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Abstract: We address three basic questions in computational geometry which can
be phrased in simple terms but have only recently received (more or less) satisfactory
answers: point set enumeration, optimum triangulation, and polygon decomposition.
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1 Introduction

Computational geometry is concerned with the algorithmic study of elemen-
tary geometric problems. Ever since its emergence as a new branch of computer
science in the early 1970’s, a fruitful interplay has been taking place between
combinatorial geometry, algorithms theory, and more practically oriented ar-
eas of computer science. Computational geometry has been among the driving
forces for developing advanced algorithmic techniques, data structures, and set-
theoretic concepts. Parametric search, randomization, plane-sweep technique,
fractional cascading, and e-nets are a some examples. On the other hand, inter-
est has been renewed in elementary geometric and graph-theoretic concepts, like
convex hulls, arrangements, Voronoi diagrams, triangular networks, and hyper-
cubes. A fact which maybe fascinates many computational geometry researchers
(including the author) most is that many questions in this area, which may have
deep and complex answers, can be stated in an extremely simple and elegant way.
The present paper is devoted to some questions of this kind. Choice is rather
subjective than representative, and is mainly guided by the author’s topics of
interest within the past few years.

2 Which Sets of 10 Points Do Exist

A set of n points in the plane is the underlying structure for various problems
in computational geometry. In fact, a finite set of points seems to be among the
simplest geometric objects that lead to non-trivial geometric and algorithmic
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questions. Not surprisingly, most of the basic concepts and data structures in
computational geometry have first been developed for point sets and later been
generalized to more general objects like line segments, circles, polygons etc. Ex-
amples include the convex hull, the Voronoi diagram, and geometric search trees,
just to name a few.

Quite a large subclass of problems is determined already by the ’combinato-
rial” properties of an n-point set S rather than by its metric properties. More
precisely, look at all the (g) straight-line segments spanned by the points in S.
The way these segments cross each other turns out to be of importance, in the
sense that point sets with identical crossing properties give rise to equivalent ge-
ometric structures. This is true for many popular structures like spanning trees,
triangulations, polygonalizations, so-called k-sets, and many others.

Several of these structures lead to hard problems. For some of them, like
counting the number of triangulations of a given point set, no subexponential
algorithms are known [1]. For others, like for k-sets, the combinatorial complexity
is still unsettled [21]. Sometimes even the existence of a solution has not yet been
established, such as the question of whether any two given n-point sets (with the
same number of extreme points) can be triangulated in an isomorphic manner [5].

To gain insight into the structure of hard problems, examples that are typical
and/or extreme are often very helpful. To obtain such examples usually complete
enumerations on all possible problem instances of small size are performed. In
our case this means to investigate all ’different’ sets of points, where difference
is with respect to the crossing properties of the sets. This leads us to questions
like, "Which sets of, say 10, points do exist?’.

The answer is surprisingly difficult, due to two reasons. First, the number of
inequivalent point sets of size 10 is already in the millions (14 309 547, to be
precise). Second, there seems to be no simple way to enumerate all these sets,
because each increase in size gives rise to types which cannot be obtained directly
from sets of smaller size. This may explain why it took until recently that the
first complete data base on 10-point sets has been established; see Aichholzer et
al. [7]. Below we describe, in a more formal style, the inherent difficulties of such
a project, along with first applications and results obtained from the ’point set
data base’.

2.1 The approach

An appropriate tool to reflect the crossing properties of a given point set has been
developed quite a while ago. Goodman and Pollack [27] introduced the order type
of a set {p1,...,pn} of points as a mapping that assigns to each ordered triple
i,7,k in {1,...,n} the orientation (either clockwise or counter-clockwise) of the
point triple p;, pj, pr. Two point sets S; and Sy are said to be equivalent if they
exhibit the same order types. That is, there is a bijection between S; and Ss
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Figure 1: Two equivalent sets of 5 points

such that any triple in S; agrees in orientation with the corresponding triple
in Ss; see Figure 1 for an example. It is not hard to see that two line segments
spanned by S; cross if and only if the corresponding segments for Ss do. The
goal is to enumerate all order types of size 10 (and less).

To this end, use can be made of the duality' between point sets and line
arrangements in the Euclidean plane. A line arrangement is the dissection of
the plane induced by a set of n straight lines. As no direct way to enumerate
these structures is known, we first produce all non-isomorphic arrangements of
so-called pseudolines. A set of pseudolines is a set of simple curves which pairwise
cross at exactly one point. Handling pseudolines is relatively easy in view of
their equivalent description by wiring diagrams; see, e.g., Goodman [26]. Consult
also Figure 2. We can read off a corresponding pseudo order type from each
pseudoline arrangement, because the intersection orders on all the pseudolines
uniquely determine the orientations of all element triples. Back in the primal
setting, where each line potentially corresponds to a point, this leads to a list of
candidates guaranteed to contain all different order types.

This leaves us with the problem of identifying all the realizable order types
in this list, that is, those which can actually be realized by a set of points. Here
we enter the realm of oriented matroids, an axiomatic combinatorial abstraction
of geometric structures introduced in the late 1970s. As a known phenomenon, a
pseudoline arrangement need not be stretchable, i.e., isomorphic to some straight
line arrangement. There exist non-stretchable arrangements already for 8 pseu-
dolines; see, e.g., Bjorner et al. [15]. As a consequence, our candidate list will
contain non-realizable pseudo order types. Moreover, even if realizability has
been decided for a particular candidate, how can we find a corresponding point
set?

! Any of the well-known duality transforms used in computational geometry may serve
this purpose, although none of them leads to a bijection in order type.
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Figure 2: A wiring diagram that can be stretched

As a matter of fact, the situation gets conceptually and computationally eas-
ier in the projective plane where — unlike in the Euclidean plane — inequivalent
order types directly correspond to non-isomorphic line arrangements, and iso-
morphism classes of pseudoline arrangements coincide with (reorientation classes
of) rank 3 oriented matroids. For size 10, there exist exactly 312 356 classes of
these matroids, 242 of which are non-realizable; see [15, 26]. This knowledge can
be put to use for our purposes in the following way.

Let C be the candidate list of order types obtained from wiring diagrams
(as sketched above). We group the members of C into equivalence classes by
correspondence to the same projective order type. In every class, either each or
no order type is realizable. We know from matroid theory that Pyg = 312 114
projective classes have to be realizable. Now, for each member of C, we try to
recover a realizing point set. A counter is kept for the number of realizable
projective classes all of whose members have been realized already. The process
is terminated when this number reaches Pjq.

Recovering realizing point sets is done by a combination of heuristics, in-
cluding insertion stategies and simulated annealing. To our fortune, one or the
other heuristic eventually succeeded in realizing all candidates which are indeed
realizable. To enhance the user-friendliness of the obtained data base, each point
set was post-processed to fit into a small and nice grid representation. Even this
issue is by no means trivial, as a doubly-exponential lower bound on the required
grid size is known; see [28].

Table 1 lists the numbers of Euclidean order types according to the size h of
the convex hull of the realizing n-point sets.

It took 36 hours on a 500 MHz Pentium III to generate all Euclidean pseudo
order types of size n = 10, and to find realizing point sets for all but some 200 000
of them, by using the insertion strategy. However, most of the projective classes
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Table 1: Number of Euclidean order types classified by extreme points

corresponding to the pseudo order types left unrealized got at least one member
realized, and could be completed quickly by a rotation technique. In particular,
only 251 projective classes remained without any realized member. For these
classes, we had to invoke a simulated annealing routine, as we had no information
on which are the 242 classes known to be non-realizable from literature. We were
successful for 9 classes within 60 hours which finally completed this task.
Much additional effort has been required to obtain compact grid representa-
tions for the realizing point sets, as well as for checking reliability of the data
base. In summary, a complete, user-friendly, and reliable data base for all order
types of sizes n < 10 has been obtained. The data base is made public on the
web?. Due to space limitations, the grid point sets of size 10 are not accessible
on-line but rather have been stored on a CD which is available upon request.

2.2 Some applications

Let us now briefly point out some situations were the complete enumeration of
all order types for n < 10 leads to results for general problem size n.

The obvious case is when a counterexample can be provided that generalizes
to larger n. There might exist counterexamples too large to be found by hand
though small enough to be detected by checking all order types. On the other
hand, the non-existence of small counterexamples gives some evidence for the
truth of a conjecture.

As another example, case analyses for problem instances of constant size are
often encountered when proving some combinatorial property. This is particu-
larly true for induction proofs if a sufficiently large induction base is sought. The
point is that the quality of the initial values affects the asymptotic behavior of
the result.

2 at http://www.igi.TUGraz.at/oaich/triangulations/ordertypes.html
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It would lead to far to give concise definitions of all the problems having
been examined by means of the data base so far; we refer to [9] instead. Com-
plete enumerations have been done for frequently arising concepts like triangu-
lations, crossing-free Hamiltonian cycles, crossing-free spanning trees, crossing-
free matchings, k-sets, and others. Extremal values have been calculated for
the crossing number (of the complete geometric graph), the cover number and
the partition number (by convex polygons), the size of crossing families (in the
complete geometric graph), the reflexivity number (for Hamiltonian cycles), and
more. In various cases, new results and answers to open problems and conjectures
have been obtained.

In conclusion, we believe that knowing ’which sets of 10 points do exist’ will
be of use to many researchers in computational and combinatorial geometry who
wish to examine their conjectures on small point configurations.

3 Finding the Best Triangular Network

Generating quality triangular meshes is one of the fundamental problems in com-
putational geometry and has been studied extensively, from both the theoretical
and practical point of view; see e.g. the survey paper by Bern and Eppstein [14].
Main fields of application include finite element methods and computer aided
design. In formulating a triangulation problem, a choice arises between two types
of triangulations: ones that have exactly the input points as their vertices, and
others where additional points may be placed to increase quality. While the
latter type probably has received more attention in practice, the former type
— triangulating a fixed set of points ’optimally’ — has attracted the interest of
many theoreticians. In fact, finding optimal triangulations is a hard problem,
apart from a few exceptions.

3.1 Optimal triangulations

Let us put the triangulation problem more formally. Let S be a set of n points
in the plane, and let E(S) be the set of all (straight-line) edges spanned by
the points in S. A triangulation of S is a maximal set of non-crossing edges
from E(S). Such a set of edges partitions the convex hull of S into triangles.
The number of different triangulations of S is an exponential function of n;
see [8]. This fact already indicates that constructing optimal triangulations in
polynomial time might be a challenging task. This becomes more apparent as
common greedy methods, like deleting candidate edges or triangles from worst
to best, are doomed to fail by the NP-completeness of the following problem;
see Lloyd [32]: given some subset of E(S), decide whether this set contains a
triangulation of S.
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Results on optimizing combinatorial properties of triangulations, such as
maximum vertex degree or connectivity are rare. Most optimization criteria
where efficient algorithms are known concern the geometric properties of the
edges and triangles. The interested reader may consult the recent survey article
by Aurenhammer and Xu [12] on optimal triangulations.

The most commonly constructed, and maybe the most famous triangulation
for a point set S is the Delaunay triangulation, DT(S). See e.g. [24, 11] for
extensive treatments. DT(S) contains — for each triple of points in S — the
corresponding triangle, provided its circumcircle is empty of points in S. Various
global optimality properties of DT'(S) can be proved by observing that certain
edge flips (exchanges of diagonals) yield a local improvement of the respective
optimality measure. For example, equiangularity of a triangulation, which is
the sorted list of its angles, increases lexicographically in this way. DT'(S) thus
maximizes the minimum angle. This is one of the main reasons why the Delaunay
triangulation is the structure of choice in various practical applications: small
angles are a potential source of numerical errors in many computations. Another
reason for the popularity of DT'(S) is its low computational complexity; several
simple O(nlogn) construction algorithms exist. DT'(S) also minimizes, among
other quality criteria, the largest circumcircle that arises for the triangles, and
it maximizes the sum of triangle inradii. On the negative side, DT'(S) fails to
fulfill optimization criteria similar to those mentioned above, such as minimizing
the maximum angle, or minimizing the longest edge.

3.2 Minimum-weight triangulation

Most longstanding open is another optimal triangulation problem: what is the
'shortest possible’ triangulation of a point set S ? More formally, for the mini-
mum weight triangulation the optimization criterion is weight, which is defined
as the sum of all edge lengths. The complexity of computing a minimum weight
triangulation, MWT(S), for arbitrary planar point sets S is still open since 1975
when it was mentioned in Shamos and Hoey [34]. Minimum weight triangulation
is included in Garey and Johnson’s [25] list of problems neither known to be
NP-complete, nor known to be solvable in polynomial time. Attempts to prove
the problem NP-hard have resulted in some related NP-completeness results.
Several heuristic algorithms have been proposed to solve this problem. How-
ever, only recently progress has been made to produce a constant approximation
in weight. (For more details on these and the following properties of minimum
weight triangulations see, e.g., [12].)

Among others, dynamic programming approaches and linear programming
techniques have been tried. The former works in O(n?) time if the underlying
point set S is the set of vertices of a simple polygon. This fact gave motivation
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Figure 3: Minimum-weight (light) triangulation for 150 points.

for the following subgraph approach to compute MWT(S). First, find a (suit-
able) subgraph G of MWT(S). If G contains k connected components, try all
possibilities to add k—1 edges to make it a connected graph C'. Complete each of
these graphs C' to a triangulation by optimally triangulating its faces, and select
a triangulation with minimum weight, which gives MWT(S). This approach,
which basicly is exhaustive search, can be implemented to run in O(n**2) time.
The problem, of course, is to find candidate subgraphs G with k small, preferably
constant.

Many efforts have been put into the investigation of subgraphs of MWT(S).
Still, only in recent years have several non-trivial subgraphs of MWT(S) been
identified. One of them arises from a class of empty neighborhood graphs called
B-skeletons. An edge between points p,q € S belongs to the [-skeleton of S
if the two circles of diameter 8 - |pg| and passing through both p and ¢ are
empty of points in S. This skeleton happens to be subgraph of MWT(S) for 8
large enough, as has been observed first in Keil [29]. Unfortunately though, the
resulting graph may be highly disconnected.

A distinct attempt to find a sufficient local condition defines an edge e € E(S)
as a light edge if there is no edge in E(S) which crosses e and is shorter than e.
Let L(S) denote the graph formed by all the light edges for S. The interesting
property is the following: if L(S) happens to be a full triangulation of S, then
L(S) = MWT(S). This allowed, for the first time, for a fast computation of
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MWT(S) for a non-trivial class of point sets of moderate size; see Figure 3.

This result is a consequence of the following matching theorem for planar
triangulations, proved independently in Aichholzer et al. [6] and in Cheng and
Xu [18]: for any two triangulations Ty and T of a fixed point set S, there is a
perfect matching between the edge set of 77 and the edge set of T such that
matched edges either cross or are identical.

3.3 The LMT-skeleton

So far, we have seen that several subgraphs of MWT(S) can be found from
some local conditions. Still, we are far away from an algorithm for computing
MWT(S) that works efficiently for general point sets S. The breakthrough (at
least from the practical point of view) came from considering subgraphs which
are defined in a global way, in the following surprisingly simple manner.

Call a triangulation T' of S locally minimal if every point-empty and con-
vex quadrilateral drawn by T is optimally triangulated (that is, contains the
shorter of its two diagonals). Let LMT'(S) denote the intersection of all locally
minimal triangulations for S. Then LMT(S) is a subgraph of MWT(S), as this
triangulation of course is locally minimal, too.

Whereas it is not known how to compute LMT(S) in polynomial time, a sur-
prisingly large subgraph of LM T(S), the so-called LMT-skeleton, can be identi-
fied by the simple method below, recently proposed in Belleville et al. [13] and
in Dickerson and Montague [22]. Consider some edge set E C E(S). An edge
e € E is called redundant in E if there is no convex quadrilateral formed by E
that has e as its shorter diagonal. Edge e is called unavoidable in E if no other
edge in E crosses e. The LMT-skeleton algorithm puts E = E(S) and proceeds
in several rounds. Each round first identifies all edges redundant in E and elim-
inates them from the set, and then includes into the LMT-skeleton all edges
that are unavoidable in the reduced set E. The algorithm stops when no more
edges in E can be classified as either redundant or unavoidable. The number of
rounds (but not the produced LMT-skeleton) depends on the ordering in which
the edges are examined.

The fact that the LMT-skeleton for a point set S, and thus LMT(S), tend
to be connected even for large point sets comes as a surprise. From the prac-
tical point of view, the LMT-skeleton almost always nearly triangulates S; cf.
Figure 4. On the other hand, a 19-point counterexample to connectedness exists
[13]. Moreover, even for uniformly distributed points, the expected number of
components is ©(n); see [16]. (The constant of proportionality is extremely small,
though.) It is interesting to note that the LMT-skeleton, and the graph of light
edges L(.5), exhibit a similar behavior of connectedness, but do not contain each
other in general. We mention further that the improved LMT-algorithm in [4],
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Figure 4: LMT-skeleton for 100 points.

that tends to yield some additional edges of LMT'(S), indeed exactly constructs
LMT(S) provided the connectedness of this structure.

The LMT-skeleton clearly can be constructed in polynomial time, and sev-
eral variants have been considered in order to gain efficiency. A powerful tool
is pre-exclusion of edges before starting the LMT-algorithm, using an ezclusion
region; see Das and Joseph [19]: for an edge e, consider the two triangular re-
gions with base e and base angles g. If both regions contain points in S then e
cannot be part of MWT(S). If S is drawn from a uniform distribution, reduc-
tion to an expected linear number of candidate edges for MW T(S) is achieved,
and near-linear expected-time implementations of the LMT-algorithm exist. In
fact, the LMT-skeleton approach enables the computation of a minimum weight
triangulation for some 10 000 points within half an hour.

Let us conclude with stating two open problems. The obvious one, of course,
is to theoretically resolve the complexity status of finding a minimum weight tri-
angulation. The second one could be intuitively stated as follows: can we always
find the same triangulation in two different point sets? More precisely, can any
two n-point sets (that agree on the number of extreme points) be triangulated
so as to give isomorphic triangulations? No recent answers are available, except
for severe restrictions on either the shape of the point sets or on the number of
non-extreme points; see [5].



348 Aurenhammer F.: Computational Geometry ...

4 Subdividing a polygon in a natural way

Partitioning a complex geometric object into smaller and easier to deal with
parts is a first step in various algorithms in computational geometry. As many
planar geometric objects can be described sufficiently accuratly by (straight-line)
polygons, partitioning algorithms for polygonal objects have received particular
attention.

Among the obvious (and for several situations sufficient) ways to subdivide a
(non-self-intersecting) polygon P is the partitioning into slabs or into triangles.
For example, P may be divided into parallel slabs by cutting with vertical lines
through its vertices. Or P may be triangulated, by introducing diagonals between
its vertices. In fact, triangulating an n-vertex polygon in O(n) time has been a
tantalizing open question which has not been settled till 1990; see Chazelle [17].

Obviously, a polygon P allows for many different slab partitions or triangula-
tions. Also, these structures will not reflect much of the original shape of P, and
thus cannot be called 'natural’ partitions of P in this sense. In numerous appli-
cations, like pattern recognition, robotics, and GIS, a so-called skeleton partition
of P is sought. Informally speaking, a subdivision into regions is meant which
reflects the geometric shape of P in an appropriate manner.

4.1 Medial axis and Voronoi diagram

The well-known and widely used example of a polygon skeleton is the medial axis
of P, proposed by Preparata [33], Kirkpatrick [30], and Lee [31]. This skeleton
consists of all points inside the polygon which have more than one closest point
on the boundary of P. It is a tree-like structure, composed of straight-line arcs
and parabolically curved arcs, which partition P into regions. Each region is the
locus of all points closest to a particular edge or vertex of P. The number of
arcs remains linear in the number n of vertices of P. The medial axis reflects
well the geometry of a polygon. The availability of relatively simple O(nlogn)
construction algorithms® makes it a suitable candidate for a skeleton description.
However, it typically contains curved arcs in the neighborhood of the polygon
vertices. In comparison to other polygon partitions, which are solely composed of
straight line segments, this yields disadvantages in the computer representation
and construction, and possibly also in the application, of this type of skeleton.
Before introducing an alternative skeleton structure which avoids this short-
coming, let us briefly discuss the medial axis in the context of Voronoi diagrams.
Speaking sloppily, a Voronoi diagram is a partition of a space U induced by a set
S of objects that live in that space. The scope of variations of Voronoi diagrams
that have been investigated within and outside computational geometry is vast;

3 An O(n) construction algorithm exists but lacks a simple implementation.
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Figure 5: Angular bisector skeletons.

see e.g. the survey papers by Aurenhammer and Klein [11, 10]. Still, they all fit
into either framework of definition below.

In the distance model, a distance function d is defined that maps each element
of S x U to a real number. The Voronoi region of an object s € S is the set of all
elements x € U whose unique closest object with respect to d is s. The wavefront
model, on the other hand, prescribes for each object s € S a set of wavefronts that
emanate from s and eventually cover the whole space U. Wavefront propagation
stops wherever two wavefronts collide. The Voronoi region of an object s is the
portion of U covered by the wavefronts for s. In the classical case of a Voronoi
diagram, U is the Euclidean plane, S is a finite set of points, and d is the
Euclidean distance function. The wavefronts for each point s € S are circles
centered at s. For the medial axis of a polygon P, U is the interior of P, d is the
same as above, and S is the set of vertices and edges of P. The distance model
and the wavefront model are not equivalent, however. The skeleton structure we
are going to describe will have no interpretation in the distance model.

4.2 Straight skeleton

In fact, the basic idea for obtaining a straight-line skeleton is neither complex
nor new: use angular bisectors rather than ’distance’ bisectors for the polygon
edges. However, extending angular bisectors until they meet and continuing this
way in an uncontrolled manner may result in different and actually unintended
structures; see Figure 5. Thereby, the number of skeleton arcs may grow beyond
linear, and even self-intersections (that is, no proper partitions) may arise. In
fact, and unlike the case of Voronoi diagrams, it is unclear how to come up with
a non-procedural (and unique) definition of an angular bisector skeleton. This
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Figure 6: (a) Polygon hierarchy and (b) straight skeleton.

fact might have kept off computational geometers from further considering this
concept.

A recent, and surprisingly simple, answer has been given in Aichholzer et
al. [3, 2]. The straight skeleton, S(P), of a polygon P, is defined (via the wavefront
model) as follows. Shrink P, by continuously insetting each of its vertices, so that
at any particular time, every shrunken polygon edge is parallel to the original,
and the distance from the original is the same for all shrunken edges. This makes
each polygon vertex move along the angular bisector of its incident edges, as long
as the polygon boundary does not change topologically. There are two possible
types of changes:

(1) Edge event: An edge shrinks to zero, making its neighboring edges adja-
cent now.

(2) Split event: An edge is split, i.e., a reflex vertex runs into this edge, thus
splitting the whole polygon. New adjacencies occur between the split edge and
each of the two edges incident to the reflex vertex.

After either type of event, we are left with a new, or two new, polygons which
are shrunk recursively if they have non-zero area. The shrinking process gives
a hierarchy of nested polygons; see Figure 6(a). The straight skeleton, S(P), is
defined as the union of the pieces of angular bisectors traced out by polygon
vertices during this shrinking process. S(P) is a unique structure defining a
polygonal partition of P. Each edge e of P sweeps out a certain area which
corresponds to its region in S(P). See Figure 6(b).

Compared to the medial axis of P, the straight skeleton S(P) is also superior
in the following respect. If P is non-convex, then S(P) is of smaller combinatorial
size. To be precise, if P is an n-gon with r reflex vertices then S(P) realizes
2n — 3 arcs whereas the medial axis of P realizes 2n + r — 3 arcs, r of which are
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parabolically curved. (For convex polygons, the two skeletons are identical.) As
a particularly nice property, S(P) partitions P into polygons that are monotone
in direction of their defining edge.

A drawback of S(P) is that it cannot be constructed using the well-developed
machinery for computing Voronoi diagrams. The best known algorithm runs
in roughly O(n+/n) time; see Eppstein and Erickson [23]. From the practical
point of view, the triangulation-based algorithm in [2] simulating the wavefront
movement is preferable in view of its almost linear observed behavior.

4.3 Applications

To demonstrate that S(P), beside its use as a skeleton for P, is indeed a natural
and useful subdivision, we briefly describe some seemingly unrelated applica-
tions.

We first show that S(P) allows for a 3D interpretation in a natural way. To
this end, for a point z in the interior of P, let T'(z) denote the unique time
when z is reached by the first wavefront edge. (The region of S(P) containing
z belongs to the edge of P which sends out this wavefront edge.) Considered
as a function on the domain P, T'(x) is continuous and piecewise linear, that
is, its graph X'p is a polygonal surface in three-space. The facets of X'p project
vertically to the regions of S(P). Let us mention two applications where the
construction of a surface from a given polygon P comes in.

For example, P may be interpreted as an outline of a building’s groundwalls.
The task is to construct a polygonal roof that rises over P and whose roof facets
are all of the same slope. For general shapes of P, the construction of a ’roof’,
defined as a polygonal surface with given facet slopes and given intersection
with the ground walls, is by no means trivial. In fact, roofs are highly ambigous
objects; cf. Figure 5. The surface X's obtained from S(P) constitutes a canonical
and general solution. Moreover, X'p realizes exactly 2n — 3 arcs, the minimum
for all possible roofs of an n-gon P. Note that the medial axis of P is not at all
suited as a roof, as it would give rise to cylindrical roof facets.

In this context, two generalizations of S(P) are appropriate. First, the
straight skeleton may as well be defined for general planar straight-line graphs
G, not just for polygons. A 3D surface YXg can be defined similarly as above.
In addition, the concept of straight skeleton is flexible enough to be adapted
to yield surfaces (and in particular, roofs) with individual facet slopes. This is
achieved by tuning the propagation speed of the individual wavefront edges. Of
course, this changes the geometric and topological structure of the skeleton.

An interesting GIS application, which makes use of the general shape of the
underlying graph G, is the reconstruction of geographical terrains. Assume we
are given a map where rivers, lakes, and coasts are delineated by polygonal
lines, yielding a planar straight line graph G. We are requested to reconstruct
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Figure 7: Terrain reconstructed from a river map.

a corresponding polygonal terrain from G, possibly with additional information
concerning the elevation of lakes and rivers, and concerning the slopes of the
terrain according to different mineralogical types of material. The surfaces re-
sulting from S(G) and its modifications seem to meet these general geographical
requirements in an appropriate manner. Figure 7 gives an example.

A related question is the study of rain water fall and its impact on the
floodings caused by rivers in a given geographical area. The amount of water
drained off by a river is usually estimated by means of the Voronoi diagram of
the river map. This models the assumption that each raindrop runs off to the
river closest to it, which might be unrealistic in certain situations. The straight
skeleton offers a more realistic model by bringing the slopes of the terrain into
play. In particular, the surface X that arises from S(G) has the following nice
property: every raindrop that hits a surface facet f runs off to the edge of G
defining f.

Finally, an application of straight skeletons to origami design deserves men-
tion. A classical open question in origami mathematics is whether any simple
polygon P is the silhouette of (i.e., can be covered by) a flat origami. A recent
and affirmative answer has been given in Demaine et al. [20]. One of their ap-
proaches (the ’ring method’) uses the subdivision of P induced by a hierarchy
of polygons that arise during the shrinking process that yields S(P); cf. Fig-
ure 6(a). It can be shown that each such polygonal ring can be covered, and
rings can be bridged appropriately, by a sequence of paper folding operations.
That is, the concept of straight skeletons allows for a relatively simple proof of
this classical origami conjecture.
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