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Abstract: This paper presents the Coalgebraic Class Speci�cation Language ccsl

that is developed within the loop project on formal methods for object-oriented lan-
guages2. ccsl allows the (coalgebraic) speci�cation of behavioral types and classes of
object-oriented languages. It uses higher-order logic with universal modal operators to
restrict the behavior of objects. A front-end to the theorem provers pvs [ORR+96] and
isabelle [Pau94] compiles ccsl speci�cations into the logic of these theorem provers
and allows to mechanically reason about the speci�cations.

Keywords: coalgebra, speci�cation, binary methods, modal logic
Categories: D.2.4 D.2.1 F.3.1 F.4.1 (ACM'98)

1 Introduction

The use of coalgebras as semantics for object orientation (explicitly proposed in
[Rei95]) is for us the most promising approach towards speci�cation and veri�-
cation of classes. Coalgebras �t nicely together with algebras (or abstract data
types). The associated proof principles coinduction and induction can be used in
a nested way [HJ97]. These observations lead to the development of the Coalge-
braic Class Speci�cation Language ccsl (see also [HHJT98]) as a joint project
of the University of Dresden (Germany) and the University of Nijmegen (The
Netherlands). ccsl allows to nest algebraic and coalgebraic speci�cations. This
way the user can choose the appropriate speci�cation technique for his problem:
algebras for �nitely generated data types and coalgebras for behavioral types.

In this paper we present the speci�cation language ccsl. We focus on the
nonstandard, coalgebraic part, extending the introduction from [HHJT98]. The
main contribution of [HHJT98] was an application-oriented introduction into

1 This work was partly funded by the DFG within the Graduiertenkolleg \Speci�cation
of discrete processes and systems of processes by operational models and logics".

2 See URL http://www.cs.kun.nl/�bart/LOOP/.
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coalgebraic speci�cation and its semantics in HOL on the basis of a few examples.
In the present paper we give a precise de�nition of polymorphic coalgebraic class
speci�cation and its semantics. Further, we show how to de�ne method-wise
modal operators for coalgebraic class speci�cation.

The structure of this paper is as follows. In Section 2 we de�ne our notion of
polymorphic coalgebraic class speci�cation and give its semantics in the universe
of sets and total functions. The de�nitions will be illustrated with a speci�cation
of �rst-in-�rst-out (FIFO) queues. This takes up the main part of the paper.
Though the chosen example is a simple one, it demonstrates many aspects of
our speci�cation language.

Together with ccsl we developed a compiler that translates speci�cations
into logical theories of a theorem prover. This enables applications and case
studies of considerable size in which the compiler and the proof tool relieve the
user from many bureaucratic tasks. In Section 3 we present this ccsl compiler
and discuss its structure. In Section 4 we present an extension of our logic.
In�nitary modal operators based on the underlying coalgebraic structure can be
used to formulate and prove safety and liveness properties for objects. Further
features of ccsl are presented in Section 5. The conclusions in Section 6 give
an overview of applications of the speci�cation language ccsl. The remainder
of this introduction explains coalgebras on an intuitive level.

In coalgebraic speci�cation one considers observations and transitions. They are
functions of the form

Self �� � � � Self � � �

where the set Self is the state space of a system (or the set of all states of all
objects of a given class). The right hand side is some (type) expression that may
contain Self. In contrast, the operations considered in algebraic speci�cation have

the converse shape: Algebras are functions � � �X � � � �! X going into a set X .
Because of this duality, observation and transition functions are called coalgebras
in the remainder of this paper. Examples of coalgebras are:

Self �� Data� Self Self ��
�
Input! (1+ (Self�Output))

�

where � is the Cartesian product, + is disjoint union, ! is the function space,
and 1 is the singleton set f?g. So a coalgebra c acts on states x 2 Self and
produces an output c(x) giving some information about x or producing a next
state x0 (or both, as in the left example above).

There are also operations that are both algebraic and coalgebraic, for in-
stance the algebra Self� Input �! Self can be equivalently seen as a coalgebra
Self �! (Input! Self). Following this idea, in ccsl we relax the de�nition of
coalgebra for practical reasons and consider also functions

Self� � � � �� � � � Self � � �

as coalgebras under suitable restrictions on the types of the argument side.
Algebras, possibly satisfying certain logical formulas, have been successfully

applied in computer science for describing various data structures. Coalgebras
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are best suited for state-based dynamical systems where the internals of the
state space are hidden. Important issues for coalgebras are bisimulation, coin-
duction, invariants, and modal logic. It is a great advantage of coalgebras, that
the structure of the coalgebra delivers these notions for free. Some of this will
be explained in this paper. For an introduction to coalgebras and coinduction
see [JR97].

Directly related to this paper is the work of Ĉ�rstea: In [Ĉ�r99] she uses a
restricted version of coalgebraic class signature such that she can obtain a sound
and complete deduction system for her 
avor of coalgebraic logic. Hennicker and
Kurz consider in [HK99] coinductively de�ned algebraic extensions of coalgebraic
signatures. The work on hidden algebra [Ro�s00] has similar motivations to our
work. In hidden algebra signatures contain operations of the form Self�S1�� � ��
Sn �! S0, where (typically) Self is a hidden sort and the Si are arbitrary (hidden
or visible) sort. Our notion of coalgebraic class signatubre is single-sorted, but
we allow for structured output types (as shown above) and also for structured
argument types (for instance Self � (N ! Self) �! � � � ). The use of coalgebras
makes the treatment of partial operations very easy. In hidden algebra one has
to use subsorting to model partiality.

We would like to thank two anonymous referees and Kai Br�unnler for their
helpful comments.

2 Coalgebraic Class Speci�cations

In this section we formally de�ne the notion of coalgebraic class speci�cation as
it is used in the speci�cation language ccsl. The formalization that we use is
tailored towards practical application and perhaps not ideally suited for theo-
retical or categorical investigations in the theory of coalgebras. As a running
example we use a speci�cation of a FIFO queue; the complete speci�cation in
ccsl syntax is in Figure 1 on page 11.

In ccsl speci�cations are allowed to contain type parameters. In later use
a speci�cation might be instantiated by providing a concrete type for each of
the type parameters. Inside the speci�cation the type parameters appear as free
type variables in type expressions. We assume an in�nite set V = f�1; �2; : : :g of
type variables. For the semantics of type expressions, the type variables give rise
to an additional level of indexing. Instead of taking a plain set M as semantics
we take indexed collections (MU1;:::;Un) where the index sets U1; : : : ; Un are the
interpretations of the type variables.

When developing a speci�cation one rarely starts from scratch. Usually one
expects an environment containing some primitive types (like the natural num-
bers) and type constructors (like List[�]). Further one expects standard functions
like addition or concatenation of lists. One also wants to use the types and the
operations that have been de�ned by earlier speci�cations. All this will be cap-
tured by a ground signature.

Let us start with types. We use a speci�c instance of the polymorphic �{calcu-
lus �! over a polymorphic signature; see [Jac99a] for the general theory behind.
The types depend on the set of allowed type constructors (which will be given by
the ground signature). Type constructors have an arity assigned (the number of
type arguments they take). For instance the type constructor N, for the natural
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numbers, has arity 0, it is also called a type constant; the type constructor List
has arity 1, it takes an arbitrary type � and returns the type List[�] of lists over
�. So assume we have an indexed set (Cn) for n 2 N of type constructors, where
each Cn contains the type constructors of arity n. The set of types T over (Cn)
is generated by the following grammar.

T ::= V j Self j Cn[T1; : : : ;Tn] j T�T j T+T j T! T

Here the meta-symbol V stands for the type variables and Cn stands for the
type constructors of arity n from Cn (so type constructors must always be ap-
plied to the right number of arguments). The last three constructions are for
the Cartesian product, the disjoint union, and the exponent type (the function
space), respectively.

A type � is called a constant type if it does not contain Self, it is called a
(strictly) covariant type if � contains Self only in strictly covariant positions (i.e.,
for all subexpressions �! � occurring in � the type � must be a constant type).
For instance (�! Self)� Self is a covariant type, but (�! Self)! � is not.

A ground signature 
 is a pair h(Cn); (
�)i of two indexed sets, such that
(Cn) for n 2 N is an indexed set of type constructors and (
�) is a set of
constant (or function) symbols for each constant type � over the collection (Cn).
For f 2 
� we say that f has type �, also denoted by f : �. If � contains
type variables, then f is a polymorphic constant or function. Throughout this
paper we assume that the ground signature contains the type constant bool,
which will be interpreted by the booleans, the constants true; false 2 
bool, the
projection functions �1 : �1��2 ! �1 and �2 : �1��2 ! �2 and the injections
�1 : �1 ! �1 + �2 and �2 : �2 ! �1 + �2. In the running example of queues we
further assume the type constructor Lift of arity 1 that adds an error element ?
to its argument.3 We have two constants connected with Lift: the error element
? : Lift[�] and the injection up : �! Lift[�].

A class declaration (or a class interface) in an object-oriented programming
language consists of a �nite number of typed methods. They all have an addi-
tional hidden argument of type Self (which has to be given explicitly in ccsl).
This motivates the following de�nition.

De�nition 1. Assume a ground signature 
 = h(Cn); (
�)i.

1. A type over the collection (Cn) of the form (Self� �1 � � � � � �n)! � (or of
form Self! � for n=0) is called a method type. It is called a binary method
type if one of the �i is not a constant type (i.e., �i does contain Self) or if �
is not a strictly covariant type.

2. The types of the form � ! Self, for any constant type �, together with the
type Self4, form the set of constructor types.

3. A coalgebraic class signature is a pair h�M ; �Ci, where �M is a �nite set
of method declarations mi : �i, for method types �i, and �C is a �nite

3 Alternatively one can consider Lift as an abbreviation Lift[�] = 1 + � and assume
the one-element (or unit) type 1 together with ? : 1 in the ground signature.

4 The type Self is equivalent to 1! Self. So we include Self in the constructor types
only for convenience.
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set of constructor declarations ci : �i for constructor types �i. The set of
type variables occurring in the �i and the �i are the type parameters of the
signature. If one of the method declarations involves a binary method type
then the signature is said to contain binary methods.

Example 1. Consider a FIFO queue. It supports two operations, one for enqueu-
ing elements (put) and one for removing elements from the head (top). Re-
moving the �rst element from a queue is a partial operation, which fails if the
queue is empty. Therefore the signature �Queue contains the method declarations
put : Self� �! Self and top : Self! Lift[� � Self]. So for any element x of Self
either top(x) = ? (signaling an empty queue) or top(x) = up(a; x0), where a is
the �rst element of the queue and x0 is the successor state of x with a removed.
Notice that top is typically coalgebraic. To achieve the same in an algebraic set-
ting would require two separate operations in partial algebra, one for displaying
the top element and one for removing it; these operations need to be de�ned on
the same subset of Self. All this is far less concise and natural.

For the creation of new queues we add the constructor declaration new : Self
to �Queue. We could also use a constructor new from list : List[�] ! Self that
takes the elements of a list to initialize the queue.

Example 2 Expressions in Java. Coalgebras give a convenient mathematical rep-
resentation of classes in Java (or in similar object-oriented programming lan-
guages), see [JvdBH+98]. To each class a coalgebraic class signature can be as-
sociated, re
ecting the types of the �elds, methods and constructors of the class.
A model of such a signature (see De�nition 3 below), i.e. a coalgebra, can then
be understood as an implementation of the class.

We give a sketch of how this works, by concentrating on an example method
in Java of the form:

int m(bool b) { ... }

Such a Java method can have three possible output modes: it may hang (e.g.
through an in�nite loop), terminate normally and produce an integer result
together with a successor state, or terminate abruptly by throwing an exception
(e.g. caused by a division by zero). These three di�erent output options are
captured in the following method type for the method m:

Self� bool �! 1 + (int� Self) + (Excp� Self)

where Excp is an appropriate type for exceptions. One sees how the di�erent
possible outputs are naturally captured by using a structured codomain type|
typical for coalgebras.

As the examples showed already, in ccsl we model methods and constructors
in a functional way. This means that we do not assume a global state that is
available to every method. Everything to which a method should have access
must be passed as an argument (including the element of Self on which the
method is invoked). Further, a method cannot change the current object. Instead
it has to return a successor state as shown in the example above.

In object-oriented programming a method which acts on two (or more) ob-
jects is called a binary method [BCC+95]. There are di�erent ways how to model
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binary methods in ccsl. One can, for instance, pass a reference of the second
object (i.e., an natural number) as an additional argument to the method. How-
ever, the most natural way is to pass a second argument of type Self, like in
equal : Self � Self ! bool. Operations like the preceding equal do not �t into
the traditional categorical de�nition of coalgebras. In ccsl we allow these op-
erations (and also more complicated method types like Self� (N! Self) ! N)
but the theory behind is complicated [Tew00b]. For the remainder of this paper
we restrict ourselves to coalgebraic class signatures without binary methods, but
see also Section 5.3.

The constructors that can occur in a coalgebraic class signature are quite
restricted. They are merely parameterized initial states. For instance the copy
constructors of C++, which create a copy of the current object, should be mod-
eled as method Self! Self� Self in a coalgebraic class signature.

2.1 Semantics of class signatures

The start of the semantic development is an interpretation of the type construc-
tors. So assume a �xed ground signature 
 in the following and let C be a type
constructor of arity n. An interpretation of C is an indexed collection of sets
(JCKU1;:::;Un) where the indices U1; : : : ; Un are ordinary sets. So for C we have,
for each n{tuple of sets U1; : : : ; Un, a set JCKU1;:::;Un that gives us the semantics of
the type constructor C when applied to the argument sets Ui. The interpretation
of the type constructors expands in a straightforward way to an interpretation
of all types.

De�nition 2 Interpretation of types. Let 
 be a ground signature and as-
sume we have an interpretation for each type constructor of 
.

1. Let � be a type containing at most k type variables �1; : : : ; �k. The inter-
pretation of � is an indexed collection of sets (J�KXU1 ;:::;Uk ), where the set X
interprets the type Self and the sets Ui interpret the type variables. It is
de�ned by induction on the structure of � .

{ If � = �i for a type variable �i, then J�KXU1 ;:::;Uk = Ui

{ If � = Self then J�KXU1;:::;Uk = X

{ If � = C[�1; : : : ; �n] for a type constructor C of arity n, then J�KXU1;:::;Uk =

JCKV1;:::;Vn , where Vi = J�iK
X
U1;:::;Uk

{ If � = �1 � �2 then J�KXU1 ;:::;Uk = J�1K
X
U1;:::;Uk

� J�2K
X
U1;:::;Uk

for � 2
f�;+;!g. Here � denotes the Cartesian product, + the disjoint union,
and M ! N denotes the set of all (total) functions between M and N .

If � is a constant type we omit the superscript X and write (J�KU1 ;:::;Uk) for
its interpretation.

2. A model of the ground signature consists of an interpretation of all type con-
structors from 
 and for each f 2 
� for some type �, an indexed collection
of elements (JfKU1;:::;Uk 2 J�KU1 ;:::;Uk), where the Ui interpret the type vari-
ables �i in �. In the rest of the paper we identify the type constructors from
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the ground signature with their interpretation, so we write Lift[X ] for the
set X enriched with a bottom element.

Using both parts of the previous de�nition, we can now de�ne the semantics
of a class signature.

De�nition 3. Assume a model of the ground signature
 and let� = h�M ; �Ci
be a coalgebraic class signature with k type parameters. A model for � is an in-
dexed collection (hX;M;CiU1;:::;Uk) such that for each interpretation U1; : : : ; Uk
of the type parameters we have

{ a state space X ,

{ a setM of coalgebras that, for each symbol mi : Self��1�� � ���n ! � from
�M , contains a function JmiK : JSelf� �1 � � � � � �nK

X
U1;:::;Uk

! J�KXU1;:::;Uk .

{ a set C of algebras containing one function JciK : J�KU1;:::;Uk ! X for each
constructor symbol ci : � ! Self from �C .

Remark. Consider a signature � without binary methods and without type pa-
rameters. The signature and its models can be more abstractly described: �
corresponds to a pair (T�; F�) of endofunctors on the category Set. A model
for � corresponds to a pair of functions F�(X) ! X ! T�(X), that is to a
T�{coalgebra and a F�{algebra on the same carrier.

To see how this works, recall �rst that the two types �1 � �2 ! �3 and
�1 ! �2 ! �3 are equivalent in the sense, that their interpretations are always
isomorphic sets of functions. Further two method types Self! �1 and Self! �2
can be combined into one type Self ! �1 � �2. And for two constructor types
�1 ! Self and �2 ! Self one can equivalently use (�1 + �2) ! Self. So any
signature � can be transformed into an equivalent signature �0 with just one
method type Self! �� and one constructor type �� ! Self. So we set T�(X) =
J��KX and F�(X) = J��KX . This extends to an endofunctor on Set.

Example 3 Model for Queue. The signature �Queue from Example 1 has one type
parameter �. A model for this signature consists of a set XU for every set U
and two coalgebras putU : XU �U ! XU and topU : XU ! Lift[U �XU ], and a
constant newU : XU . Let N

+ be the natural numbers including in�nity 1 and
take XU = N+ � (N ! U), so a state in XU is a pair hn; fi, consisting of the
number n of elements in the queue and a function f : N ! U that gives the
elements in the queue for arguments lesser than n. We set

top(hn; fi) =

�
if n = 0 : ?

otherwise : up(f(0); hn� 1; �n : f(n+ 1)i)

put(hn; fi; u) =

�
if n =1 : hn; fi

otherwise : hn+ 1; �i : if i = n then u else f(i)i

new = h0; f0i

where f0 is an arbitrary function N! U . Note that at this stage there is nothing
that restricts the behaviour of these methods: There exist models of the Queue
signature that contain in�nite queues (as shown) and there are also models that
do not resemble FIFO queues at all.

181Rothe J., Tews H., Jacobs B.: The Coalgebraic Class Specification Language ...



2.2 Coalgebraic Speci�cation

A coalgebraic class speci�cation consists of a coalgebraic class signature and a
set of formulae that restrict the behavior of the methods and constructors of
the signature. The models of the speci�cation are those models of the signature
that ful�ll all formulae. For ccsl we use a standard higher-order logic where
the basic propositions are behavioral equalities. Intuitively, two terms are behav-
iorally equal, if they are pointwise equal for constant and parameter types and
pointwise bisimilar for the type Self.

The de�nition of bisimulation works on the inductive structure of the types.
The nonconstant type constructors from the ground signature are diÆcult to
handle. For them we need specially constructed �xedpoints in a lattice of rela-
tions. The details are explained in [HJ97]. In this paper we want to concentrate
on the essentials, therefore we assume in the following a restricted ground signa-
ture 
r that contains the type constructor Lift, arbitrary type constants but no
other type constructors (so C1 = fLiftg and Cn = ; for n > 1). This restriction is
harmless, the ground signature 
r is suÆcient for a large number of applications
including the queue example.

Consider a type � over 
r, choose a set X to interpret Self, and �x an
interpretation U1; : : : ; Un of the type variables in � . Now a relation R � X �X
gives rise to a relation

Rel(�)(R) � J�KXU1;:::;Un � J�KXU1;:::;Un

de�ned by induction on the structure of � . For suitable x and y the relation
x Rel(�)(R) y holds,

{ in case � = �i or � = C, for a type constant C, if x = y,

{ in case � = Lift[�] if either x = y = ? or if x = up(x0) and y = up(y0) for
x0; y0 2 J�KXU1;:::;Un and x0 Rel(�)(R) y0

{ in case � = Self if xR y

{ in case � = �1 � �2 if (�1x) Rel(�1)(R) (�1y) and (�2x) Rel(�2)(R) (�2y)

{ in case � = �1 + �2 if one of the two cases hold

� x = �1x1 and y = �1y1 for x1; y1 2 J�1K
X
U1;:::;Un

and x1 Rel(�1)(R) y1

� x = �2x2 and y = �2y2 for x2; y2 2 J�2K
X
U1;:::;Un

and x2 Rel(�2)(R) y2

{ in case � = �1 ! �2 if for all a; b 2 J�1K
X
U1;:::;Un

it holds that a Rel(�1)(R) b

implies (x a) Rel(�2)(R) (y b)

The relation Rel(�)(R) is called the relation lifting of R [HJ98]. Note that
x Rel(�)(R) y () x = y for constant types � .

De�nition 4. Let � be a coalgebraic class signature and assume a model M =
hX;M;Ci of � for a �xed interpretation U1; : : : ; Un of the type parameters.

1. A relation R � X �X is a �{bisimulation for M if for all methods m 2M
of method type � we have m Rel(�)(R) m.
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2. Bisimilarity �M is the largest �{bisimulation for M.

3. For a type � , two elements x; y 2 J�KX are behaviorally equivalent x �=M y
if x Rel(�)(�M) y holds.

These de�nitions of bisimulation and bisimilarity are equivalent to the de�-
nitions in [Rut00, JR97] (recall that we consider only signatures without binary
methods). This follows for example from Proposition 5.8 in [Tew00b].

Proposition5. Consider a coalgebraic class signature � and a model M of �.
The M{bisimulations are closed under union and intersection. Further, bisimi-
larity on M is an equivalence relation. It is given by the union of all bisimula-
tions.

Proof (Sketch). Prove that relation lifting commutes with union, intersection,
and relational composition by induction on types. Then the result is immediate.

Example 4. Let us unroll De�nition 4 for the queue example. Assume a model
hX;M;Ci of �Queue for a �xed interpretation U of the type parameter �. In the
following we use top and put for the functions in M that interpret the queue
operations. A relation R � X � X is a �Queue{bisimulation if for all x; y 2 X
with xR y the following two points hold.

{ 8a 2 U : (put(x; a)) R (put(y; a))

{ either top(x) = top(y) = ? or there exist x0; y0 2 X and a 2 U such that
top(x) = up(a; x0) and top(y) = up(a; y0) and x0Ry0.

Let us denote the greatest queue bisimulation with �Q in the following. Two
terms u; v 2 Lift[U � X ] are behavioral equal u �= v if either of the following
cases hold.

{ u = v = ?

{ there exists x; y 2 X and a 2 U such that u = up(a; x) and v = up(a; y) and
x �Q y.

For a logic over our coalgebraic class signatures we use an entirely standard
higher-order logic over a polymorphic type theory (see for instance [Jac99a]). So
for a signature � we have the following.

Ground terms are all constants c : � from the ground signature and all method
symbols m : � and constructor symbols c : � from �.

Variables We assume an collection of typed variables (V�). For any element
x 2 V� we have a term x : �.

Equality For any type � and terms t1; t2 : � we have the behavioral equality
t1 �= t2 : bool and if � is a constant type also (as syntactic sugar) t1 = t2 : bool
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Constructions Terms are closed under abstraction (�x : � : t : � ! � for
t : � and x 2 V� ), application (t1t2 : � for t1 : � ! � and t2 : �), tupel-
ing ( (t1; : : : ; tn) : �1 � � � � � �n for t1 : �1; : : : ; tn : �n), case distinction
(cases t of �1x : r; �2y : s : � for t : �1 + �2 and r : � with free variable
x : �1 and s : � with free variable y : �2), the boolean connectives ^;_;);:
(for instance t1 _ t2 : bool for t1; t2 : bool) and existential and universal
quanti�cation (8x : � : t : bool for x 2 V� and t : bool).

Formulae The terms of type bool are called formulae and denoted by L(�).

In ccsl and in examples we use the common object-oriented notation and
write t:m(t1; : : : ; tn) instead of m(t; t1; : : : ; tn) for t : Self. The interpretation of
terms and formulae is straightforward. Fix a modelM with state space X of �.
The interpretation of a term t : � with free variables x1 : �1; : : : ; xn : �n and k
type variables in �1; : : : ; �n and � is a collection of functions

�
JtKXU1;:::;Uk : J�1K

X
U1;:::;Uk

� � � � � J�nK
X
U1;:::;Uk

�! J�KXU1;:::;Uk
�

The ground terms are interpreted by the ground signature and byM. The model
M gives rise to behavioral equality �=M that is used for �=. The interpretation
of a term t in the model M is denoted with JtKM.

Formulae from L(�) that contain method or constructor symbols state prop-
erties of these operations. We distinguish between assertions and creation con-
ditions. Assertions are formulae that restrict the behavior of the methods of
the class. They apply to all objects of the class (i.e., the assertion should hold
for all elements of the state space). Formally an assertion is a formula that
contains one free variable of type Self and no constructor symbols from �. Cre-
ation conditions restrict the behavior of the constructors of a class. Typically a
speci�cation contains one creation condition per constructor symbol. Formally
a creation condition is a closed formula.

De�nition 6. Let � be a coalgebraic class signature.

1. A coalgebraic class speci�cation is a triple h�;A; Ci, where � is a coalgebraic
class signature, A is a �nite set of assertions, and C is a �nite set of creation
conditions, both being sets of formulae from L(�).

2. A model M = hX;M;Ci of � is a model of the speci�cation h�;A; Ci if for
all interpretations of the type parameters of � it holds that for all F 2 A
we have 8x : X : JF KM(x) and additionally JGKM is true for all G 2 C.

Note that assertions and creation conditions can be combined via conjunc-
tion without changing the semantics. But in applications it is nicer to capture
di�erent properties in di�erent formulae.

Example 5. In Example 1 we described the Queue{signature. To specify the be-
havior of FIFO queues we use two assertions and one creation condition. The
�rst assertion tells something about empty queues, a queue q is considered to be
empty if the top methods fails on it (i.e., if q:top �= ?).

Fempty(q) =
�

q:top �= ? ) 8a : � : q:put(a):top �= up(a; q)
�
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BEGIN Queue[ A : TYPE ] : CLASSSPEC
METHOD
put : [Self, A] �> Self ;
top : Self �> Lift[[A,Self ]];

CONSTRUCTOR
new : Self ;

ASSERTION SELFVAR x : Self
q empty : x.top �= ? IMPLIES

FORALL(a : A) . x.put(a).top �= up(a,x);

q �lled :
FORALL(a1:A, y : Self) . x.top �= up(a1,y) IMPLIES
FORALL(a2 : A) . x.put(a2).top �= up(a1, y.put(a2));

CREATION
q new : new.top �= ?;

END Queue

Figure 1: The ccsl speci�cation for queues

So if the queue is empty we demand that q:put(a):top is always successful (i.e., it
never equals ?) and that it returns a pair (b; q0) where a = b and q0 is an empty
queue again. The second assertion restricts nonempty queues.

F�lled(q) =

�
8a1 : �; q0 : Self : q:top �= up(a1; q

0) )

8a2 : � : q:put(a2):top �= up(a1; q
0:put(a2))

�

This says that if q is nonempty, then the two operations of adding an element (at
the end!) and of removing the �rst element are interchangeable. In the creation
condition we demand that the constructor new delivers an empty queue

Fnew =
�

new:top �= ?
�

The full queue speci�cation is h�Queue; fFempty; F�lledg; fFnewgi, it is shown in
ccsl syntax in Figure 1 on page 11.

3 The Speci�cation Language CCSL and its Compiler

In this section, we introduce the Coalgebraic Class Speci�cation Language ccsl.
This speci�cation language allows to specify classes in a coalgebraic way as for-
mally described in De�nition 6. We also introduce a compiler for ccsl that
translates those class speci�cations into logical theories for theorem provers and
thus allows the mechanical veri�cation of large class speci�cations. This ver-
i�cation may involve the construction of models and re�nements, and theory
development.
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Coalgebraic speci�cations according to De�nition 6 form the most important
ingredient of ccsl. A coalgebraic class speci�cation needs only few syntactic
changes and annotations to be a valid ccsl speci�cation. The concrete syntax
of ccsl is very close to pvs. Figure 1 contains the ccsl version of Example 5.
In ccsl the type parameters must be declared after the name of the speci�ca-
tion (line 1). The keyword CLASSSPEC tells the compiler that the following
is a coalgebraic class speci�cation. In ccsl the product of two types is written
with brackets: [�1; �2], so Lift[[A;Self]] is Lift applied to A � Self. The decla-
ration of method symbols starts with the keyword METHOD on line 2, then
the constructor symbols follow and �nally we have the two assertions and the
creation condition. The variable of type Self that occurs freely in the assertions
is declared with the keyword SELFVAR before the �rst assertion.

To give the user support for verifying speci�cations, we did not develop
our own theorem prover for coalgebraic class speci�cations. Instead, we de-
cided to implement a front-end tool (the ccsl compiler) for existing theorem
provers (isabelle and pvs at the moment). The compiler is written in ocaml

[LDG+00]. ocaml is the French dialect of the functional programming language
ML enriched with object-oriented features. Besides ccsl, the tool does also sup-
port java [JvdBH+98] and jml(annotated java) [LBR99]. For input �les the
compiler generates appropriate theories for pvs and isabelle. We shall focus
on ccsl input and pvs output.

The front-end tool is, following standard compiler construction techniques, or-
ganized in several passes. These passes act on intermediate internal data struc-
tures. In the �rst pass, the compiler parses the source code and generates an
internal representation of the input. Internally, classes and methods are stored
in ocaml classes. The types that appear in the class signatures are encoded as
elements of an abstract data type top types in ocaml. For instance the type
Self �A! Self is internally represented as

Function(Product(Self,TypeVariable("A")), Self)

Here Function, Product, Self and ConstantType are some of the type con-
structors of the ocaml type top types. They represent the corresponding type
constructors from ccsl. Similarly, formulae are represented as members of an
abstract data type top formulae.

In the second pass, the tool checks the type correctness of formulae that
appear in the assertions. The current version of this pass is a simple recursive
type checker that can check the type of a term if the types of all its sub-terms
are given. Ground terms that have an ambiguous type (like the injections �i)
must be annotated with the correct type by the user. A future version of the
compiler will contain a better type checker.

After type checking, the tool generates an internal representation of the out-
put theories. In the fourth pass, these theories are written into the output �les
in the desired format (that is isabelle or pvs). This separation from pass three
makes it easy to add support for other theorem provers for higher-order logic.

The most basic theory that the compiler generates from a class speci�cation is
the interface theory. Figure 2 depicts the pvs-output for our queue example. In
the �rst line, you �nd the name of the theory and its parameters. As De�nition 3
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QueueInterface[Self : TYPE , A : TYPE] : THEORY
BEGIN
IMPORTING Lift[[A , Self]]

QueueSignature : TYPE = [#
put : [[Self , A] �> Self] ,
top : [Self �> Lift[[A , Self]]]

#]
QueueConstructors : TYPE = [# new : Self #]

END QueueInterface

Figure 2: The pvs theory for the queue interface

suggests the type Self is semantically treated as a special type variable. There-
fore the pvs theory QueueInterface is parametric in two types. In pvs the type
constructor Lift is formalized as a parametric abstract data type. This type is
imported in line 3. Lines 5-8 capture the interface of the methods of the queue
and Line 9 describes the interface of its constructors.

Based on the interface theory, the compiler also generates de�nitions of invari-
ants, homomorphisms between coalgebras for a class speci�cation, bisimilarity,
and behavioral equalities. The theories that describe the assertions use these
notions, especially behavioral equality. To increase the veri�cation support also
standard lemmas and axioms about invariants and bisimilarity are generated.
They are very useful when one tries to prove properties of a speci�ed class.
These de�nitions also serve as tools for the concepts of model and re�nement
between class speci�cations.

Altogether the theories that the compiler generates have about 30 times the
size of the original ccsl speci�cation. It would be infeasible to do the translation
of ccsl into higher-order logic by hand.

4 Modal Operators

Modal operators5 are well suited for the veri�cation of properties of potentially
nonterminating systems. For this reason, we incorporated these operators into
our logic. In addition to the constructions in Section 2 we allow the following:

Constructions (cont.) Terms are further closed under modal operators
2 P : Self ! bool and 2fm1;:::;mng P : Self ! bool, where P : Self ! bool
and m1; :::;mn are method symbols from the coalgebraic class signature �.

The construction 2 P shall be interpreted as a predicate that holds in those
states, for which all reachable successor states ful�ll P . This corresponds to AGP
from CTL [Eme90]. In the second version reachability is restricted to transitions
via speci�c methods m1; :::;mn. This is especially useful if in a speci�cation some

5 Some people distinguish between modal and temporal logic. Following a long tradi-
tion, we consider temporal operators as special cases of modal operators.

187Rothe J., Tews H., Jacobs B.: The Coalgebraic Class Specification Language ...



methods m1; :::;mn maintain a property and others do not. The corresponding
dual to 2 is 3 , which is de�ned as syntactic sugar

3
M P (x) = : 2M

�
�y : Self:: P (y)

�
(x)

where M = fm1; : : : ;mng. Observe that we can not use the usual : 2M :P (x),
as negation is de�ned for boolean values only and not for predicates.

Example 6. Again, consider our queue class speci�cation. Using the modal op-
erators, we can express the property, that every queue that was built from an
empty queue can be made empty again:

8x : Self: x:top �= ? ) 2
�
3 (�y : Self: y:top �= ?)

�
(x)

This property can easily be proved by observing that every queue that was
built from an empty queue can be emptied by a number of top steps. This
number must be equal to the number of elements in the queue.

The semantics of 2 P is de�ned in terms of greatest invariants contained
in the interpretation of P . (This connection was �rst recognized in [Jac99b]. A
more detailed elaboration of this topic can be found in [Rot00].) For de�ning
invariants, we need an analogue to relation lifting from Section 2 for predicates.

Consider a type � over the restricted ground signature 
r, choose a set X
to interpret Self, and �x an interpretation U1; : : : ; Un of the type variables in
� . Now a predicate P � X gives rise to a predicate Pred(�)(P ) � J�KXU1 ;:::;Un
de�ned by induction on the structure of � . For an element x 2 J�KXU1;:::;Un it

holds that x 2 Pred(�)(P )

{ always in case � = C or � = C

{ in case � = Self if x 2 P

{ in case � = Lift[�], if x = ? or x = up(x0) and x0 2 Pred(�)(P ).

{ in case � = �1 � �2 if (�1x) 2 Pred(�1)(P ) and (�2x) 2 Pred(�2)(P )

{ in case � = �1+�2 we have either x = �1x1 or x = �2x2 for xi 2 J�iK
X
U1;:::;Un

.

In the �rst case it must hold that x1 2 Pred(�1)(P ) and in the second case
that x2 2 Pred(�2)(P ).

{ in case � = �1 ! �2 if for all a 2 J�1K
X
U1;:::;Un

it holds that a 2 Pred(�1)(P )

implies x(a) 2 Pred(�2)(P )

The predicate Pred(�)(P ) is called the predicate lifting of � .

De�nition 7. Assume a coalgebraic class signature � and let M = hX;M;Ci
be a model of �. A predicate P � X is a �{invariant for M if for all methods
m 2M of method type � we have m 2 Pred(�)(P ).

Proposition8. Consider a coalgebraic class signature � and a model M. The
�{invariants inM are closed under union and intersection. Especially the empty
and the full set are �{invariants.
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Proof. Again, by induction prove that predicate lifting commutes with union and
intersection. Then the desired result imediately follows. The proposition about
full and empty sets are straight-forward.

So there exists always a greatest invariant contained in P . We shall denote
this greatest invariant contained in some P by P .

De�nition 9 Semantics of 2. Assume a coalgebraic class signature � and a
model M = hX;M;Ci. As announced above, the type of 2 P is Self ! bool for
P : Self ! bool. For free variables x1 : �1; : : : ; xn : �n in P , such that there are
at most k type variables in �1; : : : ; �n, the interpretation of 2 P is a collection
of functions

�
J2 P KXU1;:::;Uk : J�1K

X
U1;:::;Uk

� � � � � J�nK
X
U1;:::;Uk

�! X �! JboolK
�

indexed by the possible interpretations for the type variables U1; : : : ; Uk. It is
de�ned by

J2 P KXU1;:::;Uk(x1; : : : ; xn) =
n
x 2 X such that x 2 JP KXU1;:::;Uk(x1; : : : ; xn)

o

with (x1; : : : ; xn) 2 J�1K
X
U1;:::;Uk

� � � � � J�nK
X
U1;:::;Uk

. That is, the interpretation

of 2 P (with respect to some free variables and type variables) is the greatest
invariant contained in the interpretation of P (with respect to the interpretation
of those free variables and type variables).

For modal operators that are restricted to some methods, the interpreta-
tion requires suitable restrictions in the de�nition above. The main idea is
to construct a sub-signature of the class signature that is determined by the
methods m1; : : : ;mn. This signature gives rise to its own (sub-)lifting and,
thus, own (greatest) (sub-)invariants. These are used to de�ne the semantics
of 2fm1;:::;mng P in the same way as above. To �nd a fully worked-out version,
see [Rot00]. There you also �nd some calculus rules for 2, that characterize it
as "S4" operator, and a characterization result of 2 via computation paths.

As you may expect, our front-end tool generates appropriate theories with the
de�nitions of the modal operators for a class speci�cation. It further generates
lemmas that help when reasoning about modal properties.

5 Advanced CCSL

In this section we informally sketch some other features of ccsl and/or coalge-
braic speci�cation.

5.1 Inheritance and Late Binding

The notions of inheritance, overriding and late binding are usually seen as the
key concepts of object orientation. However it is not completely clear what these
concepts should mean for a speci�cation language. For instance the term late
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binding refers to the choice of method bodies at runtime depending on the dy-
namic type of the objects. But a speci�cation language abstracts from imple-
mentation details and has no method bodies. For ccsl we decided to support all
possible 
avors of inheritance, overriding and late binding on an abstract level
instead of following one speci�c language.

Multiple inheritance of speci�cations can be modeled by inclusion of class
signatures. In ccsl we provide the syntax

INHERIT FROM Queue[ bool ] RENAMING top AS get

to include the method declarations from the Queue speci�cation (thereby instan-
tiating it to a queue of booleans and renaming the method top). For more details
about overriding and late binding we refer the reader to [HHJT98].

5.2 Components and Abstract Data Types

Via components objects can contain other objects (of di�erent classes). After
processing the Queue speci�cation the compiler enriches the actual ground sig-
nature with a type constructor Queue of arity one (because this speci�cation has
only one type parameter). In a speci�cation that follows the queue speci�cation
types can therefore contain Queue. So that

queues : [Self, nat] �> Queue[A];

is then a valid method declaration in ccsl (describing a method with which the
user can access an in�nite array of queues in each object). For the semantics of
the type constructorQueue the user can choose between loose semantics and �nal
semantics. For loose semantics the interpretation of Queue will be an arbitrary
model of the Queue speci�cation. For �nal semantics it will be the �nal model6.

Besides coalgebraic class speci�cations ccsl allows also abstract data type
de�nitions (which have not been discussed yet). The type of binary trees with
di�erent labels on branches and leaves, for instance, looks in ccsl like

BEGIN BTree[A, B : TYPE] : ADT
CONSTRUCTOR
leaf : A �> CARRIER;
branch : [CARRIER, B, CARRIER] �> CARRIER;

END BTree

The keywordCARRIER stands (similar to Self) for the type being de�ned. For
abstract data types we use an initial semantics. So after processing the binary
trees, the ground signature is enriched with a type constructor BTree of arity
2. Its semantics is the carrier of the initial algebra for the BTree signature. The
type constructor BTree can be used subsequently to declare methods that take
or deliver binary trees. In proving properties for such methods one has to nest

6 The �nal model can be understood as the union of all possible models factorized by
bisimilarity. It can mimic every possible behavior and further no two di�erent states
of the �nal model show the same behavior. For class signatures without binary
methods there exists always a �nal model [Rut00]. Under additional assumptions on
the assertions, it can be shown that every consistent speci�cation without binary
methods has a �nal model. (The use of �nal refers here to the �nal object in the
category of all models of Queue.)
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an induction proof inside a coinduction. Currently one cannot add assertions to
an abstract data type speci�cation in ccsl.

5.3 Binary Methods

Binary methods are operations that receive two (or more) objects of the current
class instead of only one [BCC+95]. A typical example is equal : Self� Self �!
bool. For ccsl we use the more general de�nition (compared to [Rut00]) of coal-
gebras from [Tew00b]. In the de�nition of types and class signatures in this paper
we also follow the more general approach that allows for binary methods. But for
bisimilarity and invariants we gave simpler de�nitions that do not work properly
if the signature contains binary methods. However, the ccsl compiler `knows'
the proper de�nitions, so the user can specify classes with binary methods. In
the presence of binary methods the notions of bisimilarity and invariants behave
not as nicely as for traditional coalgebras. For instance bisimulations are not
closed under union and a �nal model does usually not exist. For details about
bisimulations and bisimilarity see [Tew00b], more results about invariants will
appear elsewhere.

5.4 Re�nement

Re�nement is a relation between two speci�cations. A concrete speci�cation C
re�nes an abstract speci�cation A if all models of C can be turned (in a generic
way) into models of A. Re�nements are usually concatenated in a number of
steps, starting from a high level abstract speci�cation and leading to an im-
plementation. The properties of re�nement ensure that the models of the most
concrete speci�cation still ful�lls the assertions of the original abstract speci�-
cation.

For coalgebraic class speci�cations we have two notions of re�nement. Model
theoretic re�nement is a generalization of [Jac97] and is based on the notion of
models. In contrast, behavioral re�nement is based on bisimilarity of correspond-
ing initial states. Behavioral re�nement is more general than model theoretic
re�nement. Behavioral re�nement can also be used if only a part of the abstract
class interface (for instance the public part) is re�ned. Under mild assumptions
on the logic used in the assertions, it can be shown that, in a situation where
both notions of re�nement can be applied, behavioral re�nement implies model
theoretic re�nement. Details will appear elsewhere.

6 Conclusion

In this paper we presented the coalgebraic class speci�cation language ccsl

and sketched its possible applications. ccsl allows to mix class speci�cations
with abstract data-type speci�cations. For the class speci�cations it relies on
coalgebras and the notions of behavioral equality and invariance.

The speci�cation language ccsl has been successfully used in several nontriv-
ial case studies. Meyer speci�es in [Mey99] the MSMIE (multi-processor shared
information exchange) protocol in ccsl. He re�nes this initial speci�cation in
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three steps and proves the correctness of a java implementation of the protocol.
Lambooij studies in [Lam00] the Y{chart Application Programmers Interface
(YAPI) protocol for Kahn processing networks. He developed a speci�cation in
ccsl and proves with pvs the correctness of the data transfer and the absence
of deadlock for the YAPI protocol.

In [Tew00a], the second author uses ccsl to formalize parts of the memory
management of the micro-kernel operating system Fiasco. He then examines
the C++ sources of Fiasco. The case study revealed some hidden assumptions
about the internal interface of the memory management of Fiasco. This case
study proves that the speci�cation language ccsl together with the theorem
prover pvs can well be applied to real software.

In the future we plan a public release of the ccsl compiler. In our current
research we try to improve the support of ccsl for the speci�cation of imper-
ative object-oriented programs. Further we try to apply the theory of traces to
coalgebras to model systems of objects.
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