
J.UCS Special Issue on

Multithreaded Processors and Chip-Multiprocessors

J�org Keller

(FernUniversit�at Hagen, Germany

joerg.keller@fernuni-hagen.de)

Theo Ungerer

(Universit�at Karlsruhe, Germany

ungerer@informatik.uni-karlsruhe.de)

Today's superscalar processors are able to issue up to six instructions per

cycle from a single sequential instruction stream. VLSI technology will soon allow

future microprocessors to issue and execute eight or more instructions per cycle.

However, instruction level parallelism (ILP) found in a conventional instruction

stream is limited. Recent studies show the limits of processor utilization even in

today's superscalar microprocessors reporting instructions per cycle (IPC) values

between 0:14 and 1:9. One solution to increase performance is an additional

utilization of more coarse-grained parallelism either by integrating two or more

complete processors on a single chip or by using a multithreaded approach.

A multithreaded processor is able to pursue multiple threads of control in

parallel within the processor pipeline. The functional units are multiplexed be-

tween the thread contexts. Most approaches store the thread contexts in di�erent

register sets on the processor chip. Latencies are masked by switching to another

thread. A �ne-grained multithreaded processor interleaves execution of instruc-

tions of di�erent threads on a cycle-by-cycle basis, whereas a block-multithreaded

processor executes instructions of a single thread until a context-switching event,

e.g. a cache miss, occurs. Moreover, a simultaneous multithreaded (SMT) proces-

sor issues instructions of several threads simultaneously. It combines a wide-issue

superscalar processor with multithreading.

The importance of multithreaded execution to both the research and mi-

croprocessor industries is rapidly increasing, as can be seen by the increasing

amount of research papers and by recent announcements of the computer indus-

try, in particular, IBM's Power4 with two processors on a die, the 4-threaded

SMT Alpha processor 21464 of Compaq, and the MAJC-5200 processor of Sun

which features two 4-threaded processors on a single die.

Chip-multiprocessors and multithreaded processors are able to boost per-

formance of a multithreaded program mix, i.e. programmer-visible or compiler-

generated instruction sequences, operating system threads or even whole pro-

cesses. Another more recent research trend targets the performance increase of

single-threaded programs by dynamically utilizing speculative thread-level par-

allelism. Sequences of instructions are dynamically extracted from sequential

binaries and speculatively executed by di�erent processing elements or in multi-

ple thread slots within a single processor. In case of misspeculation, the results

of the speculative thread and of subsequent threads are discarded. Codrescu and

Wills investigate di�erent dynamic partitioning schemes, in particular, thread-

generation by dynamically parallelizing loop iterations, procedure calls, or using

Journal of Universal Computer Science, vol. 6, no. 10 (2000), 906-907
submitted: 2/10/00, accepted: 10/10/00, appeared: 28/10/00 Springer Pub. Co.

�xed instruction length blocks. A new, more exible algorithm { called MEM-

slicing algorithm - is proposed that generates a thread starting from a slice

instruction up to a maximum thread length. All approaches are evaluated in

context of the Atlas chip-multiprocessor.

Gopinath and Narasimhan M.K. investigate the performance of switch block-

ing where waiting threads are disabled and signaled at completion of the wait vs.

switch-spinning where waiting threads poll and execute in round-robin fashion

in context of a block-multithreaded processor.

A root of multithreaded execution is the coarse-grain dataow execution

model that relies on non-blocking threads generated from single-assignment

dataow programs. Threads start execution as soon as all operands are avail-

able. Such threads may be generated with the aim to decouple memory accesses

from execute instructions. Kavi, Arul and Giorgi present a decoupled scheduled

dataow architecture where a (dataow) program is compiler-partitioned into

execution and memory-access threads and executed on a decoupled dataow

machine.

Beyls and D'Hollander present a technique to generate at compile-time com-

putation threads and data-fetch threads which ensure that the computation

thread does not experience cache misses. Li and Jenq theoretically investigate

the thread scheduling problem that deals with the compile-time schedule of a

data dependency graph on a multithreaded architecture.

Evripidou and Kyriacou propose Networks of Workstations as basis for mul-

tithreaded program execution. The hardware implementation of a thread syn-

chronization unit to coordinate such workstations is presented. The overall basis

is a decoupled dataow architecture, where the thread synchronization unit is

able to schedule the execution threads on the di�erent workstations as processing

elements.

However, multithreading may also be applied for event handling due to its fast

context switching ability. Metzner and Niehaus propose the use of multithreaded

processors for real-time event handling. Several block-multithreadedMSparc pro-

cessors are supervised by an external thread scheduler called EVENTS, that

assigns computation-intensive real-time threads to the di�erent MSparc proces-

sors.

The focus of the special issue thus ranges from execution and performance

models of multithreaded processors and chip multiprocessors to speculative mul-

tithreading, compiler interaction and event handling by multithreading. The

seven papers in this issue represent a broad spectrum of activities within the

�eld. We hope you enjoy the selection.

907Keller J., Ungerer T.: J.UCS Special Issue on Multithreaded Processors ...

