
DisCo Toolset � The New Generation

Timo Aaltonen

(Tampere University of Technology, Finland

timo.aaltonen@tut.�)

Mika Katara

(Tampere University of Technology, Finland

mika.katara@tut.�)

Risto Pitkänen

(Tampere University of Technology, Finland

risto.pitkanen@tut.�

Currently with Nokia Networks)

Abstract: Formal methods have been considered one possible solution to the so-called

software crisis. Tools are valuable companions to formal methods: they assist in analysis

and understanding of formal speci�cations and enable the use of rigorous techniques

in industrial projects. In this paper, an overview of the new DisCo toolset is given.

DisCo is a formal speci�cation method for reactive and distributed systems. It focuses

on collective behaviour of objects and provides a re�nement mechanism that preserves

safety properties. The toolset currently includes a compiler, a graphical animation tool,

and a scenario tool for representing execution traces as Message Sequence Charts. A

prototype veri�cation back-end based on the PVS theorem prover also exists, and a

model checking back-end based on Kronos as well as code generation facilities have been

planned. In this paper, the operation of the DisCo toolset is illustrated by applying it

to an example speci�cation describing a simple cash-point service system.

Key Words: tools, reactive systems, formal speci�cation, real time, animation, TLA

Category: D.2.2, D.2.1

1 Introduction

Formal methods have been considered one possible solution to the so-called soft-
ware crisis arising from the increasing complexity of systems. However, they are
not easy to adopt in industrial use. They often require new ways of thinking and
some mathematical knowledge. Many di�culties can be overcome by providing
appropriate tool support for users.

When talking about formal method tools, people usually �rst think of veri�-
cation. Formal proofs are usually complicated and error-prone, and therefore the-
orem provers such as PVS [ORS92] and model checkers such as Kronos [Yov97]
have been developed to assist in or completely automatize them. However, formal
proofs are not the only way to analyze a formal speci�cation.

Simulation and animation have proved valuable aids to validation and test-
ing of formal models. They require that the speci�cation has an operational
interpretation, i.e. that it can be executed in some way.

Journal of Universal Computer Science, vol. 7, no. 1 (2001), 3-18
submitted: 1/9/00, accepted: 13/10/00, appeared: 28/1/01  Springer Pub. Co.

DisCo [JKSSS90, dis99] is a formal speci�cation method for reactive and
distributed systems. Reactive systems are those that are in constant interaction
with their environments. DisCo focuses on collective behaviour of objects and
provides a simple re�nement mechanism preserving safety properties. Tool sup-
port for animation of DisCo speci�cations has existed since the beginning of the
1990's [Sys91]. An improved version of the DisCo language containing support
for real-time speci�cation and a more �exible type system among other new fea-
tures has been developed during the last few years. Due to technical limitations,
including poor portability, of the �rst tool generation, support for the new lan-
guage was not added in the old implementation. Instead, a whole new toolset
was designed and implemented. This paper describes the new toolset.

The structure of the rest of the paper is as follows. Section 2 introduces
the DisCo method and in Section 3 an example speci�cation is introduced. In
Section 4, the architecture of the new DisCo toolset and the individual tools
are described and their usefulness is discussed. Section 5 discusses related and
future work, and Section 6 contains some concluding remarks.

2 DisCo

2.1 The Basics

The basis of the DisCo method is in the joint action theory [BKS88, BKS89],
which allows describing reactive and distributed systems at a high level of ab-
straction where implementation-level details are super�uous. Speci�cations are
written in a programming-language-like notation.

The basic building blocks of DisCo speci�cations are classes and actions.
Additionally assertions, initial conditions and relation de�nitions can be given.
The only way to change the states of objects is to execute actions. Actions are
atomic units of execution, which consist of roles, parameters, a guard and a
body. Objects can participate in actions in certain roles. Only the states of the
participating objects may change in an action. Parameters are values of basic
types or records. Nondeterministic selection of participants and parameter values
is restricted only by the boolean-valued guard. If the guard of an action evaluates
to true, the action is said to be enabled. The body is a parallel assignment clause.
The actions are executed in an interleaving manner: the choice of next action
to be executed is made nondeterministically among enabled actions. Assertions
and initial conditions are quanti�ed expressions over objects. They do not limit
the behaviour of the system, thus they need to be veri�ed.

DisCo utilizes closed world principle, where objects are always modelled
with their assumed environment. This enables constructing an animation tool,
where the global state of the system, which determines enabledness of actions,
is visualized.

Speci�cations are generic in the sense that the number of objects need not be
�xed. Additionally, their initial states are only restricted by assertions and initial
conditions. A generic speci�cation can be instantiated by �xing the number of
objects and setting their initial states.

4 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

2.2 Composition and Re�nement in DisCo

Modularity of speci�cations is unlikely to be the same as modularity of im-
plementation descriptions [Mai00]. DisCo speci�cations are structured in be-
havioural units called layers, each of which encapsulates a di�erent view of the
system being speci�ed. A layer describes how a speci�cation is changed when a
new view is introduced. This structuring mechanism is orthogonal to ordinary ar-
chitectural structuring, in which speci�cations are divided in architectural units
re�ecting the implementation-level units. Behavioural structuring � unlike ar-
chitectural structuring � allows to postpone the de�nition of interfaces between
units, until the collective behaviour of the total system has been captured. This
leads to fewer changes to interfaces in the later development phases. For more
detailed discussion about the structuring mechanism the reader is referred to
[KSM98, KSM99].

Several speci�cations can be combined to one composite speci�cation. In
composition common parts of the speci�cations being combined are joined to-
gether. Certain rules are applied to synchronize some actions and join some sets
of classes.

Speci�cations are re�ned stepwise towards implementation. At some level of
abstraction hardware/software partitioning is made. The re�nement mechanism
is superposition (for more details see [JKSSS90]), which allows introducing and
inheriting new classes and augmenting existing ones with new attributes. New
roles and parameters can be added to existing actions. Bodies of old actions can
be augmented with assignments to new variables. There are two examples of
using superposition in an example speci�cation given in Section 3: layer till is
superimposed by layers card and customer . Layer customer superimposes
layer till by introducing new class Customer and new relation CustAcc .
Moreover, the layer re�nes actions withdraw and deposit originally intro-
duced in till . Superposition preserves safety properties (�something bad never
happens�) by construction.

2.3 Formal Semantics and Operational Interpretation

Formal semantics of the DisCo language is given in terms of Temporal Logic
of Actions (TLA) [Lam94]. TLA is a linear time logic which describes in�nite
sequences of states called behaviours and their properties. There are an in�nite
number of state variables and in all states of a behaviour each variable has a
unique value. Formal semantics makes it possible to verify speci�cations in a
rigorous way.

DisCo speci�cations have operational interpretation: actions of a speci�ca-
tion are considered as operations for the system, which change its state from one
to another. This is also essential from animation's point of view.

2.4 Timed Speci�cations

In terms of TLA, real time was added to the new version of DisCo as follows
[KSK99]. It is assumed that each action is executed instantaneously. A global
real-valued clock variable
, initialized as 0, is introduced to measure time from
the beginning of a behaviour. An implicit parameter � , which represents the

5Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

complete

till

card customer

Figure 1: Layers of the cash-point system.

time when an action is executed, is added to each action. Moreover, all guards
are implicitly strengthened by the conjunct

 � � � min(�) ;

where � denotes a multiset of deadlines. Furthermore, conjunct
0 = � is added
to the bodies of all actions.

Minimal separation requirement between actions A and B can be enforced by
strengthening the guard of action B by conjunct � � �A + d, where �A denotes
the most recent execution moment of A. Deadlines are used for bounded response
requirements. When a deadline �+d is needed for some future action, a conjunct
of the form x0 = �on (d) is given in the action body. The deadline is added to
� and stored in a variable x. An implicit conjunct � � min(�) in all guards
prevents advancing
 beyond this deadline, until some action has removed the
deadline with �o� (x). Type time, a synonym type of real, can be used in timed
speci�cations. In the initial state, � can contain some initial deadlines.

Actions are not executed because time passes, but the passing of time is
noticed as a consequence of executing an action. This may lead to Zeno be-
haviours, where time is prevented to grow beyond any bound. However, it is not
harmful for a speci�cation to allow such behaviours as long as every pre�x of a
behaviour can be extended to an in�nite one allowing time to grow beyond any
bound [AL94].

3 Example Speci�cation

In this section a simple speci�cation of a cash-point service system is given as an
example. The system consists of four kinds of entities: accounts, tills, cash cards
and customers. Cards may be inserted and ejected to and from tills. Money may
be withdrawn from accounts using tills. Furthermore, money may be deposited
directly to accounts.

The speci�cation consists of four layers: till , card , customer and com-
plete . Layers card and customer re�ne layer till , and layer complete
re�nes the composition of card and customer as depicted in Figure 1.

Layer till (see below) de�nes the most abstract view to the system. Classes
Account and Till are introduced. Assertion balanceOK states that balance
of all accounts is always non-negative. Withdrawal is possible only from a till.

6 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

Action withdraw has two roles: acc (of class Account) and till (of class
Till) and one parameter amount of type integer. It may be executed if the
withdrawn amount is positive and there exists enough money on the account.
An action describing depositing money is also given. At this level of abstraction
nothing is speci�ed about customers or cards:

layer till is
class Account is

balance: integer;
end ;

5

class Till is end ;

assert balanceOK is 8 acc: Account :: acc.balance � 0;

10 action withdraw(acc:Account; till: Till; amount:integer) is
when amount > 0 ^ acc.balance � amount do

acc.balance := acc.balance - amount;
end ;

15 action deposit(acc:Account; amount:integer) is
when amount > 0 do

acc.balance := acc.balance + amount;
end ;

end ;

Layer customer (see below) re�nes speci�cation till by adding aspects
related to customers to the model. The layer speci�es that withdrawals are only
possible for customers from their own accounts. Ownership is speci�ed by rela-
tion CustAcc . Three dots in a guard of an action re�nement (lines 12 and 19
below) refer to the guard of the original action. In action body (lines 13 and 20)
they refer to the original body:

layer customer is
import till;

class Customer is
5 wallet: integer;

end ;

relation CustAcc(Customer, Account) is 0..1:1;

10 refined withdraw(cust:Customer; acc:Account; till:Till; amount:integer)
of withdraw(acc, till, amount) is
when ... CustAcc(cust, acc) do

...
cust.wallet := cust.wallet + amount;

15 end ;

refined deposit(cust: Customer; acc: Account; amount: integer)
of deposit(acc, amount) is
when ... CustAcc(cust, acc) do

20 ...
cust.wallet := cust.wallet - amount;

end ;
end ;

Layer card below adds aspects of cash cards to the speci�cation. Tills are
augmented with a state machine state to model whether a card is inserted or
not. When a till has a card, attributes card and dlEject become valid. The
former is a reference to the inserted card and the latter is a deadline for ejecting
the card. A card must be ejected (or another withdrawal must be done) within
deltaToEject time units after a withdrawal. The layer introduces two new
actions: insertCard and ejectCard and re�nes one existing action with-

7Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

draw , which now assigns deadline � + deltaToEject to attribute dlEject and
adds it to the multiset � of deadlines:

layer card is
import till;

class Card is
5 end ;

extend Till by
state: (noCard, hasCard);
extend hasCard by

10 card: reference Card;
dlEject: time;

end ;
end ;

15 constant deltaToEject: time := 20.0;

relation CardAcc(Card, Account) is 0..1:1;

action insertCard(till: Till; card: Card) is
20 when till.state’noCard ^

not (9 till2: Till :: till2.state’hasCard.card = card) do
till.state := hasCard(card);

end ;

25 refined withdraw(acc: Account; till: Till; amount: integer; card: Card)
of withdraw(acc, till, amount) is
when ... till.state’hasCard.card = card ^ CardAcc(card, acc) do

...
till.state’hasCard.dlEject@ || -- remove possibly existing deadline

30 till.state’hasCard.dlEject@(deltaToEject); -- add new deadline
end ;

action ejectCard(till: Till; card: Card) is
when till.state’hasCard do

35 till.state := noCard() ||
till.state’hasCard.dlEject@; -- remove deadline

end ;
end ;

The composite layer complete below concludes the speci�cation and gath-
ers all the re�nements together. After composition the speci�cation consists of
classes Till , Account , Customer , and Card . The actions are withdraw ,
deposit , insertCard , and ejectCard . They contain all the re�nements
made in imported layers:

layer complete is
import card, customer;

end ;

To illustrate the situation if the speci�cation consisted of only one layer the
re�nement steps corresponding to the action withdraw have been gathered into
one explicit action below:

action withdraw(cust: Customer; acc: Account; till: Till;
amount: integer; card: Card) is

when amount > 0 ^ acc.balance � amount ^ -- from layer till
CustAcc(cust, acc) ^ -- from layer customer

5 till.state’hasCard.card = card ^ CardAcc(card, acc) do -- from layer card
acc.balance := acc.balance - amount || -- from layer till
cust.wallet := cust.wallet + amount || -- from layer customer
till.state’hasCard.dlEject@ || -- from layer card
till.state’hasCard.dlEject@(deltaToEject); -- from layer card

10 end ;

8 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

VHDL, C, ...

Code
generator(s)

Compiler
front-end

DisCo
layer

Imported specification branches

Intermediate form

Animation
back-end

Java classes

Animator

Dynamically linked

PVS,
Kronos...

ScenarioScenario
file

Verification
back-end(s) Tool

Figure 2: General architecture of the DisCo toolset.

4 Tools

4.1 Architecture

With the experience gained with the �rst generation of DisCo tools, we saw
portability, extensibility and usability as the most important considerations when
choosing implementation technologies and designing the general architecture of
the new toolset. Portability was ensured by choosing ISO C++ and Java as the
implementation languages. Extensibility was achieved by designing a general ar-
chitecture, depicted in Figure 2, centered around a multi-purpose intermediate
form. Moreover, a framework approach can be used to add or modify function-
ality of Animator. Usability has been a central factor in the design of the user
interface.

The intermediate form produced by DisCo Compiler front-end is an ex-
plicit and �at representation of a layered speci�cation. It is utilized by the com-
piler itself and several back-ends that produce input for di�erent tools. Compiler
front-end and back-ends, Animator and DisCo Scenario Tool pictured in
Figure 2 are described in detail in the subsequent sections.

4.2 Compiler

DisCo Compiler plays a central role in the DisCo toolset. It works as a link
between di�erent tools and DisCo source code. Standard C++ was chosen as
the implementation language for its good performance and portability. Object-
oriented features and genericity of C++ are heavily utilized.

Functionality of the compiler is divided into two phases: front-end and several
back-ends. The front-end produces an intermediate form of DisCo source. After
successful translation into intermediate form, back-ends of the compiler may be
used to produce input for di�erent tools, like Animator or di�erent veri�cation
tools.

9Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

The front-end of the compiler takes one DisCo layer and the intermediate
forms of possibly imported speci�cation branches as its inputs, and produces
an intermediate form of the speci�cation. The intermediate form corresponds
one-to-one to the internal representation of the semantical tree (or DAG) of
the speci�cation being compiled. The intermediate forms of imported branches
are merged into the tree representing the speci�cation being compiled. In other
words, the front-end produces composite speci�cation described in 2.2. More-
over, it checks syntactic and semantic correctness. If an error occurs during the
compilation, no intermediate form is produced.

Checking speci�cations by Compiler eliminates many awkward errors, and
increases con�dence in the correctness of them. For example the exact type sys-
tem does not allow arbitrary operations between types which do not match.
Moreover, Compiler checks that superposition is not violated in re�nements.
In composition Compiler joins the common parts of the speci�cations auto-
matically, and checks that actions synchronized by the user are semantically
correct.

Animation back-end of the compiler produces a speci�cation engine, which is
a Java package, for Animator. It o�ers an interface by which Animator can
instantiate objects in the instantiation phase, and execute enabled actions in the
execution phase. The engine noti�es Animator about state changes and some
other events. It also informs Animator about enabled actions. The assertions
of the speci�cation are guarded by the engine during execution.

Back-ends for producing input for several veri�cation tools could be added to
the toolset. We are also researching possibilities of producing VHDL or C code
from an instantiation of a DisCo speci�cation [PK99].

4.3 DisCo Animator

Because DisCo speci�cations are closed and have an operational interpretation
they can be visualized and animated as discussed in Section 2. The general
problem of executing a given speci�cation is actually undecidable due to the
expressive power of guards. In practice, however, most speci�cations can be
executed automatically and user assistance can be used in complex speci�cations
[Pit97].

Animator (Figure 3) enables validation, testing and debugging of speci�ca-
tions and o�ers an enhanced means of communication for designers, application
experts and customers. Animation of DisCo speci�cations is very visual: ob-
jects, their state and their relations are depicted as graphical objects, executed
actions and state changes are visualized by animation sequences and real time
is depicted by a scrolling timeline displaying current time and any set deadlines.

Java was chosen as the implementation language of Animator for easy
portability of the user interface and to enable producing a web-based version
running as an applet for demonstration purposes. Moreover, the core of Anima-
tor is a framework that can be specialized to add or modify functionality by
user-provided pieces of Java code. For example, custom classes can be created
to handle the drawing of speci�cation components. Basic Animator is actually
just a default specialization.

Animation of a speci�cation starts with instantiation. The user drags objects
of classes she wants to instantiate onto the object view window and sets the initial

10 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

Figure 3: DisCo Animator.

values of variables using pop-ups that appear on the screen. Relations between
objects are set by selecting a relation and then pointing at the objects one wants
to add as relation pairs. Once the instantiation has been completed, animation
may be started. First the tool checks that the initial conditions and assertions of
the speci�cation hold for the instantiation. Then, action guards are evaluated,
and enabled actions are indicated by a green highlight color. In Figure 3, the
user has selected action insertCard of the example cash-point speci�cation to
be executed and is now picking objects to participate in its roles.

Animation enables both validation and testing of speci�cations. The users
can experiment with a speci�cation on di�erent levels of abstraction, and see
which kind of executions are possible and which are not. Since animation is a
very simple and intuitive yet accurate representation of behaviour, it can be
used as an e�ective means of communication even when some involved party
does not have the background to read formal speci�cations. This means that
application �eld experts and end users can take part in validation in an early
phase of development.

Animation can also be used as a means of testing the speci�cation. Let us
assume for a while that we had speci�ed the deposit action of layer till (see
Section 3) in the following way:

action deposit(acc:Account; amount:integer) is
when true do

acc.balance := acc.balance + amount;
end ;

11Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

Figure 4: Assertion failure in Animator.

A mistake of this kind is quite easy to make, although on closer investigation
it is obvious that a negative deposit is possible. Thus behaviours that do not
satisfy the assertion balanceOK (balances are always non-negative) are allowed
by the speci�cation. Animation, especially random execution with random pa-
rameter values, often leads to the discovery of errors of this kind, and usually
with considerably smaller e�ort than veri�cation. Once the tool discovers that
an assertion does not hold, it displays a pop-up window like the one shown
in Figure 4. Relation form violations (e.g. a one-to-one relation is treated like
one-to-many) are reported in a similar manner.

Another common class of errors that are often found with animation are also
due to incorrect action guards. Since Animator indicates enabled actions in
each state, actions that are altogether disabled or enabled when they should not
can often be found to be erroneous even before they are selected for execution.

Execution traces can be rerun and saved as scenario �les. After modi�cations
speci�cations can be tested with Animator using saved scenarios. Furthermore
they can be processed by Disco Scenario Tool.

4.4 DisCo Scenario Tool

Message Sequence Charts (MSCs) are a widespread notation for describing inter-
object communication. Their main strength is intuitive visual representation.
Objects are depicted as vertical lines and messages sent to other objects as
horizontal lines (arrows). MSCs are limited because they can only represent one

12 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

Figure 5: DisCo Scenario Tool.

scenario with a small number of objects at a time. However, at a high level of
abstraction they can be used to capture some essential scenarios.

DisCo Scenario Tool (DST, Figure 5) is a tool for displaying execution
scenarios as MSCs. In the Figure, the larger window displays a scenario and the
smaller window contains buttons corresponding to di�erent instruments avail-
able for modifying it. Executed actions are interpreted as messages between
participating objects. The tool can be started from Animator to display the
current scenario. It includes features to hide some of the actions and objects, add
comments and print MSCs on multiple sheets. Furthermore, DST can be used
to modify existing and create new MSCs which can be animated by Animator.

Because MSCs are a well-known notation, we believe that they make valida-
tion of speci�cations more user friendly and faster. They can be used to examine
erroneous scenarios possibly ending in a assertion failure thus providing graph-
ical representation of error traces. This is especially important in the case of
lengthy scenarios produced by random execution. Moreover, DST can be used
to capture some initial requirements as MSCs which can be later used to test
the speci�cation. Obviously, also new scenarios can be created for this purpose.

To illustrate the use of MSCs in conjunction with the example speci�cation,
consider the one drawn using DST in Figure 5. A diamond in each crossing of
vertical and horizontal lines denotes that the object corresponding to the ver-
tical line is a participant in the action corresponding to the horizontal line. In
the MSC, the topmost horizontal line depicts an execution of action deposit
with parameter value 1000. The three horizontal lines below depict executions
of actions insertCard , withdraw and ejectCard , respectively. Using Ani-
mator it is possible to check that this scenario is indeed allowed by the example
speci�cation.

13Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

4.5 Veri�cation

4.5.1 Veri�cation versus Validation

Formal semantics enables rigorous veri�cation of speci�cations (see section 2.3).
In system design, validation and veri�cation complement each other. The former
answers the question whether we are designing the right product and the latter
whether we are designing the product right. The DisCo toolset does not include
any dedicated veri�cation tool, instead a number of more general purpose ver-
i�cation tools can be used. Two main approaches to veri�cation are theorem
proving and model checking. Both approaches have been recently researched in
the DisCo project.

4.5.2 Theorem Proving

The state space of a generic DisCo speci�cation is inherently in�nite. Therefore,
the most natural veri�cation method is theorem proving. In [Kel97b], a mapping
from a subset of the DisCo language into the logic of the PVS [ORS92] theorem
prover was described. PVS o�ers high level decision procedures which assist
interactive theorem proving.

As an example, PVS was used to verify the assertion balanceOK of the
layer till (see Section 3). We used a prototype tool which supports mechanical
veri�cation of invariant properties [Kel97a]. In the prototype, appropriate parts
of TLA are formalized. First, the DisCo speci�cation was translated into input
of PVS. Then it was showed that executing action withdraw or deposit
cannot break an invariant corresponding to the assertion. After proving that the
invariant holds in the initial state, it was deduced inductively that the assertion
holds in all behaviours of the speci�cation. By disallowing assignments to old
variables, the re�nement mechanism of DisCo preserves all safety properties by
construction. This means that the invariant holds also in all later re�nements.

4.5.3 Model Checking

In addition to theorem proving, instantiations of DisCo speci�cations can be
veri�ed using model checking approach. A mapping from a subset of �nite in-
stantiations of DisCo speci�cations into timed automata [AD94] was described
in [AKP00]. There are a number of model checkers that can be used to ver-
ify systems given as timed automata, including Kronos [Yov97] and Uppaal

[LPY97].
Currently, instantiations have to translated manually, but mechanical sup-

port could be added to the current DisCo tools in the way explained in Sec-
tion 4.2. For verifying the instantiations, we have used Kronos. In Uppaal the
communication between automata is one-to-one, which makes the mapping of
multi-object actions a bit more complicated.

An instantiation of the cash-point service system consisting of two instances
of each class was translated into timed automata. In Figure 6, the two automata
corresponding to a till are depicted. The automata on the left and right hand
side correspond to the functional and real-time behaviour of the till, respectively.

14 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

ejet1c1

inst2c1,2

T1EDL

inst1c1

ejet1c1,2
<= 20

witt1c2,inst2c1witt1c1,inst2c2

ejet1c2

inst1c2 witt1c1,c2
T1EDL := 0

witt1c1,c2
T1EDL := 0

ejet1c1,2

Figure 6: Timed automata corresponding to a till.

Non-Zenoness, or that time can proceed beyond any bound (see Section 2.4), can
be veri�ed by verifying the Tctl property [Yov97, HNSY94]

init) 8�(9�=1true) :

Intuitively the property means that it is always possible for time to proceed by
one unit. If Non-Zenoness does not hold it might be that some safety properties
only hold because time stops and nothing happens. By applying the forward
analysis of Kronos, the instantiation is found to satisfy the property.

As mentioned above, model checking can only be applied to �nite instantia-
tions. However, this is not a severe restriction since almost all implementations
of speci�cations are �nite instantiations. Besides veri�cation of real-time proper-
ties, the model checking approach enhances user-controlled mechanical theorem
proving by �nding counterexamples e�ciently. Moreover, proposed invariants
can be pre-checked for speci�c instantiations before attempting to prove them
for the generic speci�cation.

5 Related and Future Work

Related research can be searched in the area of animation and mapping between
formalisms. In the literature, animation can refer to both graphical animation
and plain simulation of speci�cations. However, the underlying principle, execu-
tion of the speci�cation, is the same.

A well-known formal method B [Abr96] o�ers extensive tool support. For
example, the B-toolkit [LH96], includes a non-graphical animation facility which
allows the user to invoke B Abstract Machine operations interactively. The B-
toolkit is a commercial product.

The �Tools for TLA based speci�cations� project of the University of Dort-
mund has done some work on graphical animation of TLA+ [Lam99] speci�ca-
tions. They report having used an interpreter in combination with an animation
system originally intended for animating sequential algorithms [MK93]. TLA+ is
basically syntactic sugar for writing more structured TLA speci�cations, which
makes this work quite closely related to ours.

A very interesting TLA+-related future work item would be to investigate
the possibility of integrating TLC [YML99], a model checker for TLA+ speci�-
cations, in the DisCo toolset.

15Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

6 Conclusions

There are a number of methods intended for formal speci�cation, validation and
veri�cation of hardware/software systems. There are also tools, both academic
and commercial, available to support some of the methods, mainly those that are
trying get industrial attention. The diversity of applications entails that no single
method or tool will ever overcome the others. DisCo focuses on reactive and
distributed systems. In practice almost all safety critical systems are reactive,
moreover, many of those have to meet some real-time requirements.

So far, the success stories of formal methods are mainly in the area of hard-
ware veri�cation. Formalisms and tools that are easily adopted in an industrial
design process have advantage in the industrial setting. It is desirable that these
methods will also pave the way for other methods trying to import new ways of
thinking to the whole design process.

The main strengths of DisCo are the ability to capture collective behaviour
at a high level of abstraction, stepwise re�nement towards implementation, and
behavioural structuring of speci�cations using logical layering. Furthermore, ani-
mation at the early stages of development has been commended. The new DisCo

toolset will enable conducting industrial size case studies which are needed to
evaluate real applicability of any method.

The new generation of the toolset includes Compiler, Animator and Sce-
nario Tool. It has an extensible architecture centered around a multi-purpose
intermediate form for DisCo speci�cations. Portability has been ensured by the
use of standard C++ and Java as the implementation technologies. Further-
more, usability has been emphasized in the design of the user interface. The
toolset consists of about 40,000 LOC C++ (Compiler) and 80,000 LOC Java
(Animator and Scenario Tool) and is still under development. Additional
tools have been planned to assist in veri�cation and code generation.

Acknowledgements

Altogether around ten people have contributed to the development of the toolset
during a period of three years. The authors would like to thank all the people in-
volved in the development and especially Joni Helin for his work on Animator,
and Tero Jokela, Tero Jussila, Tero Kivimäki and Mikko Vainikainen for devel-
oping DST. Funding from Tekes (National Technology Agency), Nokia Research
Center and Space Systems Finland is gratefully acknowledged.

Pertti Kellomäki provided valuable help by proving the invariant using PVS,
and Tommi Mikkonen by reading a manuscript of this paper carefully.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge

University Press, 1996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183�235, April 1994.

[AKP00] Timo Aaltonen, Mika Katara, and Risto Pitkänen. Verifying real-time joint

action speci�cations using timed automata. In Yulin Feng, David Notkin,

and Marie-Claude Gaudel, editors, 16th World Computer Congress 2000,

16 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

Proceedings of Conference on Software: Theory and Practice, pages 516�525,
Beijing, China, August 2000. IFIP, Publishing House of Electronic Industry

and International Federation for Information Processing.

[AL94] Martín Abadi and Leslie Lamport. An old-fashioned recipe for real time.

ACM Transactions on Programming Languages and Systems, 16(5):1543�
1571, September 1994.

[BKS88] R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with action

systems. ACM Transactions on Programming Languages and Systems,
10(4):513�554, October 1988.

[BKS89] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with

centralized control. Distributed Computing, 3:73�87, 1989.
[dis99] The DisCo project WWW page. At URL http://disco.cs.tut.fi ,

1999.

[HNSY94] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. Information and Computation, 111(2):193�
244, 1994.

[JKSSS90] H.-M. Järvinen, R. Kurki-Suonio, M. Sakkinen, and K. Systä. Object-

oriented speci�cation of reactive systems. In Proceedings of the 12th Inter-
national Conference on Software Engineering, pages 63�71. IEEE Computer

Society Press, 1990.

[Kel97a] Pertti Kellomäki. Mechanical Veri�cation of Invariant Properties of DisCo
Speci�cations. PhD thesis, Tampere University of Technology, 1997.

[Kel97b] Pertti Kellomäki. Veri�cation of reactive systems using DisCo and PVS. In

John Fitzgerald, Cli� B. Jones, and Peter Lucas, editors, FME'97: Indus-
trial Applications and Strengthened Foundations of Formal Methods, number

1313 in Lecture Notes in Computer Science, pages 589�604. Springer�Verlag,

1997.

[KSK99] Reino Kurki-Suonio and Mika Katara. Logical layers in speci�cations with

distributed objects and real time. Computer Systems Science & Engineer-
ing, 14(4):217�226, July 1999.

[KSM98] Reino Kurki-Suonio and Tommi Mikkonen. Liberating object-oriented mod-

eling from programming-level abstractions. In J. Bosch and S. Mitchell,

editors, Object-Oriented Technology, ECOOP'97 Workshop Reader, number

1357 in Lecture Notes in Computer Science, pages 195�199. Springer�Verlag,

1998.

[KSM99] Reino Kurki-Suonio and Tommi Mikkonen. Harnessing the power of inter-

action. In H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors, Infor-
mation Modelling and Knowledge Bases X, pages 1�11. IOS Press, 1999.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872�923, 1994.

[Lam99] Leslie Lamport. Specifying concurrent systems with TLA+. In Manfred

Broy and Ralf Steinbrüggen, editors, Calculational System Design, pages
183�247. IOS Press, 1999.

[LH96] Kevin Lano and Howard Haughton. Speci�cation in B: an Introduction
using the B Toolkit. Imperial College Press, London, 1996.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. In-
ternational Journal on Software Tools for Technology Transfer, 1(1+2):134�
152, 1997.

[Mai00] Tom Maibaum. Mathematical foundations of software engineering: a

roadmap. In Future of Software Engineering, pages 163�172, Limerick, Ire-

land, 2000. ACM.

[MK93] A. Mester and H. Krumm. Animation von TLA spezi�kationen. Beitrag

zum 3. Fachgespräch der GI/ITG-Fachgruppe 'Formale Beschreibungstech-

niken für verteilte Systeme', München, June 1993. German abstract

17Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

available at http://ls4-www.informatik.uni-dortmund.de/RVS/
P-TLA/papers.html .

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation sys-

tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), number 607 in Lecture Notes in Arti�cial Intelligence,
pages 748�752, Saratoga, NY, USA, June 1992. Springer-Verlag.

[Pit97] Risto Pitkänen. DisCo-spesi�kaatioiden simulointi Javalla (Simulation of

DisCo speci�cations in Java). Master's thesis, Tampere University of Tech-

nology, June 1997. In Finnish.

[PK99] Risto Pitkänen and Harri Klapuri. Incremental cospeci�cation using objects

and joint actions. In H. R. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA'99), volume VI, pages 2961�2967. CSREA Press, June 1999.

[Sys91] Kari Systä. A graphical tool for speci�cation of reactive systems. In Pro-
ceedings of the Euromicro'91 Workshop on Real-Time Systems, pages 12�19,
Paris, France, June 1991. IEEE Computer Society Press.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+

speci�cations. In Proceedings of Correct Hardware Design and Veri�cation
Methods (CHARME'99), number 1703 in Lecture Notes in Computer Sci-

ence, pages 54�66. Springer�Verlag, 1999.

[Yov97] Sergio Yovine. Kronos: A veri�cation tool for real-time systems. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1+2):123�133,
1997.

18 Aaltonen T., Katara M., Pitkaenen R.: DisCo Toolset - The New Generation

