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Abstract: The paper presents a tool architecture which supports the formal veri�ca-
tion of logic controllers for processing systems. The tool's main intention is to provide
a front-end for modelling the controller as well as the processing systems. The models
are automatically transformed into representations which can be analysed by exist-
ing model checking algorithms. While the �rst part of the paper gives an overview
of the complete architecture, the second part introduces a newly developed modelling
interface: Process Control Event Diagrams (PCEDs) are formally de�ned as a suitable
means to represent the 
ow of information in controlled processes. The transforma-
tion of PCEDs into veri�able code is described, and the whole procedure of modelling,
model transformation and veri�cation is illustrated with a simple processing system.
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1 Introduction

For processing systems that involve hazardous substances it is a crucial design
task to ensure safe operation. The exclusion of dangerous states in processing
systems can easily be seen as a safety property of the system which must be ful-
�lled. In computer science, such an analysis or veri�cation of safety properties of
formally speci�ed models is an established technique. Especially the method of
model checking has been applied successfully to some systems of technical rele-
vance, e. g. to analyse the correct design of electronic circuits or communication
protocols. Nevertheless, veri�cation techniques are merely used to check the safe
design of processing systems { at least in industrial practice. An important rea-
son for this situation is the requirement of creating appropriate formal models.
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These models must describe the behaviour of the controller (which should pre-
vent the process from reaching dangerous states) and the reaction of the process
on control inputs. Furthermore, the behaviour of the process is usually of con-
tinuous nature while the safety-related control equipment mostly shows discrete
dynamics.

Another problem in applying veri�cation to controlled processing systems
is the complexity of the analysis: even for relatively small systems (from an
industrial point of view) a formal modelling approach leads to remarkably large
systems, such that the computational e�ort for analysis is prohibitively high.
As a consequence, a strategy of modular and structured modelling and analysis
in combination with abstraction techniques (to �lter out irrelevant details) is
necessary to allow veri�cation of industrial systems. This paper describes an
approach and associated tool which support the user in building suitable formal
models of controlled processing systems.

In the literature, only very few applications of model checking to con-
trolled processing systems can be found. Instead of restricting to purely discrete
[MPBC91] or real-time models [HTLW97], we allow continuous behaviour which
is more complex than that of simple timers. Additionally, we present the only
integrated method dealing with more then one controller language.

While our tool named VERDICT (Ver i�cation of Discrete Controllers for
Cont inuous Processes) contains di�erent interfaces for modelling, it is the main
emphasis of this paper to illustrate a newly created front-end. It consists of
an editor for so-called Process Control Event Diagrams (PCEDs) which have
been introduced in [CY98] to model the 
ow of information between controller
and process. By integrating PCEDs in VERDICT, we enable the use of formal
veri�cation techniques in early design phases of processing, in which the instru-
mentation is identi�ed and maybe an initial (and abstract) controller logic is
speci�ed. As an essential part of the paper, a formal de�nition of PCEDs is
introduced.

The paper is organized as follows: in Sec. 2 the software architecture of
VERDICT is described. While Sec. 3 gives a detailed de�nition of PCEDs and
explains its transformation into veri�able models, Sec. 4 illustrates the approach
by applying it to a simple batch reactor. The paper ends with a conclusion.

2 Concept

In VERDICT, the user (usually a process engineer) can use graphical and textual
modelling representations with which he/she is familiar, in particular block-
diagrams to set up a modular structure or common programming languages to
specify the control code.

2.1 Modelling paradigm: Timed Condition/Event Systems

Timed Condition/Event Systems (TCES) were chosen as underlying modelling
framework since they allow the modelling of complex technical processes in a
modular fashion [EKKP95]. A complex system can be split into a set of simpler
subsystems, and the connection between these modules is speci�ed by means of
two characteristic type of signals:
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A condition signal con(�) is a piece-wise constant, right continuous function
con : [t0;1) ! Con with limits from the left and Con a non-empty and �nite
set of conditions. For example, to model a Boolean value, the set Con could
be f'false', 'true'g. An event signal eve(�) is a function eve : [t0;1) ! Eve0 =
Eve [ f0g such that for each �nite interval [t1; t2] there exists a �nite number
of points t 2 [t1; t2] with e(t) 2 Eve and e(t) = 0 otherwise. Eve is a non-
empty and �nite set of events. Event signals are point-wise nonzero and carry
information about currently occurring state transitions, e. g. the crossing of a
reactor temperature threshold.

A TCES module consists of 11 components:

TCES = (U; V;X; Y; Z; C; f; g; h;�(C); 
):

We denote the input and output signals and the state variables of TCES
modules as follows: U = fu1; :::; unug and V = f0; v1; :::; vnvg are the sets of
input condition or input event signals, respectively. Y = fy1; :::; ynyg and Z =
f0; z1; :::; znzg are the sets of output condition or output event signals. The state
variables are denoted by X = fx1; :::; xnxg. x0 is the initial state.

A TCES includes real-time information which is modeled by clocks. Clocks
are reset by an input event signal or by changing the value of the state variable
X and the value rises with the gradient one. The set of all clocks is called clock
space: C = fc1; : : : ; cncg. A reset of a clock \ci := 0", where i 2 1 : : : nc, is
denoted by a function 
ci : X � X � V ! f0; 1g. The value of the clocks is
evaluated by the internal clock function � which assigns a value to each clock:

_�i(t) = 1 if 
ci = 0;

�i(t) = 0 if 
ci = 1; i 2 1 : : : nclocks:

Also here, we distinguish between clock events �eve
j

; j 2 : : : neve and clock
conditions �con

j
; j 2 1 : : : ncon. The set of all neve clock events over the clock

space C is denoted by �eve(C) and the set of all ncon clock conditions is denoted
by �con(C): �(C) = �con(C) [ �eve(C). A clock event is a function with a
Boolean result: �eve

j
(t) : [t0;1)! f0; 1g. The value is 1 or true if a clock value

exceeds a certain threshold. Clock events can be used to enforce transitions. They
have the form \ci = T" where i 2 1 : : : nc and T 2 N+ . A clock condition is also
a function with a Boolean result: �con

j
(t) : [t0;1)! f0; 1g. A Clock condition is

ful�lled, i. e. its value is 1 or true, if the clock value is in a certain interval. It is
of the form \T < ci � T 0" or \ci > T" where i 2 1 : : : nc and T; T 0 2 N+ . This
concept is closely related to that of Timed Automata (TAs) [AD94].

The behaviour of a TCES module is described as follows: a transition is
enabled by an input condition or forced by an input event and can depend
additionally on the clock values of the system. This is described by the state
transition function f . State transitions are de�ned by f : X�U�V��(C)! 2X ,
i. e. a new discrete state is evaluated depending on the current state, the current
input signals, and the values of the clocks. The result can be a set of possible new
states expressing non-deterministic behaviour. The current state, the condition
input signal, and the clock condition determine the condition output according to
a condition output function g : X �U ��con(C)! Y . Finally, an event output
function h : X � X � V � �eve(C) ! Z satisfying x 2 X : h(x; x; 0; 0) = 0
speci�es the event output depending on the current state transition, the event
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input signal, and the clock events. The valid sets of state, signal, and clock
trajectories are given by:

c(t) = �(c(t�); 
(t));

x(t) 2 f(x(t�); u(t�); v(t); �con(t�); �eve(t));

y(t) = g(x(t); u(t); �con(t));

z(t) = h(t�; x(t); v(t); �eve(t)):

The argument t� of a function set fct denotes the left-hand limit
limÆ!0fct(t� Æ).

The output conditions or output events of a module can be connected with
the input conditions or input events of another module. In contrast to the non-
causal synchronization mechanisms of automata models (e. g. TAs), the condi-
tion and event signals re
ect cause and e�ect of the interactions between di�erent
parts of the process and the controller.

2.2 Architecture

Figure 1: Software architecture of VERDICT

Fig. 1 illustrates the software architecture. It was designed to o�er di�erent
alternatives on the modelling level as as well on the analysis level. The main part
of the user interface consists of a hierarchical block diagram editor in which the
blocks represent physical elements of the processing systems, and the exchange
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of information between blocks is speci�ed by arrows. The blocks can represent
purely discrete, timed-discrete dynamics or hybrid or continuous behaviour.

Blocks with discrete or timed-discrete dynamics can be speci�ed as a state
diagram or textually. The continuous dynamics can be modeled by arbitrary �rst-
order di�erential equations with switched discrete inputs. Blocks with hybrid
behaviour are also speci�ed textually using a corresponding editor. The other
editors which do not rely on the TCES paradigm are explained in Sec. 2.3.

All blocks which are not directly speci�ed as TCESs are translated into this
type of model. The translation of blocks with continuous dynamics additionally
involves an approximation step in order to obtain veri�able TCES representa-
tions [Stu00]. For analysis, the user can choose a particular analysis tool (see
Sec. 2.4).

2.3 Modelling front ends

Since it is the objective to check controllers which are designed to run on
industrial control computers, i. e. Programmable Logic Controllers (PLCs),
VERDICT o�ers the additional facility to include PLC programmes and to
transfer these into TCES automatically. At present, the textual PLC language
Instruction List and the graphical language Sequential Function Charts accord-
ing to the standard IEC 61131-3 [IEC93] are supported by VERDICT [TBK00].

In addition to these facilities to import controller code, the so-called Pro-
cess Control Event Diagrams (PCEDs) can be imported to VERDICT. PCEDs,
which are introduced in detail in Sec. 3, were introduced by Chung and Yang to
support the analysis of processing systems in early design stages with respect to
the instrumentation [CY98].

2.4 Analysis

To enable the analysis of the complete TCES model by existing analysis tools,
the model has to be converted into the input format of the chosen analysis tool.
The tools Kronos [DOTY96] and HyTech [ACHH93] are able to analyse TAs. To
integrate these tools, we take advantage of the fact that TCESs can be converted
into TAs [HLU+97]. Additionally, the discrete model checker SMV was chosen
as the third model checker for integration. To use SMV, the in�nite space of all
clock values of the TCES has to be approximated by a �nite automaton, which
combines in�nitely many time points to a discrete region [AD94].

A reasonable choice of an analysis tool for a speci�c example is obvious. For
systems with a large continuous part (i. e. several clocks and timing conditions)
the real-time model checkers HyTech and Kronos are appropriate. For system
with very few clocks and timing constraints, the transformation into an SMV
model has been found to be eÆcient. Certainly, SMV is the best choice to analyse
purely discrete models.

3 Process Control Event Diagrams (PCEDs)

A PCED is an abstract and qualitative model of the communication between
process, controller, and operator. The advantage of this representation is that
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connections between process variables and the control logic can be visualized in
a very simple and descriptive manner. PCEDs were originally intended to sup-
port Hazard and Operability (HAZOP) studies, in which a group of engineers
discusses the instrumentation layout of a processing system in order to �nd
sources of potential hazards. Since PCEDs show which information is exchanged
between process and controller, it can help to detect whether information about
safety-relevant events is missing in a component, if the design of a logic con-
troller is wrong, or if an operator action can cause dangerous situations. Due to
its simplicity, PCEDs can be understood by people from di�erent engineering do-
mains and they can provide the basis on which the HAZOP discussions can take
place. PCEDs were already successfully applied in an industrial project [RYC98].
The idea behind integrating a PCED interface into VERDICT is to use formal
methods instead of informal discussions to detect the e�ects of instrumentation
failures.

An example of a PCED is shown in Fig. 2: A PCED illustrates the interaction
between nodes which are arranged on �ve di�erent layers. The nodes represent
the components involved in the system (e. g., sensors, actuators, control algo-
rithms), and an edge between two nodes stands for the propagation of a signal.
While PCEDs were used in an informal manner so far, we now introduce a formal
de�nition and provide a transformation algorithm into TCESs.

Figure 2: PCED controller speci�cation

3.1 Syntax

A PCED consists of 11 components:

PCED = (Lay;Nod; �; Egd;Act; P rV; �;OpV; !;RsV; �);

in which Lay is an ordered �nite set containing �ve elements that represent the
layers:

Lay = flPr; lS=A; lCo; lHID ; lOpg:

\Pr" stands for \Process", \S/A" for \Sensor/Actuator", \Co" for \Computer",
\HID" for \Human Interface Device", and at last \Op" for \Operator". The layer
lCo is represented graphically by a horizontal solid line, and all other layers by
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a dotted line according to the order in Lay. Each layer is marked with its index,
for example, the layer lCo has the label \Computer".

Nod is a tuple of 7 di�erent sets whose elements are called nodes:

Nod = fNodPr; NodS=A; NodTr; NodCo; NodJu; NodHID ; NodOpg;

and each of these sets in Nod contains a �nite number of nodes. The abbrevi-
ation \Tr" stands for \Transfer", respectively \Ju" for \Jump". The elements
of NodPr and of NodOp are represented graphically by a �lled circle (�), the
elements of NodS=A and of NodHID by a �lled diamond (�), the elements of
NodTr by an empty square (�), the elements of NodCo by an empty circle (Æ),
and the elements of NodJu by an empty diamond (�). To make the identi�cation
of a speci�c node in the graphical representation easier, an arbitrary label can
be attached to the node.

The layoutfunction � determines to which layer the di�erent nodes are as-
signed, i. e. � : Lay �Nod! f0; 1g, s.t. for l 2 Lay, n 2 Nod�, where Nod� is
one of the elements in Nod: �(l; n) = 1 if

([l = lPr ^ n 2 NodPr] _ [l = lS=A ^ n 2 NodS=A]

_ [l = lCo ^ (n 2 NodTr _ n 2 NodCo _ n 2 NodJu)]

_ [l = lHID ^ n 2 NodHID ] _ [l = lOp ^ n 2 NodOp])

and �(l; n) = 0 else.
Hence, the elements of NodCo, NodTr, and NodJu are placed on the layer

lCo, elements from the other sets in Nod are placed on the layer with the same
index.

Edg is an �nite set of edges: Edg = fe1; :::; enedgg. Each edge e 2 Edg de�nes
an ordered pair of two nodes, where the following combinations are permitted:

eI = (nPr; nS=A) _ eII = (nS=A; nTr) _ eIII = (nTr; nS=A)

_ eIV = (nTr; nHID) _ eV = (nOp; nHID) _ eV I = (nHID ; nTr);

with nPr 2 NodPr; nS=A 2 NodS=A; nTr 2 NodTr; nHID 2 NodHID ; nOp 2
NodOp. The graphical representation of an edge is an arrow which points from

the �rst to the second node of the pair ei; i 2 1 : : : nedge. An edge of the type eII

is additionally labeled by an element of the set f\none"; \cont"; \pt= c" ; \nt =
c"g with c 2 R. The labels \pt = c" and \nt = c" mean that a process variable
(see below) crosses a threshold c in positive or negative direction. \pt" stands for
\positive threshold" and \nt" for \negative threshold", respectively. \cont" refers
to the forwarding of a continuous variables. Furthermore, an edge of the type
eIII is marked by a label taken from the set f\none", \cont", \hold", \open",
\close", \turn on", \turn o�", \increase", \decrease"g. All other edges can
optionally be marked with the label \none" or with an arbitrary label.

Act denotes an ordered �nite set of actions, which either denote a calculation
within a node on the computer layer or the transmission of signals between
di�erent layers. The calculations performed within the nodes are explained in
Sec. 3.2. An action aj is de�ned as one of the following ordered combinations of
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nodes and edges:

aj = (nPr; e
I ; nS=A; e

II ; nTr) _ aj = (nTr; e
III ; nS=A)

_ aj = (nTr; e
IV ; nHID) _ aj = (nOp; e

V ; nHID; e
V I ; nTr)

_ aj = (nJu) _ aj = (nCo); j 2 1 : : : nact:

The edges symbolize that a signal is sent from the node on the left to the node
on the right. For the last two types, the actions represent just the calculation
within the nJu or nCo. The order of actions aj ; j 2 1 : : : nact within the set Act
corresponds to the order (from left to the right) with which they are arranged
in the graphical representation.

PrV = fp1; : : : ; pprvg is the set of process variables, where each pj 2 PrV
refers to one of the real-valued quantities of the process that are measured (as
e. g. temperature or pressure). OpV denotes a set of nopv operator variables,
which are de�ned on a Boolean domain or on R. RsV is the set of nrsv out-
put variables or result variables, which are as well de�ned on f0; 1g or R. The
functions !, � and � assign the variables to speci�c layers: � : PrV � NPr !
f0; 1g; ! : OpV � NOp ! f0; 1g; � : RsV � NHID [ NS=A ! f0; 1g (i. e. the
value represents that a combination of variables and node exist). While at most
one variable can be assigned to a certain node, a variable can occur at several
nodes of the speci�c type.

3.2 Semantics

To give semantics to a PCED, we de�ne a run of a PCED as a sequence of
discrete states. Such a discrete state is introduced as a tuple:

sta = (aact; Env;Mem)

in which the environment Env and the memory Mem are sets of variables of
the type real or Boolean. Env contains the current values of all variables in
PrV , OpV , and RsV . Mem contains copies of these variables sets, which are
denoted by PrV �, OpV �, and RsV �. Additionally,Mem can contain a setMrV
of globally de�ned marker variables. These can be used as auxiliary variables in
the computations that are carried out in the nodes assigned to layCo (see below).
The variables of these four sets are denoted by : p�

i
, i 2 1::nprv, o

�

i
, i 2 1 : : : nopv,

r�
i
, i 2 1 : : : nrsv, and mi, i 2 1 : : : nmrv.
The separation between Env and Mem refers to the scanning mode of a

PLC (see Sec. 2.3), i. e. the process variables are scanned from the sensors and
written to a particular part of the memory modeled byMem. During execution,
the control software works with these variables and does not access the current
values of the sensors and actuators. This construction avoid inconsistencies due
to the fact that the variables in Env change their values during a cycle.

aact 2 Act is the currently active action which can alter the values of those
variables in Env and Mem that are assigned to the nodes of aact. Hence, a
state of the PCED is given as the combination of an action and the setting of
all variables after the action is carried out. A run of the PCED is a (possibly
in�nite) sequence of states:

Run = (sta1
t1
! sta2

t2
! : : : ):
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The computations within a state (according to an action aact) and the tran-
sitions between two states (at the time tk) have to be speci�ed in more detail.
If aact contains an edge e 2 Edg, data are transmitted from the �rst to the
second node in e. If an edge is marked with the label \none", the data exchange
is interrupted { this models the possibility of a transmission error. To specify
the computation within a node more accurately, we assign a function f to each
node n 2 Nod�, Nod� 2 Nod. Depending on the type of nodes, the following
applies for the function f :

{ For n 2 NodOp, the function f(?) = out has no input (? is an empty
symbol) and it delivers the value out of the variable oi 2 OpV that is assigned
to n. Thus, f models the behaviour of the operator. Through an edge of the
type eV , the value out is sent to the corresponding node n0 2 NodHID .

{ For a node n = NodHID that models the human interface device, the
function f depends on the type of the edge eV I = (nHID ; nTr) or e

IV =
(nTr; nHID). In the case of eV I , the output value is forwarded to the com-
puter layer by the function f . The node models an input device:

� if lab = \none" then f(in) = ; with ; as a failure symbol,

� else f(in) = in with in 2 R or in 2 ffalse; trueg.

In the case of eIV , the value in received from the computer layer is assigned
to the corresponding result variable ri := f(in), and it applies:

� if lab = \none" then f(in) = ;,

� else f(in) = in with in 2 R or in 2 ffalse; trueg.

{ For n 2 NodPr, we have f(?) = out with out 2 R, and out represents the
value of the corresponding process variable pi 2 PrV . The value out is sent
to that node n0 2 NodS=A which is part of the edge e = (n; n0) of the type

eI .

{ For a node n 2 NodS=A, one has to distinguish between the cases that n
represents a sensor, respectively an actuator. A sensor node receives its input
value from a node nProcessor and sends its output value to a node nTransf
on the computer layer. The label lab 2 f\none; \cont"; \pt = c"; \nt = c"g
of the edge e = (nS=A; nTr) determines the functionality of f :

� If lab = \pt = c" then f(in) =

(
true; if in � c

false; otherwise
,

� if lab = \nt = c" then f(in) =

(
true; if in � c

false; otherwise
,

� if lab = \cont" then f(in) = in.

An actuator node gets its input variables from a node nTr. Also here,
the label lab 2 f \none, \open", \close", \turn on", \turn o�", \hold",
\increase", \decrease", \cont"g of e = (nTr; nS=A) determines the func-
tion f . The output value is assigned to the corresponding result variable
ri := f(in):
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� If lab = \open" _ lab = \turn on" _ lab = \hold" _ lab = \decrease" _
lab = \increase"

then f(in) :=

(
true; if in = true

false; otherwise
,

� if lab = \close" _ lab = \turn o� "

then f(in) :=

(
false; if in = true

true; otherwise
,

� if lab = \cont" then f(in) := in,

Thus, the output value is true if a device (e. g. a valve) is opened or on, and
false if it is closed or o�. The interventions hold, decrease, and increase
are represented with the symbol true.

{ For n 2 NodTr, one also has to distinguish between the cases that signals are
received from layS=A or layHID and that signals are emitted to one of these
layers. Received values are used to update the copy of the operator variable
or the process variable in Mem (maybe manipulated by the computation in
n 2 NodHID or n 2 NodS=A). Values which are send out to nS=A or nHID

are taken from Mem.

{ An arbitrary control algorithm can be assigned to the nodes n 2
NodComputer , and f can change the values in Mem. More precisely, the
variables PrV � and OpV � can only be read and the other variables can be
read and manipulated, s. t. we can write: f : PrV ��OpV ��RsV ��MrV !
RsV ��MrV . (Since the sets of variables may include continuous and discrete
variables, we can represent continuous and discrete controller algorithms.)

{ No data are transmitted or manipulated in the nodes n 2 NodJu (i. e. we
have f(?) = ?).

The run of the PCED is determined by the following steps:

1. Initialize all variables and activate the action speci�ed with sta1. This action
is called the active action aact. Set the state index i to the value 1.

2. Evaluate the functions f of the nodes involved in aact and update the values
of the variables in Mem and Env (i. e. the process variables in Env are
changed by the process behaviour).

3. At a point of time ti, the state stai is left through a transition into state
stai+1. While the values in Mem are not changed by the transition, the
active action of stai+1 follows from the following rule:

{ If the active action of stai is of the form aact = (nJu), the next
action is determined by a jump. The execution of a jump can de-
pend on additional conditions, i. e. it can depend on the variables
of Mem: For each node nj 2 NodJu, a so-called jump set Juj =
fju1; : : : junjug exists where a jump juk, k 2 1 : : : nju is given as a
pair juk = (cnk; al), al 2 Act. If for the condition function cnk applies:
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cnk(p
�

1; : : : p
�

nprv
; o�1; : : : o

�

nopv
; r�1 ; : : : r

�

nrsv
;m1; : : :mnmrv

) = 1 for the cur-

rent values of the variables, the jump juk determines the action al as
the active action of state stai+1. If juk = (true; al) applies, the jump
is unconditional and it takes place independently of the values of the
variables in Mem. Only one of the jump conditions in Juj can be true
at the same time, such that the determination of the next action through
a jump is deterministic.

{ If the action in stai is of one of the other types (i. e. no jump node nJu
is involved), then the active action in stai+1 is the next action in the
ordered set Act, i. e. if aj was active in stai, then aj+1 becomes active
in stai+1.

4. Return to step 2.

The behaviour of PCED is now completely speci�ed by Run.

3.3 Translation into TCESs

For each continuous variable in Mem or Env, we de�ne a mapping Æ : R !
f1; : : : ; 5g which gives a discrete representation xi of the continuous variable.
The value 3 represents the normal point. The values 2 and 4 denote a negative
or a positive yet non-critical deviation from this point while the values 1 and 5
are critical positive or negative deviations.

The structure of the block-diagram which results from the translation is illus-
trated in Fig. 3. One block each is introduced to represent the process variables
(PrV module), the operator variables (OpV module), and the memory Mem
(memory module). Additionally, the structure contains one block for each ac-
tion of the PCED (which does not involve a jump node). Referring to the type
of the nodes in aj (nS=A, nHID , nCo), the modules represent the behaviour of
either a sensor, an actuator, an HID, or a controller function. A further block,
named status, is introduced to activate the other blocks in the order determined
by the ordering of the set Act. If a module is activated by the appropriate event
signal, it executes the function f of the corresponding node. The event signals
between the blocks are marked by \lightning" symbols, and the condition sig-
nals by plain arrows. The following sections describe the di�erent blocks in more
detail.

3.3.1 PrV, OpV, and memory modules

The PrV module consists of all process variables involved in the system. Every
process variable is represented as a state variable di 2 f1; : : : ; 5g. Similar to the
PrV module, the OpV module represents the operator variables. These variables
can also be of Boolean type. The variables of Mem are modeled by the memory
module. All process variables can be read by the sensor and all operator variables
by the input HID. The internal variables in the memory module can be read (as
condition signals) by the display HID and the actuator. To force the memory
modules to change their values, input event signals are necessary. In Fig. 4 the
OpV module is shown as an example.
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Figure 3: TCES model structure

Figure 4: The OpV module

3.3.2 Sensor modules

By means of the input condition signal u 2 f1; : : : ; 5g the sensor module receives
the values of the appropriate process variables and sends it to the memory mod-
ule by an event output signal z. A state variable is necessary to be able to
model the dynamics of the sensor and to model possible faults. The input event
v = enable forces the sensor to read the value of the condition input variable u
and to generate the event output z.

The dynamics of the sensor module depends on the assigned label. In case of
a label \cont", the state variable x 2 f1; : : : ; 5g gets the value of the condition
input variable u. In the case of an label \pt = c" or \nt = c"; c 2 N; the
sensor works as a limit switch, and the state variable is de�ned on the set f0; 1g.
The value is 1 if the threshold is crossed in the positive (u >= c) or negative
(u <= c) direction, and zero otherwise. A failure can be modeled by the label
\none", so that the activation of the sensor module does not have any e�ect.
Fig. 5 illustrates a sensor module derived from a node n 2 NodS=A with the
label \nt = 1".
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Figure 5: Sensor module

3.3.3 Actuator and HID modules

The actuator module receives its input from the memory module as condi-
tion input signal. If the assigned label lab is \cont" the state variable x 2
f1; : : : ; 5g gets the value from the input condition signal u 2 f1; : : : ; 5g when
its activation is forced by the input event v = enable. If the label lab is
in f\open"; \close"; \turn on"; \turn o� "; \hold"; \increase"; \decrease"g the
state variable x and the input condition signal u consist of the set f0; 1g.

Analogously, an HID module (serving as a display device) receives the input
variable from the memory module. The state variable of actuator modules and of
these HID module represent the result variables RsV . On the other hand, HID
modules representing input devices receive the input from the OpV module. The
output is sent to the memory module. To model failures, these modules can be
provided with the label \none".

3.3.4 Computation modules

According to the semantics of PCEDs, computation nodes can represent arbi-
trary control algorithms. Since the state variable x is de�ned as a discrete set,
in practice, we are limited to some template algorithms which may have to be
re�ned manually. At the moment, a proportional controller and elementary al-
gebraic function, e. g. addition and subtraction, are supported.

The process variables, operator variables, and variables of the memory mod-
ule are introduced as input condition signals. The control algorithm can set the
variables in the memory module to new values through the event output signals
of the computation blocks.

3.3.5 Status module

The events produced from the status module correspond to transitions within
the module, which are forced by a clock tick. This ticks are generated by a clock
variable that is repeatedly reset when its arbitrarily chosen threshold time is
elapsed. Therefore, the module needs nact transitions t1; : : : tnact and nact + 1
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states. The transitions trigger the execution of the sensor, actuator, HID, or
computation modules. For example, the sensor module is forced to read the
values from the process variables. Jumps are considered by additional transitions,
which modify the order of the activation of the actions. If the jump condition
function cn is not always true, i. e. the jump is conditioned, the current values
of the PrV, the OpV, and the memory module are fed into the status module by
condition signals u1; : : : ; unu . The corresponding transition can only take place
if cn(u1; : : : ; unu) = 1 applies. A status module is illustrated in Fig. 6.

Figure 6: Status module

4 Example

4.1 A controlled batch reactor

The example system is taken from [Kle95] and is sketched in Figure 7. It mainly
consists of a reactor and a condenser, in which the vapour produced in the
reactor is fed. The temperature of the system is controlled by changing the 
ow
of catalyst and cooling water. An increase of the catalyst 
ow intensi�es the
reaction, which leads to an increased temperature. The system can be cooled
down by increasing the cooling 
ow.

The example PCED in Fig. 2 illustrates an emergency control for this batch
reactor. If a fault occurs, i. e. if the measured oil level falls below a certain
threshold, an alarm is displayed and the output values catalyst 
ow, cooling

ow, and re
ux 
ow are kept constant by holding the catalyst valve (CATV), the
cooling valve (COOV), and the re
ux valve (REFV). The values are hold until an
operator has �xed the failure and restarts the control programme. In every case,
i. e. also in the mentioned emergency situation, the controller must prevent the
batch reactor from overheating. The control algorithm \detect fault" assigned
to the second action of the PCED sets the copies of Alarm� (display Alarm),
CATV � (hold CATV ) , COOV � (hold COOV ), REFV � (hold REFV ) in Mem
to true, if the sensor has detected a low oil level. Only after the execution of the
actions including appropriate actuators, the modi�cations become apparent in
the environment Env. In pseudo-code, the very simple control algorithm looks
like:
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Figure 7: The example reactor

Figure 8: Screen-shot of the VERDICT model

IF oil level to low THEN

Alarm
�

:= TRUE, CATV
�

:= TRUE, COOV
�

:= TRUE, REFV
�

:= TRUE;

END

4.2 Modelling and model checking

To perform a safety analysis for the example, the PCED is loaded in VERDICT
and translated into the equivalent TCES model automatically. The di�erent
modules and their interconnection are illustrated in Fig. 8 by a screen-shot of
the VERDICT model. If the sensor module LSENSOR detects a low oil level, i.
e. the input in1 of the COMPUTER2 module is true, it switches to the state oil
level to low when activated. With this transition events are produced, which set
the variables Alarm�, CATV �, COOV �, and REFV � to true. The generated
TCES model of the control device has to be completed manually by a simple

51Treseler H., Stursberg O. Chung P.W.H., Yang S.: An Open Software Architecture ...



model of the basic reactor behaviour: A module named reactor is added, and
the values of the actuator modules CATV and COOV in
uence the temperature
of the reactor. Therefore, the values of the actuators CATV and COOV are fed
to the reactor module by condition signals. Its single state variable temperature
represents the process variable reactor temperature, de�ned again on the set
temperature 2 f1 : : : 5g. Low cooling water 
ow and high catalyst 
ow cause
an increase of the reactor temperature, while high cooling water 
ow and low
catalyst 
ow result in the opposite. After a response time (modeled by a clock
variable) the state variable changes its value according to the input condition
signals.

The safety requirement is that the batch reactor should never be overheated,
i. e. that the variable temperature in the reactor module should never reache
the value 5. In VERDICT, this forbidden state is marked by a cross in the state
graph editor (see also Fig. 8), and initial states are marked with an \i".

SMV was chosen to analyse the system. The result was that the safety re-
quirement was not ful�lled. The counter example generated by SMV makes it
easy to locate why violation occured. An emergency (low oil level) can happen
even when the catalyst 
ow is high and the cooling 
ow is low and the controller
keeps the 
ows constant. In this case, the reactor temperature keeps increasing
and violates the safety requirement eventually.

For a safe operation, the control logic has to be updated as follows: instead
of keeping the 
ows constant in the case of an emergency, the catalyst valve has
to be closed and the cooling valve has to be opened. This stops the reaction and
prevents the reactor from overheating.

5 Conclusion

A tool environment for the formal veri�cation of logic controllers for chemical
plants was presented. The tool o�ers a set of graphical and textual user interfaces
to create timed discrete models of the process in a block-oriented fashion, and it
allows the user to include controller programmes compliant to the IEC 61131-3
standard. Continuous subsystems and controller programmes are automatically
replaced by TCES models

It was shown that the architecture of VERDICT is open in the sense that new
types of models used in process engineering, such as PCEDs, can be integrated.
On the analysis level, we have chosen to provide interfaces to existing model
checkers. The set of tools, for which interfaces are provided, enables us to choose
the one which seems to be most appropriate for a speci�c technical system. A
further successful application of VERDICT is described in [KEPS99].

The described integration of PCEDs into the VERDICT framework makes it
possible to use formal methods to check the instrumentation and the controller
functionality in early design stages of processing plants. Such investigations can
help to detect failures in the design of discrete controllers as early as possible.
This is especially important because the detection and correction of failures in
the detailed control code at later design phases is a very cumbersome task.
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