
The Transition from VDL to VDM

C. B. Jones
(Department of Computing Science

University of Newcastle
NE1 7RU UK

cli�.jones@ncl.ac.uk)

In gratitude to Peter Lucas who is a generous and challenging colleague who

(twice) aided me in moving to a delightful city which changed my life.

Abstract: This paper describes (one person's view of) how the Vienna Development
Method grew out of the earlier work on the Vienna De�nition Language. Both of these
activities were undertaken at the IBM Laboratory Vienna during the 1960s and 70s.

Key Words: formal methods, language de�nition, VDL, VDM, operational seman-
tics, denotational semantics.

Category: F.3 Logics and Meanings of Programs; F.3.2 Semantics of Programming
Languages; D.2.4 Program Veri�cation; D.3.1 Formal De�nitions and Theory

1 Introduction

The so-called \Vienna Development Method" (VDM)1 evolved {at the IBM

Laboratory in Vienna{ from the earlier work known as the \Vienna De�nition

Language" (VDL). It is often said that the key contribution of VDM (over VDL)

is that the latter is based on denotational semantics whereas the former uses

operational semantics. This statement somewhat trivialises the distinction and

{at the same time{ fails to record in detail the debt of the research in the 1970s

to that of the 1960s. Furthermore, the glib characterisation completely ignores

the fact that VDM has a far wider area of application than language semantics.

The symposium in honour of Peter Lucas' retirement from Graz presented an

ideal opportunity to reect on the transition from VDL to VDM.

Of necessity, this is a personal view and I think it fair to emphasise this fact

by breaking with normal scienti�c convention so that I can write in the �rst

person singular. One reason that a look back at the VDL work was particularly

appealing was that I have recently taught a course on \Understanding Program-

ming Languages" and chose to base most of the lectures on operational semantics

whereas, in the past, I had always taught denotational semantics. This a�orded

the opportunity to reect on the real distinctions and contributions.

1 References are given in the subsequent, more detailed, sections.

Journal of Universal Computer Science, vol. 7, no. 8 (2001), 631-640
submitted: 18/5/01, accepted: 21/8/01, appeared: 28/8/01 Springer Pub. Co.

2 VDL and the 1960s

The most accessible detailed publication on VDL is [LW69]. The language which

became known as \PL/I" was initially to have been called \New Programming

Language" until the UK National Physical Laboratory pointed out that they had

prior claim on the acronym \NPL". It was clear from its inception (for an account

see [Rad81]) that PL/I was going to be a large language and it had also become

obvious that even the semantics of a smaller, more focussed, language such as

FORTRAN was beyond precise description by natural language alone. An e�ort

was mounted by IBM researchers in the Hursley (UK) and Vienna laboratories

to give a precise semantics to PL/I. The main contribution of the Hursley group

was a series of \LDH" notes2 which sketched models and commented on the

more completely formal description being created in Vienna. One of the Hursley

models has a key role in the story below.

2.1 Language de�nition

In the early 1960s, the idea of de�ning the semantics of a programming lan-

guage was seen by key men of insight as an essential step to putting program-

ming on a sound footing. Professor Heinz Zemanek {who was the director of

the IBM Vienna Group{ convened the �rst ever IFIP Working Conference at

Baden-bei-Wien on the subject of \Formal Language Description Languages".

The proceedings of the 1964 conference (published as [Ste66]) contain seminal

papers and a record of the fascinating discussions (recorded by people in and

around the Vienna group including Professor Hermann Maurer who thanked

Peter Lucas publicly for this opportunity at the Graz Symposium).

A cornerstone of the subsequent VDL approach is John McCarthy's pa-

per [McC66]. This indicates both the level of ambition and the main scienti�c

idea of 1964. McCarthy proposes describing the semantics of a language (micro-

ALGOL) by writing a recursive function that takes a program and a starting

state and computes (if possible) a �nal state. This is of course the purpose of any

interpreter for a language. But {rather than being written to run on a machine{

McCarthy's abstract interpreter used abstractions of both the program object

and of the state of the computation. (In fact, McCarthy's \abstract objects"

have a speci�c part to play in the comparison of VDM with other approaches.)

It is important to note that in [McC66] there was no mention of handling

errors, there were no abnormal jumps in Micro-ALGOL and that even the es-

sential notion of ALGOL scope had not been handled. There was still work

to be done. In the ensuing discussion, on hearing that Micro-ALGOL did not

even have conditional statements, Christopher Strachey commented \All right.

2 \Language De�nition Hursley"; there was a similar series of \Language De�nition
Vienna" notes.

632 Jones C.B.: The Transition from VDL to VDM

Minute Micro-ALGOL." McCarthy however claimed in Section 7 of his paper

that \All of these diÆculties can be resolved"; that is, he believed that the ex-

tension of his abstract interpreter idea to cover the whole of the semantics of

ALGOL-60 was achievable and he went on to claim that this \will clarify the

problem of compiler design".

From this seed, the Vienna group grew a huge tree. In fact, they have always

insisted on also acknowledging the stimulus of Cal Elgot (e.g. [ER64]) and Peter

Landin. One landmark was the publication of \Tentative Steps" [Ban65] which

was an edited collection of views. Overall, this period of research produced def-

initions which were \operational" in the sense that they described the steps of

an (abstract) interpreter: a program in a language had to be understood from

the steps of its computation from a particular state.

The acronym \ULD" is for \Universal Language Document"; ULD-I was the

name given to the natural language description of PL/I; ULD-II to Hursley's

version; ULD-III was the internal name for the series of PL/I descriptions which

came from the Vienna group. The �rst version was printed in 1966; the third

and �nal version in April 1969. JAN Lee coined the name \Vienna De�nition

Language" and de�nitions of several other languages were written in VDL as

well as a number of related books by researchers outside IBM.

2.2 Some evaluation of VDL

It is useful to catalogue some of the contributions to operational semantics made

by the Vienna group in the 1960s.

{ An appropriate collection of generic abstract collections was chosen (sets,

maps and sequences).

{ McCarthy's notion of abstract objects was enriched with a modi�cation op-

erator (�).

{ A way of handling jumps (and other abnormal terminations) was chosen.

{ An approach to non-determinism was worked out.

{ The consequences of the realisation that non-determinism was an adequate

model of the parallelism inherent in PL/I's tasking concept were incorpo-

rated.

{ An implicit characterization of the various ways that storage mapping could

be done in PL/I was thought through (see [BW71]).

In addition to this list of resolved technical challenges, a notation had to be

devised which made the overall description readable.

633Jones C.B.: The Transition from VDL to VDM

It is natural to ask what was the contribution in Gordon Plotkin's 1981

Arhus lecture notes [Plo81] which resulted in a revival of work on \Structured

Operational Semantics". If one were to single out the most dramatic practical

change it would have to be the inference rule style of presentation. This single

piece of genius o�ered a natural way of handling non-determinism.

2.3 Justifying compiling algorithms

It is only at this point {1968{ that I had any involvement in the Vienna story. I

had been working on the testing of the �rst PL/I compiler in Hursley. We saw 635

hand-written test cases run successfully and we had automatic tools to generate

unlimited numbers of further test cases. The PL/I compiler was debugged around

these test cases, shipped, and fell over on an embarrassing number of customer

programs. I became convinced that testing could never substantially increase the

dependability of a product and that quality had to begin at the earliest stages of

the design process. In April 1968, I went on a course about ULD-III in Vienna

(fell in love with the city) and immediately expressed a strong interest in joining

the Vienna group to understand how their formal descriptions could be used in

compiler design. My �rst (two-year) stay in Vienna began in August 1968.

Hursley and Vienna had chosen di�erent models to explain the idea of ref-

erence to local variables in blocks and procedures. There arose naturally the

question of whether these two models were equivalent. Peter Lucas had the in-

spiration to link the two mechanisms into a more complicated machine which

essentially combined and updated both sets of state components; he then proved

a data type invariant which expressed that the hypothesised linkage was pre-

served by all operations. It was then argued that unnecessary \ghost variables"

could be erased. For the subsequent discussion, it is important to note that this

approach was general in that an arbitrary relation could be handled.

It was also telling that Peter Lucas attempted to single out this result from

the whole language de�nition: he promoted the idea of separating proofs about

implementations of language concepts which could be considered one at a time.

In the period 1968{70, we conducted many experiments in how a language

description could be used as the basis for the design of a compiler. One of my

contributions was to show that a representation (in the implementation) could

be related to an abstraction (in the description) by means of a retrieve function

(i.e. a homomorphism from the representation to the abstraction). Interestingly,

this approach (subsequently used as the main approach to data rei�cation in

VDM) was strictly less powerful than Lucas' twin machine. We understood this

but saw it as a useful heuristic that an abstraction should have no implemen-

tation bias. It was not until much later that the research with colleagues in

Manchester (notably Tobias Nipkow and Lynn Marshall) showed me that there

634 Jones C.B.: The Transition from VDL to VDM

were occasions where the more general method was required. (An account of the

work on data abstraction and rei�cation is given in [Jon89].)

A contribution which was to have a more direct inuence on the language

semantics research in VDM resulted from my dissatisfaction with the way VDL

de�nitions handled abnormal changes of sequence like goto statements (PL/I

also has a complicated exception handling mechanism called \on units"). De-

rived from an earlier internal report, [HJ71] was the external publication which

introduced the exit construct; this was to play an interesting part in the debate

between Oxford denotational semantics and VDM.

It is diÆcult to convey the excitement of that time. We had frequent seminars

at which we presented new ideas for proofs about {or based on{ language de-

scriptions. I remember one where Wolfgang Henhapl trailed a \mathematician's

approach" to the proof of the block concept and showed one line consisting of

a citation to an earlier proof of the result: the non-trivial point was to question

whether we were actually building on each others' work or just playing with the

same theorem time and again; this argument was countered with the claim that

we were interested in method and not just results.

The most stimulating seminars were those given by Dana Scott on a visit

late in 1969. We in Vienna had been struggling to understand fully Floyd's

method and actually invited Scott {who had attended an IFIP WG2.2 meeting

in Vienna{ to spend a week with us to discuss [Flo67]. Dana was fortunately not

constrained by our intentions and actually presented his evolving work with Jaco

de Bakker; the manuscript [dBS69] is a gem and was one of our �rst exposures

to what was to become the denotational approach.

The appeal for a di�erent approach could not have found more fertile soil.

In our proofs, we had found on a number of occasions that the potential exi-

bility of an operational de�nition could make it far harder to prove results. For

example, [JL71] represents a rather careful argument for the correctness (with

respect to an operational description of the relevant language concept) of a stan-

dard compiling technique for reference to local block variables: the axiom which

was most tedious to prove established only that the environment was the same

before and after any statement that was executed. In spite of seeing the need

for an alternative approach, I was less than convinced by the mathematics that

Dana needed and he claimed he was \cut to the quick" on one occasion when I

asked if it was all really necessary.

But, this brings the story to the point of Section 3 before which a few other

Vienna contributions are worthy of note.

2.4 Other gems

The VDL de�nition of PL/I was huge; many researchers thought the enterprise a

waste of time (and paper). The 500 copies printed (on very thin paper) would {it

635Jones C.B.: The Transition from VDL to VDM

was claimed{ be higher than Stephansdom if stacked. It would have been diÆcult

to type and impossible to control the layout when changed had it not been for a

wonderful automatic layout system \Formula 360" [KS69] (and what a pleasure

it was to meet {among many old friends{ Fritz Schwarzenberger in Graz). This

pearl of a system automatically chose line breaks within long formulae by cutting

the parse tree as high as possible: a brilliantly simple and e�ective rule.

An almost completely overlooked fact is that the Vienna group published

work on an axiomatic approach in the 1960s. In fact they used the stack as an

example in a paper given to patent lawyers in 1969. Remember also that the

storage component in VDL de�nitions was characterised axiomatically.

A whole series of papers from this research discussed various aspects of com-

piler design from formal descriptions; in addition to those cited above, ones which

came readily to hand include [Hen68, Luc69, HJ70, Jon70, Luc71, HJ71, Luc72].

Although much of the research was conducted in Belfast under Tony Hoare's

supervision, it is also fair to list [Lau71] as one of the �rst major attempts to

link language de�nitions with proof rules for results about programs written in

the language. Peter Lauer's research was undoubtedly helped by colleagues in

Vienna who are acknowledged in his thesis.

3 Transitional steps

There was then, in Vienna by 1970, a strong awareness that the operational VDL

de�nitions were a possible {but not ideal{ basis for formal compiler derivation.

Such de�nitions could perhaps be compared to Roman numerals which were an

adequate way of recording numbers but were far from ideal for their manipula-

tion. Where were we to �nd our equivalent of the Arabic representation?

Hans Beki�c had spent a year with Peter Landin at Queen Mary College,

London from November 1968 to November 1969 and was keen that a more de-

notational approach should be taken. Hans was a mathematician by training

(see [Bek84]) and had far less diÆculty than other members of the group in

understanding the role of, say, �xed points. It is perhaps one of the missed op-

portunities that Hans was in London when Dana Scott gave his seminars in

Vienna during August 1969.

For my part, I returned to IBM's laboratory near Winchester for the years

1971/2 and ran an \Advanced Technology" group. One product of our work was

to write a functional semantics of ALGOL 60. This report [ACJ72] combined

the exit concept with the clear separation of the environment from the state and

produced a description in which some of the properties which were messy to prove

about a VDL description were immediately apparent. Functional semantics had

many of the advantages of structured operational semantics.

The other lasting piece of work that was initiated at this time was the ideas

636 Jones C.B.: The Transition from VDL to VDM

(in particular, what became known as data rei�cation) on program {as distinct

from compiler{ derivation: see [Jon72, Jon73]).

The Vienna group itself spent much of the period 1970/2 on the oft-repeated,

but ultimately quixotic, venture of �nding potential parallelism hidden in FOR-

TRAN programs.

4 VDM and the 1970s

4.1 Language de�nition

In late 1972, the Vienna Laboratory was given the task of building a PL/I

compiler for an evolving, novel, machine. I remember vividly the call from Peter

Lucas when he told me about this; the invitation to transfer back to Vienna was

hardly out of his mouth before I agreed.

We immediately started an exchange of notes on the style of a de�nition that

would serve as a formal basis for the derivation of the compiler and the discus-

sion converged on a sugared denotational style. The basic idea of a denotational

de�nition is to map constructs of the language (to be described) homomorphi-

cally to some space of understood objects. For simple sequential languages, the

chosen space of denotations could be functions from states to states. Although

Hans Beki�c was actively thinking about handling concurrency in the denota-

tional approach, we were fortunate that the ECMA/ANSI committee who were

standardising PL/I chose to drop the tasking feature of the language thus leaving

us with a basically sequential language.

Once the group was all together, we had intensive discussions (one might even

say arguments) about how various diÆculties were to be tackled. The eventual

decision to adopt a version of the earlier exit idea was to set us apart from the

Oxford denotational school which used continuations. It has also been pointed

out by Peter Mosses [Mos01] that the \combinators" used in [BBH+74] are a

form of the idea later known as monoids). We also chose not to use the disjoint

sum idea in our abstract syntax, preferring to make an explicit distinction as

to whether or not tags were inserted. This decision �tted well with the old

VDL de�nition of abstract objects. In fact, the ways of building the basic (non-

functional) objects passed almost unchanged from VDL to VDM.

One e�ect of the level of sugaring was that is was in nearly all cases possible

to read the VDM descriptions as though they were operational. What then was

the key advantage of the denotational style? I suppose I always felt that it was a

way of cutting down on options, a way of keeping the de�ner honest by forcing

thought about which things were really important. In practice, in say a compiler

design, it was more important that one could see immediately that something

could not change (because it was an auxiliary argument rather than in the state)

than whether, say, procedure denotations were fully abstract. This is fortunate

637Jones C.B.: The Transition from VDL to VDM

since full abstraction results have taken a long time to come and are not likely

to be used on large de�nitions.

For the PL/I description, the state (or semantic objects) �nally crystallised

in one long co�ee session (lasting to a late lunch) and this made it possible to �x

the types of the main semantic functions. From this point, we were able to work

fairly independently on separate parts of the de�nition. The eventual descrip-

tion [BBH+74] is almost 100 pages of formulae (accompanied by a \Part II" of

similar length which provides commentary). Once again, many researchers ques-

tioned the wisdom of investing so much brain power in what was obviously an

overly Baroque language but I think an enormous amount was learnt by con-

fronting the description of a language which we could not bend to suit our

formalism.

4.2 Compiler design

Our task was not simply to write a formal description of (ECMA/ANSI) PL/I

but to build a compiler. Achieving this objective was made more diÆcult by the

frequent changes in the architecture of the machine that was being designed in

Poughkeepsie. We had an enormous number of telephone conversations and more

stays in the Hudson Valley than I care to remember. It was key to our (evolv-

ing) approach that we had a �rm grasp of the machine architecture. Initially, we

were delighted with the fact that a group in Poughkeepsie led by Tony Peacock

was writing a formal description of the machine. Unfortunately, US management

decided that so much e�ort was being invested in this that it ought be an ex-

ecutable (and later an eÆcient) interpreter of the machine's instruction code.

The consequent obfuscation of the description destroyed its value as a thinking

aid and left us with no choice but to write our own formal description of the

machine architecture. I wish I had to hand a copy of Hans Beki�c's hand written

description (in minute handwriting) which covered only a couple of pages.

In 1975, IBM decided to cancel the project to build the machine in question.

Fortunately, the group dispersed (just) gradually enough that we wrote reports

summarising the main steps of how we had been working. Again, my list is bound

to be biased by the internal documents that I can �nd but

{ the description of PL/I itself [BBH+74],

{ initial experiments in compiler justi�cation [BIJW75], and

{ an outline of a method of [Jon76]

are worthy of mention. The major published summary of the language descrip-

tion and compiler development work (which includes the �rst proof of equivalence

of exits and continuations) is [BJ78] which, when it �nally went out of print, was

reworked into [BJ82].

638 Jones C.B.: The Transition from VDL to VDM

4.3 Program development

Most applications of VDM have nothing to do with language de�nition nor with

compiler development. The parts of the Vienna Development Method aimed at

\normal" program development were, of course, inuenced by the work of the

early 1970s but these were �rst published in book form in [Jon80]. An account of

the distinctive features of these aspects of VDM has been published as [Jon99].

5 Looking back in gratitude

One of the most scienti�cally gratifying aspects of the (VDL and) VDM research

is the impact that it has had on other formal methods research. It cannot be

unfair to claim an inuence on VVSL, RAISE, Larch and B.

Personally, the Vienna group was the most stimulating prolonged collabora-

tion of my career and I am grateful to all of my erstwhile colleagues but a special

closing word of thanks must go to Peter Lucas without whom I might not have

been there (nor have been late for an opera the only time in my life).

References

[ACJ72] C. D. Allen, D. N. Chapman, and C. B. Jones. A formal de�nition of AL-
GOL 60. Technical Report 12.105, IBM Laboratory Hursley, August 1972.

[Ban65] K. Bandat. Tentative steps towards a formal de�nition of semantics of PL/I.
Technical Report TR 25.056, IBM Laboratory, Vienna, July 1965.

[BBH+74] H. Beki�c, D. Bj�rner, W. Henhapl, C. B. Jones, and P. Lucas. A formal def-
inition of a PL/I subset. Technical Report 25.139, IBM Laboratory Vienna,
December 1974.

[Bek84] H. Beki�c. Programming Languages and Their De�nition, volume 177 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1984.

[BIJW75] H. Beki�c, H. Izbicki, C. B. Jones, and F. Weissenb�ock. Some experiments
with using a formal language de�nition in compiler development. Laboratory
Note LN 25.3.107, IBM Laboratory, Vienna, December 1975.

[BJ78] D. Bj�rner and C. B. Jones, editors. The Vienna Development Method: The
Meta-Language, volume 61 of Lecture Notes in Computer Science. Springer-
Verlag, 1978.

[BJ82] D. Bj�rner and C. B. Jones. Formal Speci�cation and Software Develop-
ment. Prentice Hall International, 1982.

[BW71] H. Beki�c and K. Walk. Formalization of storage properties. In E. Engeler,
editor, [Eng71], pages 28{61. 1971.

[dBS69] J. W. de Bakker and D. Scott. A theory of programs. Manuscript notes for
IBM Seminar, Vienna, August 1969.

[Eng71] E. Engeler. Symposium on Semantics of Algorithmic Languages. Number
188 in Lecture Notes in Mathematics. Springer-Verlag, 1971.

[ER64] C. C. Elgot and A. Robinson. Random access stored-program machines:
An approach to programming languages. Journal of the ACM, 11:365{399,
October 1964.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proc. Symp. in Applied
Mathematics, Vol.19: Mathematical Aspects of Computer Science, pages 19{
32. American Mathematical Society, 1967.

639Jones C.B.: The Transition from VDL to VDM

[Hen68] W. Henhapl. A proof of correctness for the reference mechanism to au-
tomatic variables in the F-compiler. Technical Report LN 25.3.048, IBM
Laboratory Vienna, Austria, November 1968.

[HJ70] W. Henhapl and C. B. Jones. The block concept and some possible im-
plementations, with proofs of equivalence. Technical Report 25.104, IBM
Laboratory Vienna, April 1970.

[HJ71] W. Henhapl and C. B. Jones. A run-time mechanism for referencing vari-
ables. Information Processing Letters, 1:14{16, 1971.

[JL71] C. B. Jones and P. Lucas. Proving correctness of implementation tech-
niques. In E. Engeler, editor, [Eng71], pages 178{211. 1971.

[Jon70] C. B. Jones. Yet another proof of the correctness of block implementation.
Technical Report LN 25.3.075, IBM Laboratory, Vienna, August 1970.

[Jon72] C. B. Jones. Formal development of correct algorithms: an example based on
Earley's recogniser. ACM SIGPLAN Notices, 7(1):150{169, January 1972.

[Jon73] C. B. Jones. Formal development of programs. Technical Report 12.117,
IBM Laboratory Hursley, April 1973.

[Jon76] C. B. Jones. Formal de�nition in compiler development. Technical Report
25.145, IBM Laboratory Vienna, February 1976.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International, 1980.

[Jon89] C. B. Jones. Data rei�cation. In J. A. McDermid, editor, The Theory and
Practice of Re�nement, pages 79{89. Butterworths, 1989.

[Jon99] C. B. Jones. Scienti�c decisions which characterize VDM. In FM'99 {
Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages
28{47. Springer-Verlag, 1999.

[KS69] K. Koch and F. Schwarzenberger. Introduction to Formula 360. Technical
Report TR 25.101, IBM Lab Vienna, 12th December 1969.

[Lau71] P. E. Lauer. Consistent Formal Theories of the Semantics of Programming
Languages. PhD thesis, Queen's University of Belfast, 1971. Printed as TR
25.121, IBM Lab. Vienna.

[Luc69] P. Lucas. Equivalence of the veri�cation conditions of Floyd and Scott. LN
25.3.055, IBM Laboratory Vienna, 18th September 1969.

[Luc71] P. Lucas. Formal de�nition of programming languages and systems. In
C. V. Freiman, editor, Information Processing 71. Proceedings of the IFIP
Congress 1971, volume 1, pages 291{297. North-Holland, 1971.

[Luc72] P. Lucas. On the semantics of programming languages and software devices.
In [Rus72], pages 41{57. 1972.

[LW69] P. Lucas and K. Walk. On The Formal Description of PL/I, volume 6, Part
3 of Annual Review in Automatic Programming. Pergamon Press, 1969.

[McC66] J. McCarthy. A formal description of a subset of ALGOL. In [Ste66], pages
1{12, 1966.

[Mos01] P. D. Mosses. What use is formal semantics? private communication, 2001.
[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical

Report DAIMI FN-19, Aarhus University, 1981.
[Rad81] G. Radin. PL/I. in [Wex81], 1981.
[Rus72] R. Rustin. Formal Semantics of Programming Languages. Prentice-Hall,

1972. Courant Computer Science Symposium 2, September 14-16, 1970.
[Ste66] T. B. Steel. Formal Language Description Languages for Computer Pro-

gramming. North-Holland, 1966.
[Wex81] R. L. Wexelblat, editor. History of Programming Languages. Academic

Press, 1981.

640 Jones C.B.: The Transition from VDL to VDM

