
EÆcient Identi�cation of Classes of
P-Time Functions

Sandra Fontani

(University of Siena, ITALY

fontanis@mailsrv.unisi.it)

Abstract: We consider the problem of identifying a class of p-time functions in

eÆcient time. We restrict our attention to particular classes of p-time functions, called

uniform and we try to identify each function of such a class by guessing, after a small

number of examples, some index for it or its next value. In both cases we introduce

two eÆcient identi�cation paradigms, called eÆcient and very eÆcient identi�cation

respectively. We �nd a characterization for eÆcient identi�cation and, as a corollary,

we show that the entire class P is not eÆciently identi�able. A necessary condition

is shown for very eÆcient identi�cation, which becomes suÆcient if and only if P =

NP. We give some examples of well-known uniform classes which are very eÆciently

identi�able in both identi�cation paradigms.

Key Words: Learning Theory.
Category: I.2.6.

1 Introduction

In this paper we are concerned with the following question: when can we con-
sider an identi�cation process of a class of functions to be successful in a rea-
sonable (eÆcient) time? The main idea is to treat eÆciency in terms of polyno-
miality, so it is natural to restrict our attention to the class of polynomial-time
(p-time) functions, P . Informally, given a class of p-time functions together
with a class of representations (indexes) for them, we will require the learner
to be a p-time function and to become successful in a number of guesses poly-
nomially bounded in the least index (or in the length of the least index) of the
unknown function in the chosen representation class. This idea, as it stands, is
rather vague because we have to state precisely which identi�cation paradigms
we refer to and what kind of classes of p-time functions it is reasonable to choose.

Regarding the �rst problem we will consider two identi�cation paradigms, called
EX and NV . They correspond respectively to the idea of identifying a function
by constantly guessing, in the limit, an index for it (intuitively we \explain"
the unknown function, because an index for it can be thought as a code for a
program which computes it) or by correctly predicting, in the limit, its \next
value". Clearly, if the learner has to guess an index for a p-time function, it is

Journal of Universal Computer Science, vol. 6, no. 8 (2000), 759-780
submitted: 16/7/99, accepted: 25/7/00, appeared: 28/8/00  Springer Pub. Co.

reasonable to require such an index to be relative to a particular indexing for P .
Many de�nitions of indexing for P have been proposed [Buss 86]. We prefer to
introduce a notion which is very similar to the standard de�nition of acceptable
indexing for the class of partial recursive functions [Shoen�eld 58].

Regarding the second problem, it is reasonable to require that, for every index
h for a p-time function in a given class and sample S, the learner could check h
to be consistent with S in polynomial time. This is certainly ensured if there is
a polynomial-time algorithm which uniformly computes all the functions in the
class (universal function for the class). Classes of p-time functions having such
a property will be called uniform. We will see that the universal function chosen
for a given uniform class, will allow us to associate to every p-time function in
the class (at least) an index with respect to any particular acceptable indexing
for P . So the class of representations for the functions of a uniform class will
be completely speci�ed by the particular universal function adopted for it.

We will de�ne two eÆcient identi�cation paradigms for uniform classes only,
both in the EX and in the NV case. They will be distinguished by the size
of the bound for the number of guesses allowed for the learner to become suc-
cessful. More precisely, for every uniform class C with associated representation
class R, we say that C is eÆciently identi�able if the learner becomes successful
in a number of steps polynomially bounded by the least index of the unknown
function in R. We will say, instead, that C is very eÆciently identi�able, if the
learner becomes successful in a number of steps polynomially bounded by the
length of the least index of the unknown function in R. Since the length of each
index is logarithmic in the least index itself, very eÆcient identi�cation will im-
ply eÆcient identi�cation. Our paradigm shares with PAC learning [Kearns and
Vazirani 94] the requirement about eÆciency. Moreover, unlike PAC learning,
we do not deal with probability nor with approximations: we only deal with
exact, deterministic learning.

In Section 3 we formalize all concepts described above and we introduce the
notions of eÆcient and very eÆcient identi�cation for uniform classes in the
EX and NV identi�cation paradigms.

In Section 4 we exhibit some interesting examples of subclasses of P known in
mathematics which turn out to be uniform and very eÆciently identi�able.

In Section 5 we characterize eÆcient identi�cation of uniform classes and we
apply it to show that the entire class P is not eÆciently identi�able.

In Section 6 we �nd a necessary condition for very eÆcient identi�cation of
uniform classes whose suÆciency turns to be equivalent to the well-known open
problem P=NP .

760 S. Fontani: Efficient Identification of Classes of P-Time Functions

2 Preliminaries

!;Z , ; denote, respectively, the set of natural numbers, the set of integers and
the emptyset. !<! and 2<! denote the set of strings of natural numbers and the
set of binary strings respectively. For every a0; :::; an2f0; 1g, a0a1:::an denotes
the binary string whose elements are (in the given order) a0; a1; :::; an. In the
same manner we interpret (�0; :::; �n), if �0; :::; �n2! or �0; :::; �n22<!. We use
symbols f; g; h; '; :::;	;�;�;�; ::: for recursive functions. We omit the arity of
a function when it is clear from the context (or in the case of unary functions).
We write �xi:f(x0; :::; xn) (i� n) to mean that f depends on variable xi only
(for every j�n, j 6= i, xj is �xed).

We use p; q; p0; q0::: to indicate polynomials with positive integer coeÆcients. In
the case of polynomials in one variable we sometimes omit the argument.

We write minx[� � �x � � �] or �x[� � �x � � �] (resp. maxx[� � �x � � �]) to denote the
least (resp. the greatest) natural number for which the expression [� � �x � � �] is
true when \x" is interpreted with such a value. If S is a set, minS (maxS) de-
notes the least (the greatest) element of S and card(S) indicates the cardinality
of S.

2.1 Coding sequences

For every a2!, we code a by its binary expansion, so, if a=
Pn

i=0 �i2
i (n2!,

�i2f0; 1g), where either a=n=�0=0 or �n 6=0, we consider a=�n�n�1:::�0.

The length of a is the number of coeÆcients in its binary expansion and it is
denoted by jaj. Clearly, for every a 2 !, jaj= dlog2(a + 1)e (the least integer
� log2(a+ 1)), so we can approximate jaj by log2(a). Note that j0j=0.

The code for the numerical sequence a= (a0; :::; an) is constructed as follows.
We write the ai's in binary notation, obtaining a string of 0, 1 and commas. We
write such a string in reverse order. We replace each 0 by \10", each 1 by \11"
and each comma by \00". The resulting string is the binary representation
of the code of a, which we denote by < a0; :::; an >. For example, the code
of (3; 2; 4) is the number whose binary expansion is 101011001011001111: The
code of (a) is the binary expansion of a and the code of the empty sequence is
0. We use the previous method to code �nite sequences of binary strings too
(not representing numbers at all).

Notice that, for every (a0; :::; an), j<a0; :::; an> j=2(ja0j+:::+janj+n). Moreover
there is a uniform e�ective method for checking if a number is the code of a
�nite sequence, which works in a number of steps polynomial in the length of the
input sequence. We denote by Seq and Bseq the set of codes of �nite numerical
sequences and the set of codes of �nite sequences of binary strings respectively.

If �nally � is a �nite alphabet of symbols and �� is the set of �nite sequences
of symbols in �, we can codify each � 2�� in a similar manner. We associate
to each a2� a number (di�erent numbers for di�erent symbols). The code of

761S. Fontani: Efficient Identification of Classes of P-Time Functions

each � 2 �� is the code of the numerical sequence associated to it. Consider
for example �=fx; j;^;_; ; (;)g. Each propositional formula A in conjunctive
normal form (A 2 CNF) can be represented as a sequence of symbols of �.
Associate to each symbol in � the following numbers:

x j ^ _ ()
1 2 3 4 5 6 7

Hence, if for example A � x1 ^ (x2 _ x1), we write it as A � xj ^ (xjj _ xj)
and the code of A is the code of (5; 1; 2; 3; 6; 5; 1; 2; 2; 4; 1; 2; 7): We denote by
lth(A) the length of A in � and by dAe the code of A. Notice that, for every
A2CNF , if lth(A)=n, then jdAej � 2(3n+ n� 1)=8n� 2.

2.2 The class P

Throughout the paper we denote by P the class of functions which are com-
putable in deterministic polynomial time (the de�nition of P is quite standard
and can be found for example in [Buss 86]). Moreover we adopt the con-
vention that all functions have domain !k and codomain !. Without loss of
generality, we consider as a model of computation deterministic Turing ma-
chines (T.m.). If M is a T.m. and t : !n+1! ! is any function, then, for all
a0; :::; an 2 !, we write M(a0; :::; an) #� t(a0; :::; an) if M on input (a0; :::; an)
converges within t(a0; :::; an) steps of computation. In particular, M is de-
terministic polynomial time if and only if M(a0; :::; an) #� t(a0; :::; an) where
t(a0; :::; an)= p(ja0j; :::; janj) for some polynomial p. Sometimes, given a func-
tion f :!n+1!! for which we have �xed a T.m. M that computes it, we write,
by abuse of language, f(a0; :::; an) #� t(a0; :::; an) instead of M(a0; :::; an) #�
t(a0; :::; an). We often refer to the following p-time functions:

(1) bx2 c: the integer part of
x
2 (the greatest integer � x

2).

(2) s(x)=x + 1: the successor function.

(3)

x _�y =

�
x� y if x� y

0 otherwise

(4)

�(i; <a0; :::; an>)=

�
n+ 1 if i=0
ai�1 if 0<i�n+ 1

� is arbitrarily de�ned if i > n + 1 or if the second argument is not the code
of any sequence [Buss 86]. For simplicity, we write n+1 for �(0; <a0; :::; an>)
and, if x�n, we write ax for �(s(x); <a0; :::; an>). Moreover, for every n2!,
we let (n)x=�(s(x); n) and lth(n)=�(0; n): In particular, if �2Seq (�2Bseq),
say �=<a0; :::; an >, we have (�)x = ax, lth(�) =n + 1: We �nally recall that
P is closed under composition and limited iteration [Buss 86]. Informally, f is
de�ned by limited iteration, if it is de�ned by recursion, but the number of steps

762 S. Fontani: Efficient Identification of Classes of P-Time Functions

of such recursion is logarithmic in the input and, at each step, the output of f
is bounded by a (�xed) p-time function.

2.3 Identi�cation paradigms

Consider some acceptable indexing �0; :::; �n; ::: for the class of partial recursive
functions [Shoen�eld 58]. We recall two very natural identi�cation paradigms
for classes of total recursive functions (see [Odifreddi 99] for a survey).

De�nition 1 Let C be a class of total recursive functions. We say that C is
EX-identi�able if there is a total recursive function g such that, for every f 2C,

(9n0)(8n�n0)g(<f(0); :::; f(n)>)= i

for some i2! such that f=�i.

De�nition 2 Let C be a class of total recursive functions. We say that C is
NV -identi�able if there is a total recursive function g such that, for every f 2C,

(9n0)(8n�n0)g(<f(0); :::; f(n)>)=f(n+ 1):

3 EÆcient identi�cation setting

We de�ne a particular indexing for the class P . As noted in the introduction,
such an indexing will allow us to associate to each p-time function an index
which, in some way, has the same \complexity" as the function itself. For
instance, if f constantly assumes value n, then f may have an index bounded
by a polynomial in n. It is in fact reasonable to require that to the extent
that simple algorithms can be found for computing a p-time function, then
correspondingly small indexes can be given to it.

De�nition 3 An acceptable indexing for P is an enumeration '0; :::; 'n of (all
of) p-time functions that meets the following conditions:

(i) There exist a function �(i; x) and a polynomial p(i; x) such that, for every
i; x2!:

� �(i; x) #� p(i; x) (�ix:�(jij; jxj)2P):

� �(i; x)='i(x):

(ii) For every 	(i; x)2 P there exists h2 P strictly increasing such that, for
every i; x2!:

	(i; x)=�(h(i); x)='h(i)(x):

Such a function �(i; x) will be called a universal function for P .

763S. Fontani: Efficient Identification of Classes of P-Time Functions

Theorem 1 There exists an acceptable indexing for P , i.e. there exists a func-
tion �(i; x) satisfying the following conditions:

(i) �ix:�(jij; jxj)2P:

(ii) For every i2!, �x:�(i; x)2P:

(iii) For every f 2P there exists i2! such that f=�x:�(i; x):

(iv) For every 	(i; x)2 P there exists h2 P strictly increasing such that, for
every i; x2!, 	(i; x)=�(h(i); x).

The proof of Theorem 1 is based on the following technical result:

Proposition 1There exists a function �(i; x) such that:

(i) �ix:�(jij; jxj)2P:

(ii) For every i2!, �x:�(i; x)2P:

(iii) For every f 2P there exists i2! such that f=�x:�(i; x):

Proof The proof of Proposition 1 is quite standard, so we only sketch it. We
only de�ne the required function �(i; x), leaving to the reader the easy proof of
(i)�(iii). Let F (i; x; k) be the output of the Turing machineMi on input x after
k steps of computation, if Mi on input x halts within k steps of computation, 0
otherwise. It is obvious that F (i; x; k) converges in time linear in k. For every
s2Seq, for every i; x; k2! let:

G(i; s; x; k)=

�
(s)x if x<lth(s)
F (i; x; k) otherwise

�(i; x)=G((i)1; (i)2; x;minfjx+ 2ji; xg):

It is readily seen that � meets all requirements of Proposition 1. As for (iii), if f
is in P , let e; k be such thatMe is a T.m. computing f andMe(x)#� jx+2jk (k
depends on the polynomial giving a bound to the steps of computation of Me).
Without loss of generality, we can suppose that Me(x) #� jx+ 2je (e.g. adding
to the program for Me a certain number of \dummy" instructions which don't
a�ect the time of computation). Since e is �xed, from a certain x on, jx+2je<x.
If n is the least of such x, letting s=<f(0); :::; f(n)> and i=<e; s>, it is easy
to verify that f=�x:�(i; x).

Proof of Theorem 1 Let �(i; x) be the function de�ned in the proof of Proposi-
tion 1. Let for every i; x2!, �(i; x)=�((i)1; <(i)2; x>):

(i) By Proposition 1(i), there exists a polynomial t(i,x) such that, for all i; x2
!, �(i; x) #� t(i; x). Moreover there exist polynomials q(i) and r(i; x) such

764 S. Fontani: Efficient Identification of Classes of P-Time Functions

that (i)1#� q(i) and <(i)2; x>#� r(i; x). Hence, letting p(i; x)=t(q(i);r(i; x)),
�(i; x)#� p(i; x) (warning: � works in time polynomial in i; x, but not in jij,
jxj).

(ii) By Proposition 1(ii), for all i2!, there exists a polynomial q(x) (depending
on (i)1), such that, for all x 2 !, �(i; x) #� q(jxj). Moreover j< (i)2; x> j�
2(jij+ jxj+1). Hence, letting p(x)=q(2(jij+ jxj+1)), �(i; x)#�p(jxj).

(iii) Let f 2P and, for every x2!, g(x)=f((x)2). Clearly g2P , so there exists
e2! such that g=�x:�(e; x) (Proposition 1(iii)). Then:

�(<e; e>; x)=�((<e; e>)1; <(<e; e>)2; x>)=�(e;<e; x>)=
g(<e; x>)=f((<e; x>)2)=f(x):

If i =<e; e>, it follows that f=�x:�(i; x).

(iv) Let 	(i; x)2P and let, for every x2!, k(x)=	((x)1 ; (x)2). Clearly k2P ,
hence there is e2! such that k=�x:�(e; x) (Proposition 1(iii)). For all i; x2!:

�(<e; i>; x)=�((<e; i>)1; <(<e; i>)2; x>)=

�(e;<i; x>)=k(<i; x>)=	((<i; x>)1; (<i; x>)2)=	(i; x):

So, if we let h(i)=<e; i>, h2P and �ix:	(i; x)=�ix:�(h(i); x). Moreover h
is strictly increasing since, for every i; j2!, if i<j then <e; i><<e; j>.

q.e.d.

We now introduce classes of p-time functions which are computable in a uniform
and \eÆcient" way.

De�nition 4 Let C � P . We say that C is uniform if there exists 	(i; x) such
that:

(i) �ix:	(i; x)2P .

(ii) For every i2!; �x:	(i; x)2C:

(iii) For every f 2C, there exists i2! such that f=�x:	(i; x):

Such a function 	(i; x) is called a universal function for C.

Notation 1 (1) By De�nition 3, if C is a uniform class with universal function
	(i; x), then there exists h2P strictly increasing such that, for every i; x2!,
	(i; x)='h(i)(x). We call h a 	-indexing for C and we write:

C=Lh=f'h(i) : i2!g:

(2) Let Lh=f'h(i) : i2!g be a uniform class. For every i2! we de�ne:

m(i)=minfj2! :'h(j)='h(i)g:

In other words, for every 'h(i)2Lh, 'h(i)='h(m(i)) and the �rst occurrence of
'h(i) in the enumeration of the class induced by h is at step m(i) (we refer to
m(i) as to the \least index" of 'h(i) in Lh).

765S. Fontani: Efficient Identification of Classes of P-Time Functions

We are now in a position to introduce the two criteria of eÆcient identi�ca-
tion informally described in the introduction. As speci�ed before, they will
be applied to uniform classes and they will be referred both to EX and NV

identi�cation paradigms.

De�nition 5 Let Lh=f'h(i) : i2!g be a uniform class. We say that:

(i) Lh is EX-eÆciently identi�able (Lh 2EXe�) if there exist g 2 P and a
polynomial p such that, for every 'h(i) 2 Lh, g EX-identi�es 'h(i) in at
most p(m(i)) guesses, i.e.:

(9n0<p(m(i)))(8n�n0)g(<'h(i)(0); :::; 'h(i)(n)>)= i0

for some i02! such that 'h(i)='h(i0).

(ii) Lh is NV -eÆciently identi�able (Lh 2NV e�) if there exist g 2 P and a
polynomial p such that, for every 'h(i) 2Lh, g NV -identi�es 'h(i) in at
most p(m(i)) guesses, i.e.:

(9n0<p(m(i)))(8n�n0)g(<'h(i)(0); :::; 'h(i)(n)>)='h(i)(n+ 1):

De�nition 6 Let Lh=f'h(i) : i2!g be a uniform class. We say that:

(i) Lh is EX-very eÆciently identi�able (Lh 2 EXv-e�) if there exist g 2 P

and a polynomial p such that, for every 'h(i) 2Lh, g EX-identi�es 'h(i)
in at most p(jm(i)j) guesses, i.e.:

(9n0<p(jm(i)j))(8n�n0)g(<'h(i)(0); :::; 'h(i)(n)>)= i0

for some i02! such that 'h(i)='h(i0).

(ii) Lh is NV -very eÆciently identi�able (Lh 2NV v-e�) if there exist g 2 P
and a polynomial p such that, for every 'h(i) 2Lh, g NV -identi�es 'h(i)
in at most p(jm(i)j) guesses, i.e.:

(9n0<p(jm(i)j))(8n�n0)g(<'h(i)(0); :::; 'h(i)(n)>)='h(i)(n+ 1):

The following relations between the previous paradigms are easily estabilished:

Proposition 2 Let Lh=f'h(i) : i2!g be a uniform class.

(i) Lh2EXe�) Lh2NV e� :

(ii) Lh2EXv-e�) Lh2NV v-e� :

(iii) Lh2EXv-e�) Lh2EXe� :

766 S. Fontani: Efficient Identification of Classes of P-Time Functions

(iv) Lh2NV v-e�) Lh2NV e� :

We can easily �nd uniform classes which are EX-very eÆciently identi�able,
hence EX-eÆciently identi�able and NV -(very) eÆciently identi�able. But the
reverse of the latter two items of Proposition 2 does not hold, as shown in
Example 1 (3) below.

Examples 1 (1) Let C = ffi : i2 !g such that, for every i; x2 !, fi(x) = i. If
	(i; x) = i, clearly 	(i; x) is a universal function for C. Moreover, if h 2 P is
a 	-indexing for C, 'h(i)(x) = fi(x), m(i) = i, C =Lh = f'h(i) : i2 !g. De�ne,
for every a0; :::; an 2 !, g(< a0; :::; an >) = a0: It is obvious that g 2 P and g

EX-identi�es (NV -identi�es) every 'h(i)2Lh after the �rst guess.

(2) For every �nite uniform class Lh, Lh2EXv-e� , suppose card(Lh) = k and
let 	(i; x) be a universal function for Lh. Let i0; :::; ik�1 be such that, for every
r; r0�k� 1, if r 6=r0, then 'h(ir) 6='h(ir0) and Lh=f'h(i0); :::; 'h(ik�1)g. Clearly
we can �nd n0 such that, for every r; r

0�k�1, ir; ir0�n0 and there exists x�n0
such that 'h(ir)(x) 6='h(ir0)(x). For every a0; :::; an2! let:

g(<a0; :::; an>) =

8<
:

i where i=�j�n[(8x�n)((j; x)=ax)],
if such i exists

0 otherwise

It is easy to verify that g2P and that g identi�es each function of Lh after n0
examples.

(3) Let C=ffi : i2!g where f0(x)=1 and, for every i2!nf0g,

fi(x)=

�
1 if x� i

0 otherwise

It is easy to prove that, for all i, fi can be identi�ed after i examples but, if p(x)
is any polynomial and i>p(jij), it cannot be identi�ed with p(jij) examples.
In a similar way the reader can show that Lh2NV e� but Lh 62NV v-e� .

Proposition 2 and Examples 1(2) suggest us to investigate EX-very eÆcient
identi�ability of in�nite uniform classes. This is the aim of the next sections.

4 Uniform classes in EXv-e�

Some remarkable in�nite uniform classes turn out to be EX-very eÆciently
identi�able (hence NV -very eÆciently identi�able). Two interesting examples
are o�ered by the class of \remainder" functions and the class of polynomials
with positive integer coeÆcients in one variable.

767S. Fontani: Efficient Identification of Classes of P-Time Functions

4.1 Class of remainder functions

Notation 2 For every a; b; n2!, n 6=0; 1, we denote by re(a; n) the remainder
of a divided by n. If a is congruent to b modulo n, we write a �n b, while,
if n divides a, we write nja. We denote by M:C:D:(a; b) and m:c:m:(a; b),
respectively, the greatest common divisor and the least common multiple of a
and b.

Notation 3 Let RMOD=ffx :x2!g where, for every x; n 2 !,

fx(n)=

�
0 if n=0 or n=1
re(x; n) otherwise

Let:

	(x; n)=

�
0 if n=0 or n=1
re(x; n) otherwise

	(x; n) is a universal function for RMOD and, if h 2P is a 	-indexing, fx(n)=
'h(x)(n) and RMOD=Lh=f'h(x) :x2!g.

Proposition 3 Let 	(x; n)2P be the universal function for RMOD de�ned in
Notation 3 and let h be a 	-indexing. Then RMOD=Lh and:

(i) Lh2EXv-e� :

(ii) Lh2NV v-e� :

The proof of Proposition 3 is based on some known results of Number Theory
[Keng 82], which we brie
y summarize below, and on Procedure 1.

Proposition 4 There exists a p-time algorithm which computes the greatest
common divisor of any two natural numbers (Euclid's Algorithm).

Corollary 1 The function m:c:m:(x; y) is in P .

De�nition 7 Let a; b2!. We call the inverse of a modulo b (if it exists), z2!
such that za �b 1.

Proposition 5 Let a; b 2 !. If a and b are relatively prime, there exists the
inverse of a modulo b. Such an element can be computed in time polynomial in
jaj and jbj.

We now de�ne a function g associating to every < k1; :::; kn >2 Seq a natural
number k0n such that, if we let an=m:c:m:(2; 3; :::; n+1) and if <k1; :::; kn> is
the code of the sequence of remainders of some x2! modulo 2; 3; :::; n+1, then
k0n<an and there exists xn such that x=anxn + k0n:

768 S. Fontani: Efficient Identification of Classes of P-Time Functions

PROCEDURE 1

Step 0 Let:
g(<;>)=0 (k01=0):

g(<k1>)=k1 (k01=k1):

Step n+1 Suppose we have computed g(< k1; :::; kn >) (therefore k0n). We
distinguish the following cases:

(i) There exists i�n+ 1 such that ki� i+ 1. Let:

g(<k1; :::; kn; kn+1>)=0 (k0n+1=0)

(the input sequence is not the sequence of remainders of any number).

(ii) For every i�n+ 1, ki<i+ 1.

(1) Compute an=m:c:m:(2; 3; :::; n+ 1).

(2) Compute cn=M:C:D:(an; n+ 2):

(3) Compute: en=
n+2
cn

, dn=
an
cn
, fn=

k0n�kn+1

cn
:

(4) Compute un such that undn�en 1:

(5) Compute sn such that 0�sn<en and sn�en�unfn.

If �unfn�0, sn=re(�unfn; en):

If �unfn<0, compute re(unfn; en)=rn.

If rn>0, let sn=en� rn:

If rn=0, let sn=0:

Let:

g(<k1; :::; kn; kn+1>)=k0n+1=re(ansn + k0n; anen):

It is easy to verify the existence of fn and un as required by Procedure 1 (ii)(3),
(4). Moreover, regarding Procedure 1 (ii)(5), note that in each case sn satis�es
the required property. In particular, when �unfn < 0: if rn > 0, then sn �en

en� rn�en�rn�en�unfn, while if rn=0, then sn �en 0�en unfn �en�unfn. It
is also straightforward to prove that g2P , since it is de�ned by limited iteration
involving p-time functions (as M:C:D:(x; y) and m:c:m:(x; y)).

Proposition 6 Let x2! and let k1; :::; kn; kn+1; ::: be, respectively, the remain-
ders of x modulo 2; :::; n+1; n+2:::. Let, for every n2!, k0n be the output of g
on input <k1; :::; kn> (g de�ned in Procedure 1). Then

(8n)[(k0n<an) ^ (9xn)(x=anxn + k0n)]:

769S. Fontani: Efficient Identification of Classes of P-Time Functions

Proof By induction on n.
n=1 Clearly a1=2 and k01=k1=re(x; 2): So there exists x1 such that:

x=2x1 + k1=a1x1 + k01:

Inductive step Suppose that k0n<an and that there exists xn such that:
x=anxn + k0n: (1)

Since x�n+2 kn+1 (kn+1<n+ 2), there exists z such that:

x=(n+ 2)z + kn+1: (2)

By (1) and (2) it follows that:

x=anxn + k0n=(n+ 2)z + kn+1: (3)

If cn=M:C:D:(an; n+2), then cnj(n+2)z� anxn, hence cnjk0n� kn+1. De�ne:

dn=
an
cn

en=
n+2
cn

fn=
k0n�kn+1

cn
:

Clearly an+1=anen and, as noted before, there exists the inverse of dn modulo
en, un (i.e. undn�en1): Let sn be such that 0� sn<en and sn�en�unfn. By
de�nition of dn, en, fn and (3), we obtain dncnxn + k0n=encnz + kn+1; hence

encnz � dncnxn=k0n � kn+1=cnfn , enz � dnxn=fn ,

unenz � undnxn=unfn: (4)

But unenz �en 0, undn �en 1 and unfn �en �sn, so, by (4), xn �en sn: Then
there exists x0n such that xn=enx

0
n + sn and, by (1),

x=anenx
0
n + ansn + k0n: (5)

Moreover, by de�nition of k0n+1, there exists x
00
n such that:

ansn + k0n=anenx
00
n + k0n+1: (6)

Finally let xn+1=x0n + x00n. By (5) and (6) we obtain:

x=anen(x
0
n + x00n) + k0n+1=an+1xn+1 + k0n+1:

q.e.d.

Proposition 3 Let 	(x; n)2P be the universal function for RMOD de�ned in
Notation 3 and let h be a 	-indexing. Then RMOD=Lh=f'h(x) :x2!g and:

(i) Lh2EXv-e� :

(ii) Lh2NV v-e� :

Proof (i) Let g be the function de�ned in Procedure 1. For every b0; :::; bn2!,
let:

g0(<b0; :::; bn>)=

�
0 if n=0 or n=1
g(<b2; :::; bn>) otherwise

It is obvious that g0 2 P (g 2 P). Let 'h(x) 2 Lh and let k1; k2; ::: be the
remainders of x modulo 2; 3; ::: respectively. The in�nite sequence fangn2!
(an=m:c:m:(2; :::; n+ 1)) is increasing, so there exists n2! such that an>x:
let n0 =minfn2 ! : an > xg: For every n� n0, if k

0
n = g(< k1; :::; kn >), there

770 S. Fontani: Efficient Identification of Classes of P-Time Functions

exists xn 2! such that x=anxn+k
0
n (Proposition 6). Since an>x, it must be

the case that xn=0 and k0n=x: Hence, for every n>n0,

g0(<'h(x)(0); :::; 'h(x)(n)>)=g(<k1; :::; kn�1>)=k0n�1=x;

and g EX-identi�es 'h(x) in at most n0 + 2 guesses.

We claim that n0�4jxj2�1. Let � be the product of maximal powers of primes
less or equal to 4jxj2 (i.e. for every prime number p such that p � 4jxj2, we
consider the greatest n such that pn�4jxj2). Obviously �=m:c:m:(2; :::; 4jxj2)=
a4jxj2�1: We want to show �>x, proving our claim and Proposition 3 as well.
Let p � 2jxj, p a prime number. If pn is a maximal power of p such that
pn�4jxj2, pn+1>4jxj2, so pn>2jxj: By the Prime Number Theorem [Keng 82],
for every ">0 and for suÆciently large x, the number of prime numbers less or
equal to 2jxj, �(2jxj), is such that:

�(2jxj) � 2jxj
log2(2jxj)

� (1�")� 2jxj
3
2 �log2(jxj)

� (1�")

(for jxj > 3). Letting for example " = 1
4 , for suÆciently large x, we obtain

�(2jxj)� jxj
log2(jxj)

; hence

��(2jxj)
jxj

log2(jxj) : (1)

Since 1+log2(jxj)
log2(jxj)

> 1; jxj
log2(jxj)

�(1 + log2(jxj)) > log2x: But this is equivalent to

saying (2jxj)
jxj

log2(jxj) >x. Hence, by (1),

�=a4jxj2�1�(2jxj)
jxj

log2(jxj) >x:

It follows that n0�4jxj2�1, so g0 EX-identi�es 'h(x) in at most 4jxj2+1 guesses
(more precisely in at most 4jxj2+x0 guesses for some constant x0). Then
Lh2EXv-e� :

(ii) Immediate from (i) (Proposition 2(ii)).
q.e.d.

4.2 Class of polynomials

Let P1be the class of polynomials with positive integer coeÆcients in one varia-

ble. P1 is a uniform class with universal function 	(k; x)=
Plth(k)�1

i=0 �(i+1; k)xi.
For every p2P1, if p(x)=anx

n + an�1x
n�1 + ::: + a1x + a0, clearly p(0)=a0,

p(1)=an + an�1 + :::+ a0 and n�blog2(p(2))c. The next procedure computes
the degree of p and its coeÆcients in eÆcient time.

PROCEDURE 2

Let � 2 Seq be given, say � =< b0; :::; bn >. We start from the following ob-
servation: if there exists a polynomial p(x) of degree � n such that b0= p(0),
b1=p(1),..., bn=p(n), there must be u0; :::; un2! such that:

771S. Fontani: Efficient Identification of Classes of P-Time Functions

u0=b0
u0 + u1 + :::+ un=b1
u0+2u1+ :::+2nun=b2 (1)
...
u0 + nu1 + :::+ nnun=bn

Our learning algorithm is given by the function � which associates to each
�=<b0; :::; bn> the code of the polynomial whose coeÆcients are given by the
solution of the system (1) (if uk 6=0 and uk+1=uk+2= :::=un=0 we output the
code of the polynomial u0+u1x+ :::+ukx

k, i.e. we ignore the zero's). Note that
the matrix of coeÆcients of system (1) described above has a Vandermonde's
determinant, which is always non-zero. So the system (1) has a unique solution.
Moreover, it is suÆcient to �nd an algorithm that solves the system (1) in time
polynomial in j�j. Since j�j�jb0j+ jb1j+ :::+ jbnj, such an algorithm is easy to
give. Once lth(�) equals the degree of the polynomial to be identi�ed plus 1,
we reach the correct guess. Thus the number of examples we need to identify a
polynomial is less than the length of the code of the polynomial itself.

5 A characterization of eÆcient identi�cation

We want to characterize eÆcient identi�cation of uniform classes in both iden-
ti�cation paradigms. If Lh is a uniform class we indicate by (�) the following
condition:

(9 polynomial p)(8i)(8j<m(i))(9x�p(m(i)))('h(j)(x) 6='h(i)(x)):

Intuitively: in time polynomial in the \least index" for 'h(i) in Lh, m(i), we
can distinguish 'h(i) from every 'h(j) with index less than m(i).

Theorem 2 Let Lh=f'h(i) : i2!g be a uniform class.

(i) Lh2EXe� , Lh satisfies (�):

(ii) Lh2NV e� , Lh satisfies (�):

Proof We prove (i). Proof of (ii) is similar, therefore it is left to the reader. Let
	(i; x) be a universal function for Lh.
(() Assume that Lh satis�es (�). Let p(x) be a polynomial such that

(8i)(8j<m(i))(9x�p(m(i)))('h(j)(x) 6='h(i)(x)):

Let g be such that, for every a0; :::; an2!:

g(<a0; :::; an>)=

8<
:

i where i=�j�n[(8x�n)((j; x)=ax)],
if such i exists

0 otherwise

772 S. Fontani: Efficient Identification of Classes of P-Time Functions

g2P . For every <a0; :::; an>, g takes at most (n+1)
2 steps of computation of

	 on input (j; x) with j; x�n and each time it compares 	(j; x) with ax. Now
n< j< a0; :::; an >j and 	(i; x) 2 P , so the running time of g is bounded by a
polynomial in j<a0; :::; an>j: Let 'h(i)2Lh. For every n�p(m(i)), m(i)�n and
if j <m(i) there exists x�n such that 	(j; x) ='h(j)(x) 6='h(i)(x) ((�)). For
every x2!, 	(m(i); x)='h(i)(x). So for every n�p(m(i)),

g(<'h(i)(0); :::; 'h(i)(n)>)=m(i):

Hence g EX-identi�es 'h(i) in at most p(m(i))+1 guesses, and Lh2EXe� .

()) Let g2P and the polynomial p be such that, for every 'h(i) 2Lh, g EX-
identi�es 'h(i) in at most p(m(i)) guesses. We show that Lh with p satis�es (�).
Assume by contradiction:

(9i)(9j <m(i))(8x�p(m(i)))('h(j)(x)='h(i)(x)): (1)

If j <m(i), then 'h(j) 6='h(i). Let ~n=minfx2! :'h(j)(x) 6='h(i)(x)g: By (1),
~n>p(m(i)) and, obviously, p(m(i))�p(m(j)). Since g EX-identi�es 'h(i) in at
most p(m(i)) guesses, g(<'h(i)(0); :::; 'h(i)(~n � 1)>) = i0 for some i0 2 ! such
that 'h(i) ='h(i0). By de�nition of ~n, for every x� ~n � 1, 'h(j)(x) ='h(i)(x),
hence g(<'h(j)(0); :::; 'h(j)(~n�1)>)= i0 where 'h(i0) 6='h(j): So g EX-identi�es
'h(j) in a number of guesses> ~n>p(m(j)) contradicting the assumptions above.
Therefore Lh with p satis�es (�).

q.e.d.

Corollary 2 Let Lh=f'h(i) : i2!g be a uniform class. Then EX e� =NV e� :

Proof Immediate by Theorem 2.
q.e.d.

Corollary 2 allows us to speak about eÆcient identi�cation of a uniform class
without specifying the particular identi�cation paradigm we refer to. More-
over Theorem 2 provides a useful method for detecting classes that fail to be
eÆciently identi�able.

Example 1 Let C=ffi : i2!g where f0(x)=0 and, for every i2!nf0g,

fi(x)=

�
1 if x=2i

0 otherwise

De�ne:

	(i; x)=

�
1 if i 6=0 and x=2i

0 otherwise

	(i; x) is a universal function for C and, if h is a 	-indexing, for every i; x2!,
'h(i)(x)=fi(x), m(i)= i, C=Lh=f'h(i) : i2!g.

It is immediate to verify that Lh does not satisfy condition (�). Hence Lh is
not eÆciently identi�able.

773S. Fontani: Efficient Identification of Classes of P-Time Functions

An important application of Theorem 2 deals with eÆcient identi�cation of
the entire class P . We notice that P is not a uniform class, because there
is no universal p-time function for P . But we can overcome this problem by
considering the following:

De�nition 8 Let C�P . We say that C is weakly uniform if there exist 	(i; x),
h(i) and a polynomial p(i; x) such that:

(i) �ix:	(i; x) #� p(i; x).

(ii) For every i2!; �x:	(i; x)2C:

(iii) For every f 2C, there exists i2! such that f=�x:	(i; x):

(iv) h is strictly increasing and, for every i2!; �x:	(i; x)='h(i)(x):

Such a function 	(i; x) is called a universal function for C.

Obviously P is a weakly uniform class by taking some acceptable indexing �
for P as universal function and the identity function as �-indexing. Moreover
De�nition 5 and De�nition 6 can be applied as well to weakly uniform classes
and it is easy to verify that Theorem 2 remains true for these classes too. So
P is eÆciently identi�able if and only if P satis�es condition (�). We use this
result to prove the following:

Theorem 3 P is not eÆciently identi�able with respect to any acceptable in-
dexing.

The proof of Theorem 3 is based on the following propositions, in which we
refer to any acceptable indexing �(i; x) for P and to the identity function as a
�-indexing, so that P =f�x:�(i; x) : i2!g=f'i : i2!g:

Proposition 7 If P is eÆciently identi�able with respect to �(i; x) then P

satis�es (�), i.e.:

(9 polynomial p)(8i)(8j<m(i))(9x�p(m(i)))('j (x) 6='i(x)):

Proof Immediate from Theorem 2, since P is weakly uniform.
q.e.d.

Proposition 8 Let M = fm(i) : i 2 !g be the set of the least �-indexes for
functions in P . If P satis�es (�), then M is recursive.

Proof It suÆces to notice that

M=fm(i) : i2!g=fi2! : (8j<i)(9x�p(i))(�(j; x) 6=�(i; x))g

is an EXP-TIME set, since it is de�ned by EXP-TIME relations with polyno-
mially bounded quanti�ers. So M is recursive.

q.e.d.

774 S. Fontani: Efficient Identification of Classes of P-Time Functions

Proposition 9 Let M = fm(i) : i 2 !g be the set of the least �-indexes for
functions in P . If M is recursive then R0= f(i; j) : 'i = 'jg is a recursive
relation.

Proof First of all, notice that R0= f(i; j) :m(i) =m(j)g, so it suÆces to show
that m(i) is a recursive function. For every i2!, let Mi=fj2M : j� ig. Mi is
a �nite non empty set (m(i)2Mi). Moreover, if j; j02Mi, j 6=j0, then 'j 6='j0 ,
because Mi contains only least indexes of functions in P (less than or equal
to i). m(i) can be computed by eliminating from Mi all indexes j such that
'j 6='i. We proceed by steps: at each step n we compute all functions with an
index in Mi till input n, eliminating those which di�er from 'i on some of these
input. More precisely, if Mi=fj0; :::; jkg, we let:

M0
i =Mi, Mn+1

i =fj2Mi : (8x�n+ 1)('j(x)='i(x))g:

If j 2Mi and 'j 6= 'i there exists n 2 ! such that 'j(n) 6= 'i(n), so j 62Mn
i .

For suÆciently large n, Mn
i contains one element only: this will be the value

assumed by m(i).
q.e.d.

Corollary 3 If P is eÆciently identi�able with respect to �(i;x) then R0 =
f(i; j) :'i='jg is a recursive relation.

Proof Immediate by Proposition 7, Proposition 8, Proposition 9.
q.e.d.

We are now ready to prove Theorem 3.

Theorem 3 P is not eÆciently identi�able with respect to any acceptable in-
dexing.

Proof Let K=fx2! :�x(x) #g. By the MRDP-Theorem [Davis 58] there exists
R(x; y)2P such that K=fn2! :9yR(n; y)g. Let:

	(n; x)=

�
0 if (8y�jxj):R(n; y)
1 otherwise

Obviously 	(n; x)2P . Assume for a contradiction that P is eÆciently identi�-
able with respect to some acceptable indexing �(i; x). Then R0=f(i; j) :'i='jg
is a recursive relation (Corollary 3). Moreover, since 	(n; x) 2 P , there exists
h2P such that, for every n; x2!, 	(n; x)='h(n)(x) and:

�x:	(n; x)=0, (8x)(8y�jxj):R(n; y), (8y):R(n; y), n 62K: (1)

Let n0 62K (for instance, let n0 be an index for the empty function). By (1),
�x:	(n0; x)=0 and so, for every i2!:

R0(h(i); h(n0)), 'h(i)='h(n0) , �x:	(i; x)=�x:	(n0; x)=0: (2)

By (1) and (2) it follows:

775S. Fontani: Efficient Identification of Classes of P-Time Functions

i 62K , �x:	(i; x)=0, R0(h(i); h(n0));

and K is a recursive set, a contradiction. So P is not eÆciently identi�able with
respect to any acceptable indexing.

q.e.d.

6 EX-very eÆcient identi�cation

The problem of �nding a characterization for EX-very eÆcient identi�cation
turns out to be more complex than in the case of eÆcient identi�cation. We
consider a condition, (�0), which is the natural reduction of condition (�) to the
very eÆcient setting. We shall see that, even though (�0) remains a necessary
condition for EX-very eÆcient identi�cation, its suÆciency is equivalent to
P =NP . The reason for such a discrepancy with respect to the eÆcient case
is to be found in the fact that, even if each function f in a given uniform class
can be distinguished by any other of lesser index in time polynomial in the
length of its least index, the learner may not output the least index of f in time
polynomial in the length of the input (the least index of f can be in general
too large with respect to this length). This is the content of Theorem 4 and
Theorem 5.
Let Lh be a uniform class. Let (�0) denote the following condition:

(9 polynomial p)(8i)(8j<m(i))(9x�p(jm(i)j))('h(j)(x) 6='h(i)(x)):

Theorem 4 Let Lh=f'h(i) : i2!g be a uniform class. Then:

(i) Lh2EX
v-e�) Lh satisfies (�0).

(ii) Lh2NV v-e�) Lh satisfies (�0).

Proof Analogous to Theorem 2.
q.e.d.

Theorem 4 provides a useful method to prove that uniform classes are not very
eÆciently identi�able.

Example 2 Let Lh=f'h(i) : i2!g be the class de�ned in Examples 1(3). We
proved that it is not very eÆciently identi�able in any identi�cation paradigm.
The same result follows by observing that Lh does not satisfy (�0):

We now show that the reverse implication of Theorem 4 is a \hard" problem.

Theorem 5 The following are equivalent:

(i) Every uniform class satisfying (�0) is EX-very eÆciently identi�able.

(ii) P=NP.

776 S. Fontani: Efficient Identification of Classes of P-Time Functions

Proof (i))(ii) Consider the problem of deciding whether or not a propositional
formula A in conjunctive normal form (A 2 CNF) is satis�able (A 2 SAT).
This problem is NP-complete. We want to show that if (�0) is suÆcient for
EX-very eÆcient identi�cation of uniform classes, then SAT is solvable with a
deterministic polynomial time algorithm. This will imply P =NP . For every
A2CNF , let V arA=fxi : eitherxi or xi occurs in Ag. We call � :V arA!f0; 1g
a truth assignment on A and we let AssA = f� : � truth assignment on Ag:
Moreover we denote by:
- [dAe]i (i�jdAej), the i-th bit in the binary expansion of dAe.
- �(A), the truth value of A on assignment � ; j� j, the cardinality of rng(�).
- dAe (d�e), the code of A (�).

If �;� 0 2AssA, then j� j=j� 0 j. Moreover, a truth assignment can be regarded as
a �nite 0�1 sequence, hence it is coded as described in Section 2.1. We consider
formulas in conjunctive normal form in the alphabet �= fx; j;^;_; ; (;)g and
we suppose them coded as shown in Preliminaries. We recall that, for every
n 2 !, we can check if n is the code of some A 2 CNF and then decode it in
time polynomial in jnj. The same properties hold for n2COD, where COD=
f<dAe; d�e>: A 2 CNF; � 2AssAg: We �nally note that, if n =< dAe; d�e >,
jnj = 2(jdAej + jd�ej + 1), so jdAej � jnj � 4jdAej + 2. Moreover, for some
polynomial p0, jdAej�p0(lth(A)).

Let 	(n; x) be such that, for every n; x2!, the following conditions hold:

- if n2COD, say n=<dAe; d�e> for some A2CNF , � 2AssA, let

	(n; x) =

8<
:

[dAe]x if x < jdAej
1 if x = jdAej+ 4 and �(A) = 1
0 otherwise

- if n 62COD, let 	(n; x)=0:

Intuitively, if n2COD and n =<dAe; d�e>, 	(n; x) assumes values:

[dAe]0; :::; [dAe]jdAej�1; 0; 0; 0; 0; �(A); 0; 0:::::

where �(A) = 0 or �(A) = 1. By the previous remarks, it follows 	(n; x) 2 P .
If h 2 P is a 	-indexing, then for every n; x 2 !, 	(n; x) = 'h(n)(x), and
Lh=f'h(n) :n2!g is uniform. We verify that Lh satis�es (�0). Let 'h(n)2Lh.
If n 62COD, then m(n)=0 and (�0) is trivial. If n2COD, say n=<dAe; d�e>
for some A2CNF , � 2AssA, consider j<m(n):

- If j 62COD, then 	(j; 0)=0, while 	(n; 0)=[dAe]0=1. So (�0) is satis�ed.

- If j2COD, say j=<dA0e; d� 0e> for some A02CNF , � 02AssA0 , then we can
distinguish the following cases:

(1) jdA0ej< jdAej: there exists x< jdAej+ 1 such that 	(j; x) 6=	(n; x):

(2) jdAej< jdA0ej: there exists x< jdA0ej+ 1 such that 	(j; x) 6=	(n; x):

777S. Fontani: Efficient Identification of Classes of P-Time Functions

(3) jdA0ej=jdAej: if dA0e6=dAe, then there is x�jdAej such that 	(j; x)6=	(n; x):
If dA0e=dAe, then � 02AssA, j� j= j� 0j, � 0(A) 6= �(A), so 	(j; jdAej + 4) 6=
	(n; jdAej+ 4):

In cases (1), (3) it results that jdAej+1�jm(n)j, while in case (2), since j<m(n),
jdA0ej+1�j<dA0e; d� 0e>j= jjj�jm(n)j: So Lh satis�es (�0) with p(x)=x.

By hypothesis, (�0) is suÆcient for EX-very eÆcient identi�cation of uniform
classes, so Lh 2EXv-e� . Let g2P and p be such that, for every 'h(n) 2Lh, g
EX-identi�es 'h(n) in at most p(jm(n)j) guesses. For every A2CNF , consider
�A2Seq such that lth(�A)=p(4jdAej+2) and

�A =< [dAe]0; :::; [dAe]jdAej�1; 0; 0; 0; 0; 1; 0; :::; 0> :

Let g(�A) = m: If A 2 SAT , then m =< dAe; d�e > for some � 2 AssA such
that �(A)=1. In fact, by assumption, g EX-identi�es 'h(<dAe;d�e>) in at most
p(jm(< dAe; d�e>)j) guesses, and p(jm(< dAe; d�e>)j)� p(4jdAej+2)= lth(�A).
On the other hand, if m=<dAe; d�e> and �(A)=1, then A2SAT . So:

A2SAT , g(�A) =<dAe; d�e> with � 2AssA; �(A)=1: (1)

It is straightforward to verify that, given A 2 CNF and the polynomial p,
g(�A) and p(4jdAej + 2) can be computed in time polynomial in jdAej. Now,
if g(�A) =m, we can check if m2COD and if (m)1= dAe in time polynomial
in jmj (jmj � jdAej). Moreover, if (m)2 = � (� 2 AssA), we can decode dAe
and compute �(A) in time polynomial in jdAej. But jdAej�p0(lth(A)) for some
polynomial p0. So, by (1), the problem of deciding if A2SAT is solvable in time
polynomial in lth(A).

(ii)) (i) Let Lh=f'h(i) : i 2 !g be a uniform class with universal function
	(i; x). Suppose that Lh satis�es (�0) by p, i.e.:

(8i)(8j < m(i))(9x � p(jm(i)j))('h(j)(x) 6= 'h(i)(x)):
Let g be such that, for every a0; :::; an2!:

g(<a0; :::; an>)=

8<
:

i where i=�j� 2n[(8x�n)((j; x)=ax)],
if such i exists

0 otherwise

g can be computed by binary search in polynomial-time using the NP oracle:

R(�; y; z)�(y + z��) ^ (9i�y + z)

[(y� i) ^ (8x<lth(�))(�x=	(i; x))]:

If P=NP , then R is in P , hence g2P: Let 'h(i)2Lh. If j<m(i), by (�0), there

exists x � p(jm(i)j) such that 'h(j)(x) 6= 'h(i)(x). Moreover m(i) < 2p(jm(i)j).
So, for every n�p(jm(i)j),

g(<'h(i)(0); :::; 'h(i)(n)>)=m(i)

and g EX-identi�es 'h(i) in at most p(jm(i)j) + 1 guesses. This concludes the
proof of the theorem.

778 S. Fontani: Efficient Identification of Classes of P-Time Functions

q.e.d.

We conclude this section with a result concerning the relations between NV v-e�

and EXv-e� . First of all, We have thus shown:

Theorem 6 The following are equivalent:

(i) EXv-e� =NV v-e� .

(ii) P=NP.

Proof (i))(ii) Suppose P 6=NP . The class Lh de�ned in the proof of Theorem
5 is clearly in NV v-e� . In fact the learner �, de�ned by �(�)=0, NV identi�es
each 'h(i) 2 Lh upon seeing � jij examples. Moreover we have seen that Lh
satis�es (�0), hence, by the initial assumption, Lh 62 EXv-e� (Theorem 5). It
follows that EXv-e� 6=NV v-e� .

(ii))(i) If P=NP , then condition (�0) characterizes both EXv-e� andNV v-e�

(Theorem 4, Theorem 5, Proposition 2(ii)). Hence EXv-e� =NV v-e� .
q.e.d.

References

[Aho, Hopcroft and Ullman 74] Aho, A.V., Hopcroft, J.E. and Ullman, J.D.:
\The Design and Analysis of Computer Algorithms"; Addison-Wesley Publish-
ing Company (1974).

[Angluin 87] Angluin, D.: \Learning Regular Sets from Queries and Counter-
examples"; Information and Computation, 75 (1987), 87-106.

[Angluin 78] Angluin, D.: \On the Complexity of Minimum Inference of Regular
Sets"; Information and Control, 39 (1978), 337-350.

[Angluin 81] Angluin, D.: \A Note on the Number of Queries Needed to Identify
Regular Languages"; Information and Control, 51 (1981), 76-87.

[Angluin 80] Angluin, D.: \Inductive Inference of Formal Languages from Pos-
itive Data"; Information and Control, 45 (1980), 117-135.

[Angluin 88] Angluin, D.: \Identifying Languages from Stochastic Examples";
Information and Control (1988).

[Buss 86] Buss, S.R.: \Bounded Arithmetic"; Studies in Proof Theory Lecture
Notes (1986).

[Gold 67] Gold, E.M.: \Language Identi�cation in the Limit"; Information and
Control, 10 (1967), 447-474.

779S. Fontani: Efficient Identification of Classes of P-Time Functions

[Keng 82] Keng, H.L.: \Introduction to Number Theory"; Springer-Verlag,
Berlin, Heidelberg, New York (1982).

[Kearns and Vazirani 94] Kearns, M.J., Vazirani, U.V.: \An Introduction to
Computational Learning Theory"; The MIT Press, Cambridge, Massachusetts,
London, England (1994).

[Montagna 98] Montagna, F.: \Investigations in Measure One Learning of Clas-
ses of Languages"; Information and Computation, (1998).

[Montagna and Simi 97] Montagna, F., Simi, G.: \Paradigms in Measure Theo-
rethic Learning and in Informant Learning"; to appear in Studia Logica (1997).

[Odifreddi 99] Odifreddi, P.: \Classical Recursion Theory II"; Elsevier, Amster-
dam, 1999.

[Osherson, Stob and Weinstein 86] Osherson, D.N., Stob, M. and Weinstein, S.:
\Systems that Learn. An Introduction to Learning Theory for Cognitive and
Computer Scientists"; MIT Press, Cambridge MA (1986).

[Oxtoby 71] Oxtoby, J.C.: \Measure and Category. Graduate Texts in Mathe-
matics"; New York, Springer-Verlag (1971).

[Pitt and Valiant 88] Pitt, L., Valiant, L.G.: \Computational Limitations on
Learning from Examples"; J. ACM, 35, 4 (1988), 965-984.

[Pitt 89] Pitt, L.: \Probabilistic Inductive Inference"; J. ACM, 36, 4 (1989),
383-433.

[Rogers 67] Rogers, H.: \Theory of Recursive Functions and E�ective Com-
putability"; McGraw-Hill Book Company, New York, St. Louis, San Francisco,
Toronto, London, Sydney (1967).

[Valiant 84] Valiant, L.G.: \A Theory of the Learnable"; Commun. ACM 27,
11, 4 (1984), 1134-1142.

780 S. Fontani: Efficient Identification of Classes of P-Time Functions

