
Execution and Cache Performance of the Scheduled
Dataflow Architecture

Krishna Kavi
(The University of Alabama in Huntsville,

kavi@ece.uah.edu)

Joseph Arul
(The University of Alabama in Huntsville,

arulj@ece.uah.edu)

Roberto Giorgi
(Universita’ di Siena, Italy

giorgi@acm.org)

Abstract: This paper presents an evaluation of our Scheduled Dataflow (SDF) Processor. Recent
focus in the field of new processor architectures is mainly on VLIW (e.g. IA-64), superscalar and
superspeculative architectures. This trend allows for better performance at the expense of an
increased hardware complexity and a brute-force solution to the memory-wall problem. Our
research substantially deviates from this trend by exploring a simpler, yet powerful execution
paradigm that is based on dataflow concepts. A program is partitioned into functional execution
threads, which are perfectly suited for our non-blocking multithreaded architecture. In addition, all
memory accesses are decoupled from the thread’s execution. Data is pre-loaded into the thread’s
context (registers), and all results are post-stored after the completion of the thread’s execution.
The decoupling of memory accesses from thread execution requires a separate unit to perform the
necessary pre-loads and post-stores, and to control the allocation of hardware thread contexts to
enabled threads.
The analytical analysis of our architecture showed that we could achieve a better performance than
other classical dataflow architectures (i.e., ETS), hybrid models (e.g., EARTH) and decoupled
multithreaded architectures (e.g., Rhamma processor). This paper analyzes the architecture using
an instruction set level simulator for a variety of benchmark programs. We compared the
execution cycles required for programs on SDF with the execution cycles required by the
programs on DLX (or MIPS). Then we investigated the expected cache-memory performance by
collecting address traces from programs and using a trace-driven cache simulator (Dinero-IV). We
present these results in this paper.

Category: Processor Architectures, Performance of Systems.

Key Words: Multithreaded architectures, Dataflow architectures, Superscalars, Decoupled
Architectures, Memory latency.

Journal of Universal Computer Science, vol. 6, no. 10 (2000), 948-967
submitted: 30/3/00, accepted: 29/8/00, appeared: 28/10/00 Springer Pub. Co.

1 Introduction

Multithreading has been touted as the solution to minimize the loss of CPU cycles
due to the performance gap between processors and memory, by executing several
instruction streams simultaneously. Moreover there is a consensus that multithreading,
in general, achieves higher instruction issue rates on processors that contain multiple
functional units (e.g., superscalars and VLIW) or multiple processing elements (i.e.,
Chip Multiprocessors) [Butler 91], [Kavi 98a], [Krishnan 99], [Lam 92], [Tsai 99],
[Wall 91].

It is necessary to find an appropriate multithreaded model and implementation to
achieve the best possible performance. We believe that the use of non-blocking dataflow
based threads are appropriate for improving the performance of superscalar
architectures. Dataflow ideas are often utilized in modern processor architectures.
However, these architectures rely on conventional programming paradigms and require
complex runtime transformation of the control-flow programs into dataflow programs.
This necessitates complex hardware to detect data and control hazards (renaming of
registers and branch prediction), reorder and issue multiple instructions.

Our architecture differs from other multithreaded architectures in two ways: i) our
programming paradigm is based on dataflow, which eliminates the need for complex
runtime scheduling, thus reducing the hardware complexity, and ii) complete decoupling
of all memory accesses from execution pipeline. The underlying dataflow and non-
blocking models of execution permit a clean separation of memory accesses (which is
very difficult to coordinate in other programming models). Data is pre-loaded into an
enabled thread’s register context prior to its scheduling on the execution pipeline. After a
thread completes execution, the results are post-stored from its registers into memory.
The instruction set implements dataflow computational model, while the execution
engine relies on control-flow like scheduling of instructions (thus, our instructions are
not data driven). We have completed the definition of the instruction set and developed
an instruction level simulator. We have translated several programs into our SDF
instruction set. Using the simulator and the benchmark programs, we compared the
execution performance of our architecture with that of conventional scalar RISC
processors using DLX simulator [Hennessy 96]. The comparison is fair since both our
SDF architecture and the MIPS are single-issue processors. We evaluated the expected
cache performance by collecting address traces and using a trace-driven cache simulator
(Dinero-IV [Edler 99]).

In Section 2 we present research that is most closely related to ours. In Section 3 we
present our Scheduled Dataflow Architecture in detail. Section 4 discusses the
methodology that we used in our evaluation and shows our numerical results based on
real programs. Finally we present the concluding remarks in Section 5.

2 Related Research and Background

2.1 Decoupling Memory Accesses From Execution Pipeline

Decoupling memory accesses from the execution pipeline in order to overcome the
ever-increasing processor-memory communication cost was first introduced in [Smith

949Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

82]. Since then the concept of cache memory has been used extensively to alleviate the
memory latency problem. The gap between processor speed and average memory access
time is once again a major limitation in achieving high performance. However,
increasing cache capacities, while consuming an increasingly large silicon area on
processor chips, often results in diminishing returns. Decoupled architectures may again
present a solution for leaping over the “memory wall”. There seems to be a growing
interest in decoupling memory accesses from execution pipeline. We feel that
combining the decoupled architecture with multithreading allows for a wide-range of
implementations for next-generation architectures. Recently, a similar concept was the
major guideline in the design of Rhamma [Grunewald 97]. A comparison of our
architecture with Rhamma can be found in [Kavi 99a, 99b]. Rhamma uses conventional
control-flow programming paradigm and blocking threads, hence requires many more
thread context switches than our non-blocking dataflow threads. Moreover, SDF groups
all Load instructions together into "preload" and all Store instructions together into
"post-store". Thus SDF outperformed Rhamma in our analyses.

2.2 Dataflow Model and Architectures

The dataflow model and architecture have been studied for more than two decades
and held the promise of an elegant execution paradigm with the ability to exploit
inherent parallelism available in applications. However, the actual implementations of
the model have failed to deliver the promised performance. Nevertheless, several
features of the dataflow computational model have found their place in modern
processor architectures and compiler technology (e.g., Static Single Assignment, register
renaming, dynamic scheduling and out-of-order instructions execution, I-structure like
synchronization, non-blocking threads). Most modern processors utilize complex
hardware techniques to detect data and control hazards, and dynamic parallelism -- to
bring the execution engine closer to an idealized dataflow engine. It is our contention
that such complexities can be eliminated if a more suitable implementation of the
dataflow model can be discovered. Some of the limitations of the pure dataflow model
that prevented its practical implementations include the following:

Too fine-grained (instruction level) multithreading,
Difficulty in exploiting memory hierarchies and registers, and
Asynchronous triggering of instructions.

Many researchers have addressed the first two limitations of dataflow architectures
[Kavi 95, 98b], [Papadopoulos 90, 91], [Takesue 87], [Thoreson 87], [Tokoro 83]. Our
current architecture specifically addresses the third limitation.

Some researchers have proposed designs in which the dataflow scheduling is
applied only at thread level (i.e., macro-dataflow), while each thread is comprised of
conventional control-flow instructions [Govindarajan 95], [Hum 95], [Sakai 93]. In such
hybrid dataflow-control flow systems, the instructions within a thread do not retain
functional properties, and hence, introduce Write-After-Write (WAW) and Write-After-
Read (WAR) dependencies. This in turn requires complex hardware to perform dynamic
instruction scheduling. In our system, the instructions within a thread still retain
functional properties of dataflow model, and thus eliminate the need for complex

950 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

hardware. The results (or data) flow from instruction to instruction, where each
instruction specifies a location for the data to be stored. Our deviation in the proposed
decoupled Scheduled Dataflow (SDF) system from pure dataflow is a deviation from
data driven execution (or token driven execution) that is traditionally used for the
implementation of "pure" dataflow processors1. The data-driven execution of dataflow
program utilized in previous architectures required two cycles per (dyadic) instructions.
By scheduling dataflow instructions (akin to control-flow execution) results in one cycle
per instruction.

Using analytical models we compared SDF with hybrid architectures (e.g. EARTH
[Hum 95]) that use two processors: one (Execution Processor) for executing instructions
of a thread and a second processor (Synchronization Processor) to perform thread
synchronizations and scheduling of threads. SDF outperformed hybrid architectures both
because of the decoupling of memory accesses (not part of hybrid architectures) and
because of the elimination of WAW and WAR dependencies that exist among the
instruction of threads in hybrid architectures [Kavi 98a, 98b]; such dependencies can
cause pipeline stalls

2.3 Explicit Token Store (ETS) Architecture

Since our architecture draws heavily from previous research on dataflow system, in
general, and from the ETS model in particular [Papadopoulos 90, 91], we will describe
the ETS model in some detail here. ETS uses direct matching of operands (or tokens)
belonging to an instruction. In a direct matching scheme, storage (called frame) is
dynamically allocated for all the tokens needed by the instructions in a code block. A
code block can be viewed as a sequence of instructions comprising a loop body or a
function. The actual disposition of locations within a frame is determined at compile-
time; however, the actual allocation of frames is determined during run-time. In a direct
matching scheme, any computation is completely described by a pointer to an
instruction (IP) and a pointer to a frame (FP). The pair of pointers, <FP.IP>, called a
continuation, corresponds to the tag part of a token. A typical instruction pointed to by
an IP specifies an opcode; an offset (r) in the frame where the match of input operands
for that instruction will take place; one or more displacements (dests) that define the
destination instructions that will receive the result token(s); and input port (left/right)
indicator that specifies the appropriate input arc for a destination instruction. Consider
Figure 1 for illustration.

When a token arrives at a node (e.g., ADD), the IP part of the tag points to the
instruction that contains an offset r as well as displacement(s) for the destination
instruction(s). The actual matching process is achieved by checking the disposition of
the slot in the Frame memory pointed to by FP+r. If the slot is empty, the value of the
token is written in the slot and its presence bit is set to indicate that the slot is full. If the
slot is already full (indicating a match), the value is extracted, leaving the slot empty,
and the corresponding instruction is executed. The result token(s) generated from the

1 It is often believed that dataflow means parallel execution. Dataflow model of computation only
exposes the inherent parallelism and the parallelism can only be exploited if multiple functional
units or processing elements are available. In the presence of a single processing element (or
functional unit), dataflow instructions still execute sequentially, albeit asynchronously.

951Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

operation is communicated to the destination instruction(s) by updating the IP according
to the displacement(s) encoded in the instruction (e.g., execution of the ADD operation
produces two result tokens <FP.IP+1, 3.55> and <FP.IP+2, 3.55>L). Instruction
execution in ETS is asynchronous since an instruction is enabled immediately upon the
arrival of the input operands. This token driven execution necessitates two cycles
through the pipeline, per (dyadic) instruction. In our model, we schedule instructions
synchronously, requiring only one cycle per instruction.

A D D

S U BN E G

<F P . I P , 2 . 3 1 >R<F P . I P , 1 . 2 4 >L
I P A D D 2

N E G

SU B

+ 1 , + 2 L

- + 6

3 + 1

F P

F P + 2

4 . 2 4

P r e s e n c e B i t s

o p c o d e r d e s t s

I n s t r u c t i o n M e m o r y

F r a m e M e m o r y

Co d e - B l o c k A c t i v a t i o n

Figure 1: ETS representation of a dataflow program execution.

3 The Scheduled Dataflow Processor

Our architecture consists of two processing units: Synchronization Pipeline (SP)
and Execution Pipeline (EP). SP is responsible for scheduling enabled threads on EP,
pre-loading thread context (i.e., registers) with data from the thread’s Frame memory,
and post-storing results from a completed thread’s registers in Frame memories of
destination threads. A thread is enabled when all its inputs are received: the number of
inputs is designated by its synchronization count, and the input data is stored in its
Frame memory. The EP performs thread computations including integer and floating
point arithmetic operations. In this section we will describe the two processing units in
more detail.

 3.1 Execution Pipeline

Figure 2 shows the block diagram of the Execution Pipeline (EP). Remember that
EP executes computations of a thread using only registers.

952 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

In stru ction
Fetch Un it

Deco de
Un it

E x ecute
U nit

W rite-B ack
U nit

PC

Reg . Co n tex t R e gist er Se ts

In str uctio n
C ach e

Pr e-Lo ad ed
Th read s

Figure 2: General Organization of Execution Pipeline (EP).

Instruction fetch unit behaves like a traditional fetch unit, relying on a program
counter to fetch the next instruction2. We rely on compile time analysis to produce the
code for EP so that instructions can be executed in sequence and assured that the data for
the instruction is already available in its pair of source registers. The information in the
Register context can be viewed as a part of the thread continuation: <IP, FP>, where FP
refers to a register set assigned to the thread during its execution. Decode (and register
fetch) unit obtains a pair of registers that contains (up to) the two source operands for the
instruction. Execute unit executes the instruction and sends the results to write-back unit
along with the destination register numbers. Write-back unit writes two values to the
register file.

As can be seen, the Execution Pipeline (EP) behaves very much like a conventional
pipeline while retaining the primary dataflow properties; data flows from instruction to
instruction. Moreover, the EP does not access data cache memory, and hence require no
pipeline stalls (or context switches) due to cache misses.

3.2 Synchronization Pipeline

Figure 3 shows the organization of the memory access primary pipeline of the
Synchronization Processor (SP).

2 Since both EP and SP need to execute instructions, our instruction cache is assumed to be dual
ported. Since instruction memory causes no coherency related problems, it may be possible to
utilize separate cache memories for EP and SP. This is not unlike most Superscalar systems.

953Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

In str uctio n
Fetch Un it

Deco d e
Un it

E xecu te
Un it

W rite-B ack
Un it

PC

R eg . Co n tex t R e g iste r S e ts

In str uctio n
Cach e

En ab led
Th read s

E ffectiv e
A dd ressU nit

D ata Cach e

Po st-S to re
Th read s

Memo ry
Access Un it

Figure 3: The Memory Access Pipeline.

Here we process pre-load and post-store instructions. The pipeline consists of the
following stages: Instruction Fetch unit fetches an instruction belonging to the current
thread using PC. Decode unit decodes the instruction and fetches register operands
(using Register Context). Effective Address unit computes effective address for
memory access instructions. LOAD and STORE instructions only reference the Frame
memories3 of threads, using a frame-pointer (FP) and an offset into the frame; both of
which are contained in registers. Memory Access unit completes LOAD and STORE
instructions. Pursuant to a post-store, the synchronization count of a thread is
decremented. Finally, Write-Back unit completes LOAD (pre-load).

In addition to accessing memory (for pre-load and post-store), Synchronization
Pipeline (SP) holds thread continuations awaiting inputs and allocates register contexts
for enabled threads. In our architecture a thread is created using a FALLOC instruction.
FALLOC instruction creates a frame and stores instruction pointer (IP) of the thread and
its synchronization count (Synch Count) indicating the number of inputs needed to
enable the thread. When a thread completes its execution and "post-stores" results
(performed by SP), the synchronization counts of awaiting threads are decremented.

An enabled thread (when the Synch Count becomes zero) is scheduled by allocating
a register context to it, and "pre-loading" the registers from its Frame memory. In order
to speed up frame allocation, SP pre-allocates fixed sized frames for threads and
maintains a stack of indexes pointing to the available frames. The Execution processor
(EP) pops an index from the stack and uses it as the address of the frame (i.e., FP) in
response to a FALLOC instruction. SP pushes de-allocated frames when executing
FFREE instruction after finishing post-stores of completed threads. The register sets
(Reg. Context) are viewed as circular buffers for assigning (and de-allocating) to
enabled threads. These policies permit for fast context switches and thread creations. A
thread moves from "pre-load" status (at SP), to "execute" status (at EP) and finishes in
"post-store" status (at SP). We use FORKSP to move a thread from EP to SP and
FORKEP to move a thread from SP to EP. FALLOC and FFREE take 2 cycles in our
architecture. FORKEP and FORKSP take 4 cycles to complete. This number is based on

3 Following traditional dataflow paradigm, we use I-Structure memory for arrays and other
structures.

954 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

the observations made in Sparcle [Agarwal 93] that a 4-cycle context switch can be
implemented in hardware. Figure 4 shows a more complete view of the SP.

Po s t- S t o r e T h r e ad s

W a itin g T h r e a d s

A v ai la b le
Fr a m e s

S ched u ler

En ab led Th read s

FP Reg . Co n tex t IP

P relo ad ed Th read s

S P P ip elin e
Pri or ity
C o nt ro l

I PReg . C on tex t

FP IP Sy n ch C o u nt

Figure 4: Overall Organization of the SP

The scheduler unit is responsible for determining when a thread becomes enabled
and allocating a register context to the enabled thread. Scheduler will also be responsible
in scheduling preload and post-store threads on multiple SPs and preloaded threads on
multiple EPs in superscalar implementations of our architecture. We are currently
developing the superscalar implementation of SDF. Note that the scheduling is at thread
level in our system, rather than at instruction level as done in other multithreaded
systems (e.g., Tera, SMT), and thus requires simpler hardware.

Notice how a thread is identified differently during its life cycle. Initially, when a
thread is created, a frame is allocated. Such a thread (called Waiting) will be identified
by a Frame Pointer (FP), an Instruction Pointer (IP) that points to the first instruction of
the thread, usually a pre-load instruction, and a synchronization count (Synch Count)
indicating the number of inputs needed before the thread is enabled for execution.
When the synchronization count becomes zero, the thread is moved to the Enabled list,
following the allocation of a Register Context. At this time, the thread is identified by a
FP, a Reg. Context, and a IP. Once a thread completes the "pre-load" phase, it is moved
to the Pre-Loaded list and handed off to the Execution Processor (EP). At this time,
Register Context and the IP identify threads. The IP will now point to the first
instruction beyond the pre-load (referring to the first executable instruction). After EP
completes the execution of a thread, the thread is then moved to the Post-Store list and
handed off to the SP for post-storing . At this time a Register Context and an IP identify
the thread. The IP points to the first post-store instruction.

3.3 Instruction set architecture

The latest version of SDF instruction set can be found in [Giorgi 99]. Our
instructions (Figure 5) are very similar to those of ETS model [Papadopoulos 90, 91].
The difference lies in the specification of destinations for the result generated by an
instruction. In ETS, the destinations refer to the destination instructions (and the

955Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

instruction specifies a memory location where operands for that instruction are
matched). In scheduled dataflow the destinations refer directly to the operand locations
(one of a pair of source registers) of the destination instructions. This change eliminates
the need for fetching an instruction twice for dyadic instructions as in ETS. This change
also permits the detection of RAW data dependencies among instructions in the
Execution Pipeline and the application of data forwarding scheme in pipelines for
sending results directly to the successor instructions. The result forwarding is not
applicable in ETS since instructions are token-driven (execute asynchronously), and an
instruction is not allowed to enter the execution pipeline until both operands were
generated and written into the operand memory.

Opcode
Offset
to F ram e

Dest-1
& P ort

Dest-2
& P ort

Opcode
S ource
R egister
P air

Dest-1
R egister

Dest-2
R egister

(a) ETS Instruction F orm at (b) S DF Instruction F orm at

Figure 5: Instruction Format

3.4 Programming Example.

To describe the "scheduling" of instructions in our architecture, we show how our
SDF code for Figure 1 may look like. We will view each frame memory location used
for matching tokens in ETS as a pair of registers -- a pair consists of even-odd registers.
For example, RR6 refers to registers R6 and R7 within a specified thread context. The
two source operands destined for a SDF instruction are stored in the pair of registers
assigned to that instruction -- data is stored in either the left or right half of a register pair
by a predecessor instruction. Unlike in ETS, in our architecture, an instruction is not
scheduled for execution immediately when the operands are matched. Instead, operands
are saved in the register-pair associated with the instruction and the enabled instruction
is scheduled for execution at a later time.

ADD RR2, R4, R6
NEG RR4, R9, R12
SUB RR6 R14, R17

Assuming that registers R2 and R3 contain the source operands for ADD, when
scheduled, this instruction adds the contents of these two registers and stores the result in
R4 and R6. Register R4 is one (only one) of the source operands for NEG instruction.
Likewise the operands for SUB are stored in the pair R6, R7. Registers R9, R12, R14,
R17 indicate the destinations for the results generated by NEG and SUB instructions
which are not shown in Figure 1. Note that these instructions still retain the functional
nature of dataflow -- data flows from instruction to instruction and there are no write-
after-read (WAR or conceptually equivalent anti-) and write-after-write (WAW or
equivalent output-) dependencies. Our deviation is from token driven models of

956 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

previous dataflow implementations. We use "instruction driven" paradigm by
scheduling instructions.

The code shown above is for the Execution Pipeline (EP). The Synchronization
Processor (SP) is responsible for scheduling enabled threads on EP, pre-loading thread’s
context (i.e., registers) with data from the thread’s Frame memory, and post-storing
results from a completed thread’s registers in Frame memories of destination threads.

To illustrate the preload concept, consider the code segment of Figure 1 and the
SDF code shown previously. Assume that the code block of Figure 1(viewed as a
thread) receives the two inputs for ADD from other threads. Each thread will be
associated with a frame and the inputs to the thread are saved in the frame until the
thread is enabled for execution (based on its synchronization count, as described later).
When enabled, a register context is allocated to the thread and the input data for the
thread from its frame memory is “preloaded” into its registers.

LOAD RFP| 2, R2
LOAD RFP| 3, R3
LOAD RF P| 4, R32
LOAD RFP | 5, R35

Assuming that the inputs for the thread (or ADD instruction) are stored in its frame
(RFP) at offsets 2 and 3, the first tow LOAD instructions preload te thread with required
data. Consider that the result generated by SUB in our code example (in R17) is needed
by some other thread. The last two LOAD instructions save the frame pointer and offset
for returning the results when the thread completes its execution.

STORE R17, R32|R35

This instruction transfers (or post-stores) the result of the current thread (i.e., from
SUB, in R17) to a frame pointed to by R32 at a frame-offset contained in R35.

3.5 Code partitioning

The SDF assembly code is the product of our compiler (SDFC). The compiler takes
care of partitioning the high-level source code in order to create the SDF threads. Each
thread consist of three portions: pre-load code, execute code and post-store-code [Fig.
6].

SUHORDG�

H[HFXWH�

SRVWVWRUH�

WKUHDG

Figure 6: The three code portions of an SDF thread.

957Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

When a thread is created (using FALLOC), a frame allocated for storing the inputs
of the thread. An instruction pointer (IP) indicating the first executable instruction of the
thread and a synchronization count indicating the number of inputs needed before the
thread becomes enabled for execution are stored in the allocated frame. Once a thread
receives all the necessary inputs, the thread is allocated a register context. The pre-load
code then moves the data from a thread’s frame memory into its registers. The execute
portion will perform computations using only the registers, while the post-store code
will store the thread’s results in other threads’ frames.

4 Evaluation of the Decoupled Scheduled Dataflow Architecture

Previously, we relied on analytical models and Monte Carlo simulations to compare
the proposed architecture with Rhamma, ETS, EARTH and conventional RISC
processors [Kavi 99a-b]. In this work we evaluate our architecture based on the
execution of complete programs. We developed an instruction level simulator for
Scheduled Dataflow architecture. At present the simulator assumes a perfect cache.
However, we will show the cache behavior of our architecture by using address traces
from our simulator. Concurrent with the simulator, we have also developed a backend to
a Sisal [Bohm 91], and used MIDC as intermediate language [Shankar 95, 96] to
generate code for our architecture4.

Using the simulator we were able to compare the performance of the Scheduled
Dataflow system with a single threaded RISC architecture. We also investigated the
effect of parallelism (i.e., number of enabled threads), thread granularity (average run-
lengths of the execution threads on EP) on the performance of our architecture. Using
address traces from our simulator, we investigated the expected cache behavior

4.1 Execution Performance Of Scheduled Dataflow.

In this section we compare the execution cycles required for Scheduled Dataflow
with those for a conventional RISC system using DLX simulator [Hennessy 96]. The
programs used for this comparison include a Matrix Multiply, Livermore Kernel 5,
Fibonacci and a code segment for picture zooming application [Terada 99]. We used
generated code for complete programs. We used dlxcc to generate DLX code in our
comparisons. For both DLX and SDF we used a degree of 5 loop unrolling for Matrix
Multiply, Livermore Loop 5 and Zoom. Since DLX is single threaded, only one thread
was used for all programs. We used 5 threads for Scheduled Dataflow when executing
Matrix Multiply, Livermore Loop 5 and Zoom programs. The results are shown in Table
1.

4 At this time our backend only generates partial code. We extend this with hand-coding to
generate complete programs for SDF simulator. The backend does not perform any optimization
(and produces rather poor code).

958 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

 Matrix
Multply

Livermore
5

N DLX SDF Speed Loop=N DLX SDF Speed

Cycles Cycles UP Cycles Cycles Up

25*25 966090 306702 3.150 50 87359 56859 1.536

50*50 7273390 2159780 3.368 100 354659 215579 1.645

75*75 24464440 6976908 3.506 150 801959 476299 1.684

100*100 57891740 16175586 3.579 200 1429259 839019 1.703

250 2236559 1303739 1.715

300 3223859 1870459 1.724

350 4391159 2911789 1.508

400 5738459 3309899 1.734

450 7265759 4182619 1.737

Fibonacci Zoom

N DLX SDF Speed N DLX SDF Speed

Cycles Cycles UP Cycles Cycles UP

5 615 842 0.7304 5,5,4 10175 9661 1.0532

10 7014 10035 0.699 10,10,4 40510 37421 1.0825

15 77956 111909 0.6966 15,15,4 97945 83331 1.1754

20 864717 1241716 0.6964 20,20,4 161580 147391 1.0963

25 9590030 13771467 0.6964 25,25,4 271175 229601 1.1811

30 1.06E+08 1.53E+08 0.6964 30,30,4 391150 329961 1.1854

35,35,4 532285 448471 1.1869

40,40,4 645520 585131 1.1032

Table 1: Execution Behavior Of Scheduled Dataflow

In both platforms, we assumed one cycle per arithmetic and memory access
instructions. However, if memory access requires more than one cycle (realistic caches
with cache misses) we feel that our multithreading will lead to even better performance
than conventional single threaded system. As can be seen from Table 1, SDF system
outperforms MIPS architecture when the program exhibits greater parallelism (e.g.,
Matrix Multiply). Livermore loop exhibits less parallelism than Matrix Multiply due to a
loop carried dependency. Zoom exhibits moderate parallelism, but contains a significant
sequential fraction degrading the parallelism (as per Amdhal’s law). Fibonacci contains
no thread-level parallellims and hence our architecture under-performs DLX. Our
architecture incurs unavoidable overheads for creating threads (allocation of frames,
allocation of register contexts) and transferring threads between SP and EP (FORKEP
and FORKSP instructions). At present, data can only be exchanged between threads by
storing them in threads' frames (memory). These memory accesses can be avoided by
storing the results of a thread directly into another thread's register context. Our
experiments show that Matrix Multiply needs 11, 9, 8, 7, 6 for 5, 4, 3, 2 and one thread,
respectively. For this application, we could have eliminated storing (and loading) thread
data in memory by allocating all frames directly in register sets (by providing sufficient
register sets in hardware).

959Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

At this time we do not know if SDF performs better than a more recent RISC
superscalar processor with dynamic instruction scheduling (i.e., out of order instruction
issue and completion, predicated instructions). However, SDF system eliminates the
need for complex hardware required for dynamic instruction scheduling. The hardware
savings can be used to include additional register-sets, which can help in an increased
degree of thread parallelism and thread granularities.

4.2 Effect Of Thread Level Parallelism On Execution Behavior.

Here we will explore the performance benefits of increasing the thread level
parallelism (i.e., number of concurrent threads). We used the Matrix Multiply for this
purpose. We executed a 50*50 matrix multiply by varying the number of concurrent
threads. Each thread executed five (unrolled) loop iterations. The results are shown in
Figure 7. As can be expected, increasing the degree of parallelism will not always
decrease the number of cycles needed in a linear fashion. This is due to the saturation
of both the Synchronization and the Execution Pipeline (reaching nearly 80%
utilization with 10 threads). Adding additional SP and EP units (i.e., superscalar
implementation) will allow us to utilize higher thread level parallelism. The number of
registers available per context also limits on how many concurrent threads can be
spawned at a time. We are exploring techniques to enhance the thread level
parallelism when multiple EP’s and SP’s are available. Although not presented in this
paper, we observed very similar behavior for other data sizes with Matrix Multiply
and for the other benchmarks, Zoom and Livermore Loop 5.

Thread Level Parallelism (Matrix Multiply)

0

6Million

1 Thrd 2 Thrds 3 Thr ds 4 Thrds 5 Thrds 10 Thrds

Number of Concurrent Threads

E
xe

xu
ti

o
n

 C
yc

le
s

5Million

4Million

3Million

2Million

1Million

Figure 7: Effect Of Thread Level Parallelism On SDF Execution (Matrix
Multiply)

960 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

4.3 Effect Of Thread Granularity On Execution Behavior

In the next experiment with Matrix Multiply, we held the number of concurrent
threads at 5, and varied the thread granularity by varying the number of innermost
loop iterations executed by each thread (i.e., degree of unrolling). The data size for
Figure 8 is 50*50. Here, the thread granularity ranged form an average of 27
instructions (12 for SP and 15 for EP) with no loop unrolling, to 51 instructions (13
for SP and 39 for EP) when each thread executes ten unrolled loop iterations. Once
again, the execution performance improves (i.e., execution time decreases) as the
thread granularity increases. The number of registers per thread context (currently 32
pairs) is also a limiting factor on the granularity. Our results confirm that
performance of multithreaded systems can benefit both from the degree of parallelism
and coarser grained threads. Because of the non-blocking nature and the decoupling
of memory accesses, it may not always be possible to increase thread granularity in
decoupled Scheduled Dataflow (SDF). We are exploring innovative compiler
optimizations utilizing speculative executions to increase thread run lengths.

Effect of Thread Granularity (Matrix Multiply)

0

9Million

IUnroll 2Unroll 3Unroll 4Unroll 5Unroll 10Unroll

Degree of Unrolling

8Million

7Million

6Million

5Million

4Million

3Million

2Million

1Million

Figure 8: Effect Of Thread Granularity On SDF Execution (Matrix Multiply)

4.4 Utilization of the two processing units.

It may be natural to wonder if there exists a workload imbalance between the two
separate processing units (EP and SP) in our system. We collected the utilization of
EP and SP for a variety of benchmarks and input data sizes. Figure 9 shows the
average utilization rates for 4 benchmarks (the benchmark LGR is a program used
heavily for testing the correctness of the code generated by our Sisal compiler; it
consists of a variety of loops, conditional statements and case statements). As can be
seen, at least in our current environment, both EP and SP handle reasonably balanced

961Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

workloads. This is not conclusive data since at present we assume a perfect cache. In
the near future, we will collect utilization rates for EP and SP using a realistic cache.

Utilization of EP and SP

0

10

20

30

40

50

60

70

80

90

100

U
ti

liz
at

io
n

EP SP EP SP EP SP EP SP

Fibonacci LGR Matrix
Multiply

Zooming

Figure 9: Average Utilization Of The Two Hardware Units (SP and EP)

4.5 Cache Behavior of Scheduled Dataflow.

At present our instruction set simulator does not include cache memories. In this
section, we compare the expected cache behavior of SDF programs with that of DLX.
For this purpose we generated address traces on both systems and used Dinero-IV
[Edler99] to generate cache behaviors.

In Table 2, we used 5 SDF threads for Matrix Multiply, and Livermore Loop 5
programs, but a single thread for Fibonacci program. The cache behavior for SDF
programs is very comparable to that of DLX programs. For the data in Table 2, we used
direct mapped cache with 256K bytes and a block size of 64 bytes. SDF cache behavior
is similar to cache memories in conventional systems when the cache parameters (like
associativity, block size, and cache size) are changed. The best cache behavior is
observed when the block size equals the frame size. We feel that cache pre-fetching is
more effective in our architecture; since the input data from a thread’s frame is pre-
loaded into the thread’s context, the frame can be pre-fetched. Once preloaded, the frame
is freed and can be allocated for the next thread to be created.

962 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

Matrix Multiply

N DLX DLX DLX SDF SDF SDF

Refs Misses Miss Rate Refs Misses Miss Rate

25 286714 61 0.0002 156470 382 0.0024

50 1627928 237 0.00015 1094360 614 0.0006

75 5462503 530 0.000097 3526250 1010 0.0003

100 12910828 940 0.000073 8164640 1558 0.0002

Livermore

Loop=N DLX DLX DLX SDF SDF SDF

Refs Misses Miss Rate Refs Misses Miss Rate

50 22429 8 0.00036 24177 22 0.00091

100 88829 13 0.000146 91913 31 0.000337

150 199229 17 8.53E-05 203249 40 0.000197

200 353629 22 6.22E-05 358185 49 0.000137

250 550458 27 4.90E-05 556721 58 0.000104

300 794429 32 4.03E-05 798857 67 8.39E-05

350 1080829 36 3.33E-05 1084593 76 7.01E-05

400 1411229 41 2.91E-05 1413929 88 6.22E-05

450 1785629 46 2.58E-05 1786865 97 5.43E-05

Fibonacci

N DLX DLX DLX SDF SDF SDF

Refs Misses Miss Rate Refs Misses Miss Rate

5 260 5 0.019 134 8 0.06

10 3014 10 0.003 1702 13 0.008

15 33546 14 4E-04 19076 18 9E-04

20 372152 18 5E-05 211758 23 1E-04

25 4127350 23 6E-05 2E+06 28 1E-05

30 40975448 27 7E-07 3E+07 33 1E-06

Table 2: Cache Behavior

4.6 Separate Data And I-Structure Caches.

In our architecture, I-structure elements and Frames are mapped to different areas of
memory. Using a single cache for both the frame data (data cache) and the I-structures
(arrays) cause more conflict misses. Following our previous work [Kavi 95, 98b] where

963Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

we have shown the benefits of using separate I-structure cache for ETS, here we
investigated the use of a separate I-structure cache. The data is shown in Table 3.

Matrix

Multiply
N SDF Unified Unified I-Struct I-Struc Frame

Refs Misses Miss Rate Misses Miss Rate Misses

25 156470 382 0.0024 81 0.0005 11

50 1094360 614 0.0006 319 0.0003 11

75 3526250 1010 0.0003 3132 0.0009 11

100 8164640 1558 0.0002 6215 0.0008 11

Livermore

Loops

N SDF Unified Unified I-Struct I-Struc Frame

Refs Misses Miss Rate Misses Miss Rate Misses

50 24177 22 0.00091 12 0.0005 10

100 91913 31 0.000337 21 0.0002 10

150 203249 40 0.00097 30 0.0001 10

200 358185 49 0.000137 39 0.0001 10

250 556721 58 0.000104 48 8.62E-05 10

300 798857 67 8.39E-05 57 7.14E-05 10

350 1084593 76 7.01E-03 66 6.09E-05 10

400 1413929 88 6.22E-05 78 5.52E-05 10

450 1786865 97 5.43E-05 87 4.87E-05 10

Table 3: Effect Of A Separate I-Structure Cache

The table shows data only for Matrix Multiply and Livermore Loop 5 (both with 5
threads). For unified case, we used a single 256K cache (64byte blocks); for split case,
we used 128K I-structure cache and 128K frame cache. The I-structure miss behavior is
somewhat erratic for Matrix Multiply, because the program accesses rows of one matrix
and columns of another matrix, and the strides have caused more conflict misses for
certain data sizes. It should be noted that data cache (used for thread frames) encounters
no conflict misses. This behavior can be attributed to our "stack" of frames allocation
described previously. The misses indicate the maximum number of frames needed by
the program during its execution. Reusing recently freed frames eliminates cache
misses. As previously mentioned, for 5 threads, Matrix Multiply requires a maximum of
11 frames (while Livermore needs 10 frames), and these frames could be eliminated by
allocating register sets to threads on creation.

964 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

5 Conclusions

In this paper we presented a dataflow multithreaded architecture that utilizes
control-flow like scheduling of instructions. Our architecture separates memory accesses
from instruction execution to tolerate long latency operations. We developed an
instruction set level simulator for our decoupled Scheduled Dataflow (SDF) and a
backend to a Sisal compiler. Using these tools we compared the execution performance
of SDF with that of a single pipelined MIPS processing system. Our results are very
encouraging. When the degree of parallelism is high, SDF substantially outperforms
MIPS. We also investigated the impact of increasing thread granularity and thread level
parallelism. As with any multithreaded system, SDF shows performance improvements
with coarser grained threads and increased thread level parallelism.

Our current architecture simulator assumes a perfect cache. We will soon
incorporate realistic cache memories into our simulator. However, we investigated the
expected cache behavior of SDF program by collected address traces and using a trace-
driven cache simulator (Dinero-IV). The results indicate that SDF programs incur no
more (often fewer) cache misses than a traditional RISC processor. Using separate
caches for I-structure memory and frame memories further reduces the number of cache
misses encountered by SDF programs.

While decoupled access/execute implementations are possible within the scope of
conventional architectures, multithreading model presents greater opportunities for
exploiting the separation of memory accesses from execution pipeline. We feel that,
even among multithreaded alternatives, non-blocking models are more suited for the
decoupled execution. In our model, threads exchange data only through the frame
memories of threads (all other data is provided through I-structure memory). The use of
frame memories for thread data permits a clean decoupling of memory accesses into pre-
loads and post-stores. This can lead to greater data localities and very low cache-miss
rates.

At this time we do not know if our approach performs better than modern
superscalar systems that use dynamic instruction scheduling (e.g., out of order
instruction issue and completions) or other multithreaded systems such as SMT.
However, we strongly believe that the use of dataflow instructions reduces the
complexity of the processor by eliminating the need for complex logic (e.g., scoreboard
or Tomasulo’s reservation stations [Hennessy 96]) needed for resolving data
dependencies, register renaming, out-of-order instruction scheduling and branch
predictions. The silicon area saved may be used to include more register-sets and
registers per set to improve thread level parallelism and thread granularities. Moreover,
our current instruction set and the compiler are not optimized. We are working to
improve both the instruction set and the compiler to produce more efficient executions
of programs. We will soon develop quantitative comparisons of our architecture with
conventional scalar and superscalar architectures for a wider range of benchmark
programs (including SPEC-2000 programs).

Acknowledgments

This research is supported in part by NSF grants: CCR 9796310, EIA 9729889, EIA
9820147.

965Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

References

[Agarwal 93] Agarwal, et. Al.: "Sparcle: An evolutionary processor design for multiprocessors",
IEEE Micro, pp 48-61, June 1993.

[Bohm 91] A. D. W. Bohm, D. C. Cann, J. T. Feo, and R. R. Oldehoeft: “SISAL Reference
Manual: language version 2.0”, Tech, Report CS91-118, Computer Science Dept.,
Colorado State University.

[Butler 91] M. Butler, et. Al.: "Single instruction stream parallelism is greater than two", Proc. of
18th Intl. Symposium on Computer Architecture (ISCA-18), pp 276-286, May
1991.

[Cuppu 99] V. Cuppu, B. Jacob, B. Davis and T. Mudge: "A performance comparison of
contemporary DRAM architectures", Proc of the Intl. Symposium on Computer
Architecture (ISCA-26), pp 222-233, May 1999.

[Edler 99] Jan Edler and Mark D. Hill: “DineroIV Trace-Driven Uniprocessor Cache Simulator”,
http://www.cs.wisc.edu/~markhill/DineroIV

[Giorgi 99] R. Giorgi, K. M. Kavi and H.Y. Kim: “Scheduled Dataflow Instruction Manual”,
Dept. of Electrical and Computer Engineering, UAH.
http://crash1.eb.uah.edu/~kavi /Research/sda.pdf

[Govindarajan 95] R. Govindarajan, S.S. Nemawarkar and P; LeNir: "Design and performance
evaluation of a multithreaded architecture", Proceeding of the first High
Performance Computer Architecture (HPCA-1), Jan. 1995, pp 298-307.

[Grunewald 97] W. Grunewald, T. Ungerer: “A Multithreaded Processor Design for Distributed
Shared Memory System,” Proc. Int’l Conf. on Advances in Parallel and
Distributed Computing, 1997.

[Hennessy 96] J.L. Hennessy, and D.A. Patterson: Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publisher, 1996.

[Hum 95]H.H.-J. Hum, ET. al., "A Design Study of the EARTH Multiprocessor,’’ Proceedings of
the Conference on Parallel Architectures and Compilation Techniques (PACT),
Limassol, Cyprus, June 1995, pp. 59-68.

[Kavi 99a] K.M. Kavi. H.S. Kim and A.R. Hurson: "Scheduled dataflow architecture: A
synchronous execution paradigm for dataflow", IASTED Journal of Computers and
Applications. Vol. 21, No. 3 (Oct. 1999), pp 114-124.

[Kavi 99b] K.M. Kavi, H.-S. Kim, J. Arul and A.R. Hurson: "A decoupled scheduled dataflow
multithreaded architecture", Proceedings of the 1999 International Symposium on
Parallel Architectures, Algorithms and Networks (I-SPAN-99), Fremantle, Western
Australia, June 23-25, 1999, pp 138-143.

[Kavi 98a] K.M. Kavi, B. Lee and A.R. Hurson: “Multithreaded systems: A survey”, Advances in
Computers, Academic Press, 1998, pp 287-327.

[Kavi 98b] K.M. Kavi and A.R. Hurson: "Design of cache memories in dataflow architectures”,
Euromicro Journal on Systems Architecture. Vol. 44, No. 9-10, June 1998, pp 657-
674.

[Kavi 95] K.M. Kavi, et. al. "Design of cache memories for multi-threaded dataflow architecture",
Proceedings of the 22nd Intl. Symp. on Computer Architecture (ISCA-22), June
1995, St. Margherita Ligure, Italy, pp. 253-264.

[Krishnan 99] V. Krishnan and J. Torrellas: “A chip-multiprocessor architecture with speculative
multithreading”, IEEE Trans. on Computers, Sept. 1999, pp.866-880.

[Lam 92] M. Lam and R.P. Wilson. "Limits of control flow on parallelism", Proc. of the 19th Intl.
Symposium on Computer Architecture (ISCA-19), pp 46-57, May 1992.

[Papadopoulos 91] G.M. Papadopoulos and K.R. Traub: (1991). "Multithreading: A Revisionist
View of Dataflow Architectures," Proceedings of the 18th International
Symposium on Computer Architecture (ISCA-18), pp. 342-351.

966 Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

[Papadopoulos 90] G.M. Papadopoulos and D.E. Culler: "Monsoon: An explicit token-store
architecture", Proc. of 17th Intl. Symposium on Computer Architecture (ISCA-17),
pp 82-91, May 1990.

[Sakai 93] S. Sakai, et. Al: “Super-threading: Architectural and Software Mechanisms for
Optimizing Parallel Computations,” Proc. of 1993 Int’l Conference on
Supercomputing, July 1993, pp. 251-260.

[Shankar 96] B. Shankar and L. Roh: "MIDC Language manual", Tech Report, CS Dept.,
Colorado State University, July 1996,
http://www.cs.colostate.edu/~dataflow/papers/ Manuals/manual.pdf.

[Shankar 95] B. Shankar, L. Roh, W. Bohm and W. Najjar: "Control of parallelism in
multithreaded code", Proc of the Intl Conference on Parallel Architectures and
Compiler Techniques (PACT-95), June 1995. http://www.cs.colostate.edu
/~dataflow/papers/pact95b.pdf.

[Smith 82] Smith, J.E: “Decoupled Access/Execute Computer Architectures”, Proc of the 9th
Annual Symp on Computer Architecture, May 1982, pp 112-119.

[Takesue 87] M. Takesue: "A unified resource management and execution control mechanism for
Dataflow Machines". Proc. 14th Annl. Intl. Symp. on Computer Architecture(ISCA-
14), June 1987, pp. 90-97.

[Terada 99] H. Terada, S. Miyata and M. Iwata. “DDMP’s: Self-timed super-pipelined data-
driven multimedia processor”, Proceedings of the IEEE, Feb. 1999, pp. 282-296

[Thekkath 94] R. Thekkath and S.J. Eggers: ``The effectiveness of multiple hardware contexts,''
Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp.328--337, October 1994.

[Thoreson 87] S.A. Thoreson and A.N. Long; "A Feasibility study of a Memory Hierarchy in Data
Flow Environment". Proc. Intl. Conference on Parallel Conference, June 1987, pp.
356-360.

[Tokoro 83] M. Tokoro, J.R. Jagannathan and H. Sunahara: "On the working set concept for data-
flow machines", Proc. 10th Annul. Intl. Symp. on Computer Architecture (ISCA-
10), July 1983, pp. 90-97.

[Tsai 99] J. Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P. C. Yew: “The Superthreaded processor
architecture”, IEEE Trans. on Computers, Sept. 1999, pp. 881-902.

[Wall 91] D.W. Wall: "Limits on instruction-level parallelism", Proc of 4th Intl. Conference on
Architectural support for Programming Languages and Operating Systems
(ASPLOS-4), pp 176-188, April 1991.

967Kavi K., Arul J., Giorgi R.: Execution and Cache Performance ...

