in the project and that (2) as the speci�cation is re�ned it is
desirable to integrate it with more detailed models of the environment to enable
accurate validation of the requirements speci�cation. Other work has been done
in this area, for example, other tools, such as Statemate from i-Logix, provide
visualizations of the state of the speci�cation. In Nimbus, however, we also
provide a
exible way to integrate the visualizations of the speci�cation with

746 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

visualizations of the embedding environment. An e�ort with similar goals was
presented in [Heitmeyer et al., 1995a]; however, the e�ort was mostly a proof of
concept and no real tool support for this kinds of visualizations was provided.
Nimbus allows a vast array of visualizations to be constructed using industry
standard tools in a quick, cost e�ective, and
exible manner.

Nimbus also contains a logging facility, capable of recording all inputs and
outputs to the simulation. These logs can later be played back and analyzed,
allowing step by step analysis of earlier real-time simulations. The logging facility
can also be used to easily create a library of speci�c test scenarios.

In the initial stages of the project, we want the executions to take their input
from simple models of the embedding environment, for example, text �les or user
input. As the speci�cation is re�ned, the analyst can add more detailed models
of how the controlled system behaves, for example, additional RSML�e speci�-
cations or software simulations of the system. As the requirements speci�cation
(REQ) is re�ned to a software speci�cation (SOFT), models of the sensors and
actuators can be incorporated into the executions. In order to have a closed
loop simulation, a model of the process can be added between the sensor and
actuator models. Finally, when the speci�cation has been re�ned to the point of
de�ning the software inputs and outputs (INPUT and OUTPUT), the analyst
can execute it directly with the hardware. This hardware-in-the-loop simulation
closes the gap between the prototype and the actual hardware. These ideas are
illustrated in [Fig. 10].

Actual
hardware

Control Software
Simulation

(RSML Specification)

Small, standard interfaces allow the
most suitable model (or physical
component) to be used. Model

used is easily changeable.

Software
simulations

RSML
models

Sensor models at various
levels of abstraction

Actuator models at various
levels of abstraction

Process model
(for closed loop simulation)

Text Files/
User Input

Actual
hardware

Software
simulations

RSML
models

Text Output
(file/screen)

Figure 10: The Nimbus Environment

The
exibility to quickly and easily connect di�erent models of the com-
ponents in a system provides new opportunities when creating and validating
formal speci�cations. An environment such as ours can be used to aid in re-
quirements based prototyping, in re�nement of the speci�cation as well as the
environmental models, the evaluation of the operator interface, and in testing
both the speci�cation and the implementation derived from it. The detailed dis-
cussion of the various capabilities of our environment is beyond the scope of this

747Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

paper and the interested reader is referred to [Thompson et al., 1999].

5.2 Executing the Requirements

User input of RSML-e model of
the REQ relation

Text file collectingLight_Level Window/Wall

Excel spreadsheet
generating
light data

RSML-e model of
the REQ relation

Text file collectingLight_Level

a.

b.

light data lighting commands

lighting commands

Intensity

Window/Wall

Intensity

Figure 11: The REQ relation can be evaluated using text �les or user input (a)

or interacting with a simulation of the environment (b).

The Nimbus environment allows us to execute and simulate the model we
discussed in [Section 4] using input data representing the monitored variables
and collect output representing the controlled variables. Input data could come
from several sources. The simplest option for input is, of course, to have the user
specify the values (either interactively, or by putting the values into a text �le
ahead of time). This scenario is illustrated in [Fig. 11](a).

Unfortunately, it is often diÆcult to create appropriate input scenarios since
the physical characteristics of the environment enforce constraints and interrela-
tionships over the monitored and controlled variables. For example, if we increase
the light output from one of the light groups, how much will the illumination
in the room increase? Thus, to create a valid (i.e., physically realistic) input se-
quence, the analyst must have a model of the environment. Initially, this model
may be an informal mental model of how the environment operates. As the eval-
uation process progresses, however, a more detailed model is most likely needed.
Therefore, in this stage of the modeling we may develop a simulation of the
physical environment. The Nimbus architecture lets us easily replace the inputs
read from text �les with a software simulation emulating the environment. This
re�nement can be done without any modi�cations to the REQ speci�cation.

For the Light Control System, we created a spreadsheet in Microsoft Excel
to emulate the behavior of light groups and the illumination level in the room
([Fig. 11](b)) This simple environmental model allows us to interactively modify
the traÆc through the room, the external light available, etc., and to easily
explore many possible scenarios.

Developing a speci�cation of the room control panel is another way to en-
hance the simulation of the REQ speci�cation. There are a number of reasons
why input from a mockup of the room control panel (RCP) is better than that
of manually-created text �les.

First, the RCP provides a signi�cant amount of data to the REQ speci�ca-
tion: The user settings of the window and wall intensity, the values of T1 and
T3, and the selection and setting of four di�erent light scenes. There are many
di�erent combinations of input sequences that can be generated from the RCP.
Manually creating test �les for even a small number of them early in a modeling
e�ort would be time-consuming and error-prone.

748 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Second, constructing an interface mockup provides valuable opportunities to
evaluate the control system with the intended users. For example, in our case
we constructed a mockup of the RCP similar to the one pictured in [Fig. 12].
When we tried to use this mockup, however, it became clear that the user would
desire a separate control to set the hours and minutes so as to more easily enter
the times T1 and T3 into the system and we modi�ed the RCP accordingly. Our
mockup was done using Visual Basic and is pictured in [Fig. 12]. In the �gure,
both the window and the wall light groups have been turned on and the user
has selected a value for T1 of 1 hour and 30 minutes and a value for T3 of 5
minutes.

Figure 12: The Room Control Panel with both light banks on.

[Fig. 13] shows data
ow between the applications used to do the system
simulation of the REQ relation. The values for the room occupancy and the
facility manager shuto� signal are still represented by user inputs because in
our opinion, representing how occupancy is determined is not part of the REQ
relation. The values for light level and the RCP are represented as described
above. Note that the user settings of the window and wall intensity must be
passed both to the REQ speci�cation and to the light model of the room.

5.3 Results

Simulating the requirements speci�cation provides the opportunity to discover
conceptual errors in the requirements speci�cation as well as gain a greater
understanding into the requirements themselves. In some cases, the problems
were simple modeling errors on our part. More interesting are errors which can be

749Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

REQ Specification
(NimbusSim)

Room Control Panel
(Visual Basic)

Room Light Model
(Excel)

Room Occupancy
(User Input)

Facility Manager Shutoff
(User Input)

Occupied, Occupied Detectable FacM Shutoff

User sets Window Intensity

User sets Window Intensity

User sets Wall Intensity

 User sets Wall Intensity Window Intensity
Wall IntensityT1, T3

Light Scene Buttons[1..4]
Set Button

Failure Indication

Light Level

Figure 13: Overview of the REQ simulation

traced back to inconsistencies or underspeci�cation of the original requirements
document.

Consider the case where the user has set the values of T1 and T3 so that
T3 is greater than T1. In other words, suppose the user has adjusted the lights
to a chosen light scene and then left the room. The user is out of the room
long enough for T1 to pass, i.e., when the user re-enters the room (according
to [PD00], Page 9:U4) the default light scene has to be established. Because
the user did not turn out the lights and T3 has not passed yet the lights in
the room will still be on as the user left them. Nevertheless, when the control
system detects that the room is occupied it will change the lighting in the room
to comply with the default scene. This is the behavior that is speci�ed in the
problem description, but it might not be the behavior that users expect.

We have found that simulation of the high-level requirements in a realistic
environment is valuable for �nding these and other types of conceptual errors.
Experimentation in this fashion provides a speci�cation of REQ that is a solid
foundation from which to re�ne a speci�cation of the SOFT relation, a topic
which is addressed in the following section.

6 Re�ning System Requirements to Software

Requirements

Once the model of REQ has been thoroughly simulated and analyzed, it is ready
to be extended to a model of SOFT. This section discusses how to extend REQ
to SOFT and how this was done for several monitored variables in the light
control system.

6.1 Re�ne REQ to SOFTREQ

In the real system, the monitored and controlled variables are not directly avail-
able; they must be approximated using sensors and actuators. Thus, when re-
�ning REQ to SOFT, variables such as Occupied will not be directly available

750 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

from the environment. At this early stage, we may not know exactly what hard-
ware will be used for sensors and actuators; however, we do know that we must
use something and we may as well prepare for it early. By encapsulating the
monitored and controlled variables we can get a model that is isomorphic to the
requirements model; the only di�erence is that this model is more suited for the
re�nement steps that will follow as the surrounding system is completed.

In our case, using a macro, IsOccupied(), instead of the monitored variable
Occupied will shield the speci�cation from possible changes in how the �nal
software will determine that a room is occupied (See [Fig. 14]). By performing
this encapsulation for all monitored and controlled variables we re�ne REQ to
SOFTREQ, a mapping from estimates of the monitored variables to an internal
representation of the controlled variables.

Macro

IsOccupied

Parameters: NONE

Condition:

..Occupied_In IN_STATE Occupied T

Figure 14: The IsOccupied() macro from the re�ned light control system

6.2 IN, OUT, IN�1, and OUT�1

As the hardware components of the system are de�ned (either developed in house
or procured), the IN and OUT relations can be rigorously speci�ed. The IN and
OUT models represent our assumptions about how the sensors and actuators
operate.

With the information about the sensor (IN) and actuator (OUT) relations,
we can start adding pieces of the IN�1 and OUT�1 relations to move towards
SOFT. To achieve this, we create the IN�1 and OUT�1 relations in our model.
In the following sections, we will focus our attention on the sensors needed to
determine if a room is occupied and to detect the light level in the room.

6.2.1 Re�ning Occupied

The control system must compute whether or not the room is occupied based on
the input from the motion and door sensors. For simplicity, we assume that the
door sensors are wired as one input to the system, so that if any of the doors are
open, the door sensor indicates \open", and if all the doors are closed, the door

751Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

sensor reads \closed". When computing whether or not the room is occupied,
it is necessary to have some state information (i.e., we must know whether or
not the room was occupied in the previous instance in time); therefore, a state
variable needs to be added so that IN�1 can be properly computed.

The re�ned state machine can be seen in [Fig. 15]. Instead of assuming that
Occupancy is a direct input to the system, as it would be in REQ, the spec-
i�cation now takes the input from one motion detector and the door sensors.
Thanks to the structuring of the SOFT relation, this re�nement could be done
with minimal changes to the SOFTREQ relation.

Light_Control_System_Room

Occupied_In

Occupied

Not_Occupied

Not_Detectable

Light_Maintenance_Modes

Room_Occupied

Room_Occupied_Eq

Maintain_Light_Scene

User_Set_Mode

Room_Empty

Occupancy_Undetectable

Chosen_Light_Scene

Chosen1_LS

Chosen2_LS

Chosen3_LS

Default_LS

Failure_Modes

Ok

Failed

Figure 15: The state machine from [Fig. 6] re�ned to include the IN�1 portions

for Occupied

The computation of the occupied quantity is shown in [Fig. 16]. The �rst two
cases determine whether or not the room is occupied based on the value of the
motion detector. The last case, the condition to be in Not Detectable, de�nes
the conditions under which there may be a sensor failure or malfunction. If the
room was not occupied and the doors have remained closed and then motion is
detected, there must be a problem with the sensors.

When attempting to complete this re�nement, we discovered con
icts in the
problem statement. For instance, consider the following elements from the prob-
lem description: (1) \If any motion detector of a room or hallway section does
not work correctly, the control system should behave as if the room or hallway
section were occupied" (NF4); (2) the motion detector can detect even small
motions within the room and it covers the whole room (sensor description); and
(3) the occupancy of a room cannot change when the doors are closed (customer
feedback 25).

On the surface, these all seem reasonable statements. The �rst two statements
imply that the control software should attempt to detect sensor failures. The last
statement says that if the doors in the room are closed, it doesn't matter what
the reading from the motion detector is, the occupancy of the room will be
unchanged. However, if this were added to, for example, the condition to be in

752 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

State Variable

Occupied_In

Location: Light_Control_System_Room

:= Not_Occupied IF

Motion_Detected_InVar = FALSE T

:= Occupied IF

PREV_STEP(DoorSensor_InVar = DoorSensorType::kClosed) * *

PREV_STEP(..Occupied_In IN_STATE Not_Occupied) T F

Motion_Detected_InVar = TRUE T T

DoorSensor_InVar = DoorSensorType::kClosed F *

:= Not_Detectable IF

PREV_STEP(DoorSensor_InVar = DoorSensorType::kClosed) T

PREV_STEP(..Occupied_In IN_STATE Not_Occupied) T

Motion_Detected_InVar = TRUE T

DoorSensor_InVar = DoorSensorType::kClosed T

Figure 16: The de�nition for the Occupied In state variable

Not Occupied then it would overlap with the condition to be in Not Detectable
and an inconsistency is introduced in the model.

6.2.2 Re�ning Light Level

In the REQ speci�cation, we assume we know the correct level of light in the
room (Light Level). In reality, this is not the case; we must add sensing capabil-
ities to determine an approximation of the light level in the room.

The speci�cation states that we should attempt to compute the light level
given an outdoor light sensor and the amount of illumination from the two light
banks (in a feed-forward type fashion). However, this is very diÆcult because of
several factors:

{ In most oÆce buildings, oÆces are equipped with blinds or curtains. If the
user closes the blinds, then little sunlight will enter the room. Even if there
are no blinds, if the light coming into the room bothers the occupant he or
she will most likely �nd some way to cover the windows (e.g., by putting up
paper). Thus, transmission of light through the glass cannot be assumed to
behave according to some set function.

{ Users may have desk lamps or other sources of illumination. The light-level
algorithm will not be able to account for these alternate light sources.

753Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

{ The amount of illumination measured by the outdoor light source depends
on the angle of the sun relative to the sensor, as well as the intensity of the
light. The amount of light actually entering a room depends on the position
of the window relative to the sun. All these factors vary with the time of
day, weather conditions, and time of year. Providing an accurate calculation
of the light level in the room based on the light level at an external sensor
would be prohibitively diÆcult.

{ The algorithm must assume that all �laments in the light banks are func-
tioning correctly (i.e., no burned out �laments). This assumption may not
be valid.

Because these concerns make the light-level computation error-prone at best,
we have chosen to introduce a light sensor into each room or hallway that we
monitor. Using this approach, we can directly measure the light level in the room.
The monitored variable Light Level can be viewed as a state variable whose value
is a scaling function of the light sensor value. For now, we assume that the light
sensor is similar to type as described for the outdoor light sensor, so the scaling
factor is 1.

In the speci�cation, we introduce a new input variable Light Sensor Level
that records the raw sensor value. Then we (trivially) convert it to the Light Level
monitored variable. Although in this case Light Sensor Level is always the same
as Light Level, both are useful, because they decouple the REQ relation from the
particular sensors. If we change the sensors, we just have to change the de�nition
of the Light Level variable, without impacting the rest of the model.

Given that we have a light sensor in the room, one problem is that we only
know the light level at the location of the light sensor. Therefore, where the light
sensor is placed in the room is important. If the light sensor is obscured, or if
it is placed very close to one of the light banks, then the light level of the room
may be inaccurately measured. Depending on how accurate we required the light
level to be, we could create an environment model of the room in which we could
move the the light sensor around, then connect it to a RSML�e simulation to
investigate the behavior of the system.

6.3 Re�ning the Simulations

When evaluating RSML�e speci�cations in Nimbus, the analyst has great free-
dom in how he or she models the environment. When we evaluated the REQ
speci�cation in [Section 4], we used a user or a software simulations to provide
the RSML�e speci�cation with monitored variables and to evaluate the con-
trolled variables. As the IN�1 and OUT�1 relations are added to the RSML�e

speci�cation, the data provided (and consumed) by the model of the embedding
environment must be re�ned to re
ect the software inputs and outputs (INPUT
and OUTPUT) instead of the monitored and controlled variables (MON and
CON).

This can be achieved in two ways; (1) re�ne the model of the physical process
to produce INPUT and consume OUTPUT (incorporate sensors and actuators
into the model of the environment), or (2) add explicit and separate models of
the sensors and actuators to the simulation. In reality, the re�nement of the en-
vironmental model and the SOFT relation progress in parallel and is an iterative
process. The sensor and actuator models may be added one at a time and the
interaction with di�erent components may merit di�erent re�nement strategies.

754 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

Nimbus naturally allows any combination of the approaches mentioned above
to be used.

REQ Specification
(NimbusSim)

Room Control Panel
(Visual Basic)

Room Light Model
(Excel)

Facility Manager Shutoff
(User Input)

FacM Shutoff

User sets Window Intensity

User sets Window Intensity

User sets Wall Intensity

 User sets Wall Intensity Window Intensity
Wall IntensityT1, T3

Light Scene Buttons[1..4]
Set Button

Failure Indication

Light Level

Room Occupancy
(Excel)

Door Sensor
Motion Detector

Figure 17: The simulation with the re�ned notion of occupied

[Fig. 17] shows the re�ned simulation overview for the light control system.
We have replaced the user input for the room occupancy monitored variable with
an Excel spreadsheet to model the motion detectors and the doors in the room.
This spreadsheet now supplies the required motion detector and door status
inputs to the speci�cation. Also, the light model spreadsheet has been re�ned.

Nimbus provides a
exible framework in which a software speci�cation ex-
pressed in RSML�e can be executed while it interacts with various models of
the other components in a proposed system. Nimbus supports the re�nement
of the REQ relation to a SOFT relation by allowing easy interchange of com-
ponents in the environment. It is important to recognize the di�erence between
models which are good for representing the physical process versus models, like
RSML�e speci�cations, which are good for modeling the software control of the
process. Modeling the process itself accurately may require complex numerical
functions and simulations. These types of functions are not and should not be
within the scope of RSML�e. However, an accurate model of the process is key
to the success of speci�cation-based prototyping. In addition, Nimbus provides
the abilitiy to perform hardware-in-the-loop simulations. This
exibility allows
Nimbus to provide an environment for realistic evaluation of the system.

7 Evaluation and Discussion

In this report we have summarized our experiences with using RSML�e and the
Nimbus environment to model the required control behavior of the Light Control
System. Our experiences were generally positive and the modeling e�ort went
by without any major complications.

The model was developed by two graduate students over approximately three
weeks time (part time). Both students were very familiar with the language,
its formal semantics, and the Nimbus environment. Unfortunately, we did not
compile any accurate data on the e�ort required to complete the speci�cation.

755Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

The complete formal speci�cation is approximately 50 pages in length. This
may seem like a large speci�cation for such a simple problem, but the speci�ca-
tion is formatted for readability (a lot of white space and page breaks to make it
visually appealing) as well as informal English descriptions of the various parts
of the speci�cation.

The main problem we encountered during the speci�cation e�ort was the in-
completeness of the informal requirements provided in the problem description.
The formal speci�cation we developed forced resolution of many issues that
might otherwise have been passed over until the detailed design or implementa-
tion stages. The simulation and execution allowed us to evaluate di�erent panel
designs and helped clarify the requirements. In addition, the detailed nature of
an RSML�e model forces early adoption of a control strategy. In this e�ort we
found the notion of an external light sensor wholly unacceptable and modi�ed
the requirements accordingly. A less detailed modeling approach may defer this
issue until later and end up requiring a behavior that cannot be realized in a
physical system.

Naturally, the e�ort exposed some areas where our modeling approach needs
improvements.

7.1 Issues for Future Work

The main issue raised during the modeling e�ort was the lack of an array con-
struct (similar to what is available in Statecharts) in RSML�e. The light scenes
are concepts that are naturally modeled as an array of identical models (the
three user programmable light scenes and the default light scene are identical).
In our speci�cation, however, we had to explicitly include four sets of variables
to model the light scenes.

There is no technical reason why arrays have not been included in RSML�e.
We originally developed the tool support for RSML�e to prototype and eval-
uate various static analysis procedures, for instance, completeness and consis-
tency checking, reachability analysis, etc. Since arrays do not add any modeling
power|they are simply a syntactic nicety|but add considerable e�ort when
implementing a tool supporting the language, we deemed them super
uous for
the more theoretical work we were involved with at the time; to make the tool
development easier we omitted arrays from the language. Our subsequent ex-
periences, however, have convinced us that arrays are an absolute necessity in
practical modeling and we are currently extending our tool to support arrays.

References

[Faulk et al., 1992] S. Faulk, J. Brackett, P. Ward, and J Kirby, Jr. The CoRE method
for real-time requirements. IEEE Software, 9(5), September 1992.

[Harel and Pnueli, 1985] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In K.R. Apt, editor, Logics and Models of Concurrent Systems, pages 477{498.
Springer-Verlag, 1985.

[Harel et al., 1990] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working
environment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403{414, April 1990.

[Harel, 1987] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, pages 231{274, 1987.

756 Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

[Heimdahl and Leveson, 1996] Mats P. E. Heimdahl and Nancy G. Leveson. Com-
pleteness and consistency in hierarchical state-base requirements. IEEE Transactions
on Software Engineering, pages 363{377, June 1996.

[Heimdahl et al., 1998] Mats P.E. Heimdahl, Je�rey M. Thompson, and Barbara J.
Czerny. Speci�cation and analysis of intercomponent communication. IEEE Com-
puter, pages 47{54, April 1998.

[Heitmeyer et al., 1995a] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR�: A
toolset for specifying and analyzing requirements. In Proceedings of the Tenth Annual
Conference on Computer Assurance, COMPASS 95, 1995.

[Heitmeyer et al., 1995b] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency
checking of SCR-style requirements speci�cations. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering, March 1995.

[Heitmeyer et al., 1996] C.L. Heitmeyer, R.D. Je�ords, and B.G. Labaw. Automated
consistency checking of requirements speci�cations. ACM Transactions of Software
Engineering and Methodology, 5(3):231{261, July 1996.

[Jackson, 1995] Michael Jackson. The world and the machine. In Proceedings of the
1995 Internation Conference on Software Engineering, pages 283{292, 1995.

[Ja�e et al., 1991] Matthew S. Ja�e, Nancy G. Leveson, Mats P.E. Heimdahl, and
Bonnie E. Melhart. Software requirements analysis for real-time process-control sys-
tems. IEEE Transactions on Software Engineering, 17(3):241{258, March 1991.

[Leveson et al., 1994] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese.
Requirements speci�cation for process-control systems. IEEE Transactions on Soft-
ware Engineering, pages 684{706, September 1994.

[Leveson et al., 1999] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese.
Designing speci�cation languages for process control systems: Lessons learned and
steps to the future. In Seventh ACM SIGSOFT Symposium on the Foundations on
Software Engineering, volume LNCS 1687, pages 127{145, September 1999.

[Miller, 1999] Steven P. Miller. Modeling software requirements for embedded systems.
Technical report, Advanced Technology Center, Rockwell Collins, Inc., 1999. In
Progress.

[Parnas and Madey, 1991] David L. Parnas and Jan Madey. Functional documenta-
tion for computer systems engineering (volume 2). Technical Report CRL 237, Mc-
Master University, Hamilton, Ontario, September 1991.

[PD00] The Light Control Case Study: Problem Description, Journal of Universal
Computer Science, Special Issue on Requirements Engineering (This Volume).

[Thompson and Heimdahl, 1999] Je�rey M. Thompson and Mats P.E. Heimdahl. An
integrated development environment prototyping safety critical systems. In Tenth
IEEE International Workshop on Rapid System Prototyping (RSP) 99, pages 172{
177, June 1999.

[Thompson et al., 1999] Je�rey M. Thompson, Mats P.E. Heimdahl, and Steven P.
Miller. Speci�cation based prototyping for embedded systems. In Seventh ACM
SIGSOFT Symposium on the Foundations on Software Engineering, volume LNCS
1687, pages 163{179, September 1999.

[Whalen, 2000] Michael W. Whalen. A formal semantics for RSML�e. Master's thesis,
University of Minnesota, May 2000.

757Thompson J.M., Whalen M.W., Heimdahl M.P.E.: Requirements Capture ...

