
Issues in Compiling

Gerhard Goos
(Fakultät für Informatik

Universität Karlsruhe, Germany
ggoos@informatik.uni-karlsruhe.de)

Hermann Maurer on occasion of his 60th birthday

Abstract: We consider the state of the art in compiler construction and where to go
from here. Main topics are improved exploitation of present (and future) hardware
features, the interaction between compiling techniques and processor design, and the
use of compiling techniques in application areas such as component-based software
engineering and software reengineering.

Keywords: Compilers, Software/Program Verification, Reusable Software, Program

Transformation, Program Synthesis.

Categories: D.3.4, I.2.2

1 The Past

Compiler construction is the oldest part of software engineering. It delivered its
first products for wide-spread use, Fortran-, Cobol- and Algol-compilers,
etc. in the fifties and early sixties of the last century.
From its very beginning compiler writers tried to base their solutions on the-

oretically well-founded concepts such as finite automata, context-free grammars,
stack automata, etc. Or to say it the other way around: the needs of the com-
piler writers were the starting point for much theoretical research which indeed
lead to significant progress also on the practical side. With the use of attribute
grammars for semantic analysis, abstract interpretation and data flow analysis as
basis for code optimization, and the use of bottom-up term rewriting systems for
code selection, this close interaction between theory and practice is continuing
up to now.
Compiler construction also developed mastery in a number of techniques use-

ful in many other areas of software construction. The most prominent example
is the use of generators, e. g. parser generators, for constructing pieces of code
from high-level specifications; all current automatic coding systems for generat-
ing code from decision tables, UML- or Statecharts-specifications or for designing
user interfaces arose from this construction paradigm.
On a high level, compiler architecture for imperative programming languages

has been fairly stable over the last decades, cf. fig. 1: source programs are an-
alyzed and represented as parse trees which then are attributed for exhibiting

Journal of Universal Computer Science, vol. 7, no. 5 (2001), 410-419
submitted: 14/4/01, accepted: 18/5/01, appeared: 28/5/01 Springer Pub. Co.

target
attributedanalysis code generationsource transformation

optimization

code
intermediate

tree

Figure 1: High level compiler architecture

semantic properties; from such an attributed tree an intermediate representation
is generated which exhibits control and data flow; this representation is the ba-
sis for global optimization transformations and for code selection leading to the
final target code. In real code the structure may look quite differently: E. g. one-
pass compilers discard the tree and the intermediate representation as explicit
data structures; nevertheless these data structures are present as sequences of
arguments and results respectively of certain procedure calls. The methodology
of systematically transforming a modular high level architecture into an im-
plementation architecture adapted to the particular language and environment
conditions is another major contribution of compiler construction to software
engineering.
Compiler construction has been declared dead as a research topic on several

occasions. The author experienced this first in when it was declared that
compiler construction is now a topic for the software industry since everything
which is of scientific interest is already known. The early nineties saw a similar
situation: compiler construction was viewed by many as a highly specialized
area which is not of general interest except for a few specialists in compiler
construction companies.
This paper shows that on the one side there is a still growing number of

research topics about compiling issues which are of high scientific and economic
interest. It also shows that the poor mastery of compiling techniques has led to
deplorable system designs and delays in problem solutions in a range of applica-
tion areas. We mostly take a pragmatic view in which problems visible outside
the reasearch community proper are valued higher. For this reason we mostly
neglect the progress made in designing and processing functional and logical
programming languages.
Instead we concentrate on the lessons to be learned from processing impera-

tive (including object-oriented) languages and discuss the following issues:

– How could we arrive at dependable compilers, in particular for safety-critical
systems?

411Goos G.: Issues in Compiling

– How to improve the efficiency and other qualities of the generated code?

– Interaction between compiler and processor design;

– The use of compiler technology in other application areas, in particular for
program analysis.

2 Verifying Compilers

Despite all advances in quality assurance dependability of compiled code is still
not satisfactory, cf. [Ste00, Sun00, Bor00]. Especially, programs often show dif-
ferent behavior with and without optimization. The generated code should ex-
actly behave like the source program; this is of utmost importance especially in
safety-critical applications.
The present state of the art, cf. [GZ99, GZ00], allows for using traditional

compiler architecture and generators for lexers, parsers, etc. within a framework
for verifying compilers. But the cumbersome work of verifying compilers for the
currently widely used programming languages is still before us.
Verifying the correctness of compilers starts from generally agreed formal

specifications of the programming language and the target machine under con-
sideration. Here is another area of future research; in particular, both specifica-
tions should use the same formal method for avoiding the need of translating
between different methodologies. For realistic results only the externally observ-
able behavior must be specified and the influence of ressource limitations on the
target machine must be considered.
It is often overlooked that a program text, like any other text, is a meaningless

sequence of characters and nothing more. Meaning (or semantics) can only be
associated after tokens and the underlying phrase structure is detected, i. e. after
the parse tree is constructed. Whether the original program text and the parse
tree carry the same semantics is a meaningless question.
This problem can be dealt with by help of a technique known as program

checking, cf. [BK89, BK95, GGZ98]: We verify (for each program separately)
that the inverse mapping parse tree → program text reconstructs the original
text and, thus, that both are in a one-to-one correspondence. This technique of
program checking can also be applied, e. g. to the optimization and code gen-
eration phase of compilers, and in general to many other transformation tasks,
cf. [PSS98].

3 Optimization and Code Generation

The target code produced by todays’ compilers for widely used programming
languages is exploiting less than 50% of the available performance of the given

412 Goos G.: Issues in Compiling

processor-main storage system. Superfluous instruction sequences and cache
misses, and inadequate exploitation of instruction-level parallelism and pipelines
are the main culprits. With the arrival of new processor architectures and the
widening gap between processor and storage speed the situation is dramatically
worsening. The major causes for this sad state of affairs are a combination of
unsatisfactory treatment of particular problems in optimization and code gen-
eration, and general deficiencies of properly engineering compiler back-ends.
Lexical analysis, parsing, semantic analysis and a simple-minded form of code

generation, e. g. for a stack machine, as traditionally taught in compiler courses
are all well understood problems. For them there exist theoretically highly so-
phisticated methods which in practice deliver highly efficient compiler modules.
Breakthroughs in these areas can only be expected if radically different types of
programming languages would be introduced. This does not say that innovative
ideas about these problems, e. g. [PQ95], are impossible; but they could only
extend an already highly competitive set of methods.
On the other hand these topics are only covering less than 40% of the code

and execution time of a practically useful compiler. Some highly optimizing
compilers spend alone 60% of their execution time in register allocation.
From an engineering point of view it is useful to subdivide the path from an

attributed structure tree to the target code as in fig. 1 by inserting an interme-
diate representation IR which encodes the original program in terms of target
machine semantics, i. e. the data types, basic operations and control flow are
expressed in terms of storage words, operations on them and conditional jumps.
The transition from an attributed tree to such an IR takes O(n) on the average
and O(n2) in the worst case.
Nearly every decision problem afterwards is however NP-complete or worse;

in practice its solution can only be approximated. NP-completeness shows differ-
ent faces: Some problems are linear on the average and difficult only in patholog-
ical cases; some are inherently difficult such as register allocation; some require
additional profiling information for distinguishing frequent execution paths.
In the area of global optimization on the level of the IR there is a wealth

of algorithms for achieving certain goals, cf. [Muc97, Mor98]; the most impor-
tant ones are certainly constant folding, value numbering, partial redundancy
elimination, cf. [MR79, DS88, DS93, KRS94, KCL+99], and strength reduction.
Value numbering is automatically taken care of when static single assignment
form (SSA) is used as intermediate representation, cf. [CFR+89, CFR+91, CC95,
Tra99]. Strength reduction is perhaps the oldest loop optimization and is avail-
able in several forms.
But what about all the other data flow driven optimizations published over

the decades? And what about interprocedural optimizations? Some of them may
be quite useful. Some are not worth to be considered separately; their effects are

413Goos G.: Issues in Compiling

taken care of by a combination of other optimizations. The real problem is: a
taxonomy of all this work is missing. This becomes particularly evident in the
field of interprocedural optimizations: Many ideas and methods have been in-
vented, demonstrated and their effects measured. But most of this work has been
done in separation from other optimizations and mostly in an artificial compiling
environment which does not resemble the standard compiler architectures and
the intermediate representations used therein. As a result, the technical problems
caused by storage explosion at compile time for large programs have largely been
ignored. There are also only a few papers which consider the negative impact of
separate compilation on interprocedural optimization.
These problems become particularly relevant when compiling object-oriented

languages. For them moving objects from the heap into the stack based on points-
to analysis, replacing polymorphic method calls by monomorphic calls, inlining
of method bodies and interprocedural optimizations in cooperation with other
optimizations may improve performance of the target program by factors of 10,
i. e. it is possible to get from Java programs translated into native code similar
performance as from C, cf. [Tra99, Exc99, Ins98]. But just-in-time compiling or
any other scheme dealing with each separately compilable unit separately have
no chance of arriving at such performance.
In code selection, register allocation and instruction scheduling there have

been major advances over the decades. Especially the use of term rewriting
systems, cf. [PLG88, Pro95, ESL89, Emm94], lead to a major advance. Instruc-
tion scheduling may be integrated with such schemes but proper integration
with register allocation is still unsolved. Moreover, these schemes are mostly
bound to consider expression trees within a basic block only; code generation ,
e. g. generating the MMX-instructions of an Intel-Pentium or certain spe-
cialized instructions of DSPs, would cover complete loops; it is quite difficult
with such schemes. Another drawback is its unsuitablity of dealing with SSA
form as intermediate representation: there we need a code generation scheme for
directed acyclic graphs (DAG), not only for trees. Research on how to handle
DAGs has stopped in the 70ties in favor of dealing with trees; engineers have
continued the work for dealing DSP code selection; but their work has not gone
far beyond a collection of ‘‘matching tricks’’, cf. [MG95]. Here a major (theoret-
ical) breakthrough is needed, possibly based on graph rewriting systems. Such
progress could probably also improve the code generation for DSPs.
Although instruction scheduling is a theoretically solved problem for present

CISC- and RISC-architectures it is rarely applied in practice. The reason is that
a different scheduler is needed for each member of a processor family, such as
the Intel 80x86, Pentium, Pentium II, Dealing with all these proces-
sors separately would create a major versioning and maintenance problem; this
problem would also lead to a huge versioning problem for all software distributed

414 Goos G.: Issues in Compiling

in binary form, starting from operating systems. Thus instruction scheduling is
practically unsolved for economic reasons.
Similar remarks apply to optimizations dealing with cache access. This prob-

lem is especially important since good minimization of cache misses may reduce
execution time by factors, far more than can be achieved by most of the other
optimizations together. There exist a number of good optimization schemes for
lowering the cost for array accesses. These are in use when compiling programs
for scientific computations. But otherwise cache optimization is mostly neglected
since there are no good schemes of dealing with navigational access to data struc-
tures such as lists or trees.

4 Compiling Issues and Processor Design

Moore’s law states that processor performance doubles every third year. To
this end, processor designers and hardware architects not only explore advances
in semiconductor manufacturing but especially continue to develop the internal
architecture of processors and storage access systems. Goals of this development
are, cf. [Soh01],

– increased clock rate: subdivide processor into fairly independent units;

– increased throughput independent of clock rate;

– instruction level parallelism (ILP);

– simultaneous multithreading (SMT);

– increased memory bandwidth

The development may lead to drastic changes in the internal processor ar-
chitecture whereas the hardware/software interface as seen by the programmer,
i. e. the assembly language, is changing only slowly and incrementally.
But most of the advances in processor design, e. g. ILP and multithreading,

EPIC (Explicitly Parallel Instruction Computing) as used in the IA-64, data and
execution speculation, etc. do not automatically lead to performance increases
on the application level. The potential performance increase depends on the
ability of compilers to exploit these processor features.
As an example, consider out-of-order execution on the Pentium-II/. . . and

Intels decisions for the IA-64: The Pentium-II does data dependency analysis
on the next n instructions, n ≤ 40, for selecting the instruction; this dynamic
instruction scheduling may be supported by instruction scheduling performed
by a compiler but it also works without such prior steps. On the IA-64, how-
ever, instruction scheduling is completely left to the compiler; the processor is
performing quite slowly if the compiler has not done a good job on this issue.

415Goos G.: Issues in Compiling

Exploiting the VLIW-properties, predicated instructions, dynamic branch
prediction (control speculation), speculative loads (data speculation) of the IA-
64 are other examples where processor performance crucially depends on the
cleverness of the compiler. With the advent of SMT, i. e. the subdivision of a
sequential thread into several threads without overhead for context switch the
dependency on compiler decisions will further increase.
These examples show that future performance improvements on the hard-

ware side will crucially depend on further advances in optimization and code
generation within compilers. Improvements need close interaction between pro-
cessor and compiler designers. Wrong predictions about the potential of certain
optimizations by compilers will lower the overall performance gain.
A decision about a future processor design thus will include a decision that

certain kinds of optimiziations can be successfully performed by compilers for
widely used languages such as C. However, such a decision can only be a follow-
up to research about potential further code optimizations. Thus, research in
compiler optimization will be crucial for maintaining Moore’s law.
Similar remarks apply to the development of DSPs and other embedded

processors. There the question of control of power consumption and a potential
adaption of execution speed to the current needs of an application will play a
major role.

5 Compiler Technology in Application Areas

Compiling must not necessarily produce code in assembly language or code for a
higher level abstract machine. It could also produce code on the register trans-
fer level, logical VHDL designs or programs for field programmable gate arrays
(FPGA). In hardware-software-codesign also (semi-automatic) partitioning of
the FPGA-/software contribution and the dynamic loading of FPGAs can be
generated by compilers. This has long been recognized by the hardware engi-
neers; but the design of specification languages for describing FPGA applica-
tions, etc. on a high level and the translation of such specifications is still an
area for much improvement. It should also be noted that hardware verification
and compiler verification have a number of ideas in common.
Generally speaking, any task of text analysis with or without subsequent

transformation is an application of techniques as developed for the analysis phase
of compilers. In practice, however, the application of such techniques is often
severely hampered by lack of knowledge of the technology on the side of the
designers of the data or text layout.
This is, for instance, apparent in the design of DTDs (Document Type Def-

initions) and Schemas for the extensible markup language XML. A DTD or an
XML Schema is describing the fully parenthesized structure of a XML docu-
ment. A ‘‘XML-parser’’ should consider such a DTD or Schema as a grammar

416 Goos G.: Issues in Compiling

and parse the document accordingly. In practice, however, general interpreters
read XML documents and validate them against the structure definitions; the
generation of specialized parsers is not possible: The main problem for using
generators for parsing and processing is that DTDs (or Schemas) are in gen-
eral non-deterministic. XML documents conforming to a DTD (or Schema) may
have different derivations. The DOM (Documents Object Model), the standard
syntax tree definition for XML documents, abstracts from the different deriva-
tions. However, information computed already during parsing is not captured
and must eventually be recomputed for transformations. Transformations are
defined by XSLT (eXtensible Stylesheet Language Transformation). This lan-
guage uses path expression but is mainly imperative and is also interpreted.
More descriptive approaches — standard in compiler construction — like pat-
tern matcher or term and graph rewite generators are not used and cannot
be used because of the lack of explicite structure and type information in the
DOMs. The way how namespaces are dealt with in XML and potential wild
cards in grammars further complicate the situation.
That even parsing of context-free languages has not fully arrived on the

market place is sometimes dependent on the working environment. When using
emacs most so-called syntax-directed editor modes and program analysis tools
are unable to properly analyze the context-free structure; they instead search
with regular expressions and thus severly limit their capabilities. Commercial
tools are mostly much better in this respect.
Program analysis for performance tuning and maintenance tasks, or for re-

engineering of software is another area heavily based on compiler technology.
Here the use of front-end technology is standard. Interesting questions are con-
cerned with the use of data flow analysis and other methods originally developed
for code optimization in the context of program analysis.
Software reengineering and the construction of component-based software

are two related topics which both may make heavy use of compiler technol-
ogy. In reengineering, techniques for program analysis are used for rediscov-
ering the structure of software for later adaption. When using components,
i. e. independently deployable software-units, this structure is basically given but
the interfaces of the components may not fit together. In both cases design pat-
terns, cf. [GHJV94], or similar means may be used for achieving the adapted
components. Such patterns may be applied by hand; if the process should be au-
tomated then the application of patterns can be considered as a source-to-source
transformation based on semantic and data flow information as it is usually de-
tected by compilers.
The use of frameworks, aspect-oriented programming and, more generally,

any form of metaprogramming are topics which require similar means as just
described. An open problem is the question to what extent the proper syn-

417Goos G.: Issues in Compiling

chronization of components in a distributed application can be checked or even
generated based on information as generated by a compiler.

6 Conclusions

We have illustrated the potential and needs of further research about compiler
issues. On the side of compiling proper the needs are especially in the areas
of optimization and code generation. On the application side there is a wealth
of already existing knowledge about analyzing and transforming programs and
other texts which is waiting to be exploited.

Acknowledgements

I thank Welf Löwe and Thilo Gaul for useful hints and improvements of a draft
of this paper.

References

[BK89] M. Blum and S. Kannan, Program correctness checking . . . and the design
of programs that check their work, Proceedings 21st Symposium on Theory
of Computing, 1989.

[BK95] Manuel Blum and Sampath Kannan, Designing programs that check their
work, Journal of the Association for Computing Machinery 42 (1995),
no. 1, 269–291.

[Bor00] Borland/Inprise, Official borland/inprise delphi-5 compiler bug list,
http://www.borland.com/devsupport/delphi/fixes/delphi5/compiler.html,
jan 2000, Delphi5 Compiler Bug List.

[CC95] Cliff Click and Keith D. Cooper, Combining analyses, combining
optimizations, TOPLAS 17 (1995), no. 2, 181–196.

[CFR+89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
An efficient method of computing static single assignment form, Symp. on
Principles of Programming Languages, ACM, 1989, pp. 25–35.

[CFR+91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadek,
Efficiently computing static single assignment form and the control
dependence graph, ACM Transactions on Programming Languages and
Systems 13 (1991), no. 4, 451–490.

[DS88] K.-H. Drechsler and M. P. Stadel, A solution to a problem with morel’s and
renvoise’s ‘‘global optimization by suppression of partial redundancies’’,
ACM Transactions on Programming Languages and Systems 10 (1988),
no. 4, 635–640.

[DS93] K.-H. Drechsler and M. P. Stadel, A variation of knoop, ruthing and
steffen’s lazy code motion, SIGPLAN Notices 28 (1993), no. 5, 29–38.

[Emm94] Helmut Emmelmann, Codeselektion mit regulär gesteuerter termersetzung,
Ph.D. thesis, Universität Karlsruhe, Fakultat fur Informatik,
GMD-Bericht 241, Oldenbourg-Verlag, 1994.

[ESL89] H. Emmelmann, F.-W. Schröer, and R. Landwehr, Beg — a generator for
efficient back ends, Proceedings of the Sigplan ’89 Conference on
Programming Language Design and Implementation, June 1989.

[Exc99] Excelsior, The jet compiler, http://www.excelsior-usa.com/jet.html, 1999.

418 Goos G.: Issues in Compiling

[GGZ98] W. Goerigk, T.S. Gaul, and W. Zimmermann, Correct Programs without
Proof? On Checker-Based Program Verification, Proceedings ATOOLS’98
Workshop on “Tool Support for System Specification, Development, and
Verification” (Malente), Advances in Computing Science, Springer Verlag,
1998.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
patterns: Elements of reusable software components, Addison-Wesley, 1994.

[GZ99] Gerhard Goos and Wolf Zimmermann, Verification of compilers, Correct
System Design (Bernhard Steffen and Ernst Rüdiger Olderog, eds.), LNCS,
vol. 1710, Springer-Verlag, 1999, pp. 201–230.

[GZ00] Gerhard Goos and Wolf Zimmermann, Verifying compilers and asms,
Abstract State Machines, Theory and Applications (Yuri Gurevich,
Philipp W. Kutter, Martin Odersky, and Lothar Thiele, eds.), LNCS, vol.
1912, Springer-Verlag, 2000, pp. 177–202.

[Ins98] Instantiations, Super optimizing deployment environment for java,
http://www.instantiations.com/jove/, 1998.

[KCL+99] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and
Fred Chow, Partial redundancy elimination in ssa form, TOPLAS 21
(1999), no. 3, 627–676.

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen, Optimal code motion:
Theory and practice, ACM Transactions on Programming Languages and
Systems 16 (1994), no. 4, 1117–1155.

[MG95] Peter Marwedel and Goosens (eds.), Code generation for embedded
processors, Kluwer Academic Publishers, 1995.

[Mor98] Robert Morgan, Building an optimizing compiler, Butterworth-Heinemann,
1998.

[MR79] E. Morel and C. Renvoise, Global optimization by suppression of partial
redundancies, Comm. ACM 22 (1979), 129–153.

[Muc97] Steven S. Muchnik, Advanced compiler design and implementation, Morgan
Kaufmann Publishers, 1997.

[PLG88] E. Pelegri-Llopart and Susan Graham, Optimal code generation for
expression trees: An application of burs theory, 15th Symposium on
Principles of Programming Languages (New York), ACM, 1988,
pp. 294–308.

[PQ95] Terence J. Parr and Russell W. Quong, ANTLR: A predicated-LL(k) parser
generator, Software — Practice and Experience 25 (1995), no. 7, 789–810.

[Pro95] Todd A. Proebsting, Burs automata generation, ACM Transactions on
Programming Languages and Systems 17 (1995), no. 3, 461–486.

[PSS98] A. Pnueli, O. Shtrichman, and M. Siegel, Translation validation for
synchronous languages, Lecture Notes in Computer Science 1443 (1998),
235–??

[Soh01] Gurindar S. Sohi, Microprocessors — 10 Years Back, 10 Years Ahead,
Informatics, 10 Years Back, 10 Years Ahead (Reinhard Wilhelm, ed.),
Lecture Notes in Computer Science, vol. 2000, Springer-Verlag, 2001,
pp. 209–218.

[Ste00] Reinier Sterkenburg, Borland pascal compiler bug list,
http://www.dataweb.nl/ r.p.sterkenburg/bugsall.htm, feb 2000.

[Sun00] Sun Microsystems, Sun official java compiler bug database,
http://java.sun.com/products/jdk/1.2/bugs.html, mar 2000.

[Tra99] Martin Trapp, Optimierung objektorientierter programme, Ph.D. thesis,
Fakultät für Informatik, Universität Karlsruhe, 1999.

[WG84] William M. Waite and Gerhard Goos, Compiler construction,
Springer-Verlag, 1984.

419Goos G.: Issues in Compiling

