Journal of Universal Computer Science, vol. 7, no. 8 (2001), 641-667
submitted: 15/5/01, accepted: 21/8/01, appeared: 28/8/01 I Springer Pub. Co.

On Teaching Software Engineering
based on Formal Techniques
— Thoughts about and Plans for —
A Different Software Engineering Text Book

Dines Bjgrner
(Informatics and Mathematical Modelling
Technical University of Denmark
Building 322, Richard Petersens Plads DK-2800 Lyngby, Denmark
db@imm.dtu.dk)

Abstract: We present the didactic bases for a different kind of text book on Software
Engineering — one that is based on semiotics, proper description principles, infor-
mal narrations and formal specifications, on phase, stage and stepwise development
from developing understandings of the domain, via requirements to software design.
Each of the concepts: Semiotics, description, documents, abstraction & modelling, do-
mains, requirements and software design, are covered systematically while enunciating
a number of method principles for selecting and applying techniques and tools for the
efficient construction of efficient software. The proposed textbook presents many, what
are believed to be novel development concepts: Domain engineering with its emphasis
on domain attributes, stake—holder perspectives and domain facets (intrinsics, support
technologies, management & organization, rules & regulation, human behaviour, c.);
requirements engineering with its decomposition into domain requirements (featuring
such techniques as projection, instantiation, extension and initialization), interface re-
quirements and machine requirements; etc.

Keywords: Software Engineering, Formal Methods

Category: D2, D3.1, F4.3

1 Introduction

1.1 State—of—Affairs

The present lot of text books in whose title the composite term ‘Software Engi-
neering’ feature predominantly, to me, fails on four significant accounts:

1. They miss, almost universally, the design issue: They do not teach program-
ming, design, nor specification — they rather take it for granted. That is:
They do not show a development from the very beginning to the very end,
or at least to such a state that “coding follows !” Here we use the term ‘de-
velopment’. Up above we used the term ‘design’. The two relate as follows:
Development spans everything, from — as we shall see — domains (domain
models) via requirements (models) to software (design models). Design, al-
though predominantly here, in this paper, used mostly in the context of

642 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

‘software design’, also includes the design, or rather — as we shall do it
— the abstraction & modelling (as one concept) of domain models and of
requirements models.

2. They basically all miss 30 years of formal techniques: There may be, tucked
as a separate chapter, seemingly accidental, somewhere, one entitled: “For-
mal Methods”, but it is always, without exception, abundantly clear that
the authors are not conversant in formal techniques — rather they unscien-
tifically venture such statements as “Formal Methods seem applicable only
to the development to real-time, safety critical systems”.

3. They basically all take a very syntactic and bureaucratic view of documenta-
tion — missing the whole issue, in particular, of description: That all we do
is writing documents. That some of these documents are informative, others
are descriptive and yet others are analytic. And that descriptions, whether
informal or formal are crucial: That to find out what to describe, and how
to express a description. Really is at the core of software engineering.

4. And, thus, for lack of a scientific foundation,' they “chase” the current fash-
ions of “software engineering” — some are relevant, but how do we, the
reader/student really know (?), and some, several, are irrelevant in an aca-
demic syllabus. They typically lack a logical, didactic foundations structure:
Topics are treated in some not always didactically discernible order; and
chapters are more independently readable essays.

1.2 Towards Another Kind of Text Book

In other words, a software engineering text book will be proposed,? one that
is based on the last 30 years of programming methodology emphasizing the
following viewpoints: description principles, and hence semiotics: pragmatics,
semantics and syntax, documents: informative, descriptive and analytic; meth-
ods and methodology, models and modelling formal specification, abstraction
& modelling, and a whole suite of related issues — while presenting the more
mundane, but utterly necessary, topics of for example: quality, assurance and
control; project and product management; legacy systems; business process—|re—
Jengineering; etc. All of this in a natural context of those formal techniques —
and not as an “add—on”.

Such a text book seems desired. I will offer you my thoughts and plans for this,
based on more than 30 years of experience, of teaching more than 25 full semester

! We shall, just as unscientifically, but blissfully, refrain from referring to which such
100.000 copies books we are specifically referring to.

2 The proposed book basically already exists in rather complete forms of chapters of
lecture notes.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 643

courses, of teaching more than a similar number of 2-3 week intensive course
around the world to — perhaps — around 1000 students, of graduating more
than 75 MSc and 15 PhD students in the topic, of initiating perhaps around 15
large scale international R&D software methodology and development projects,
and initiating and supporting some six—seven Danish software houses, with more
than seemingly around 500 staff, using such formal techniques.

1.3 Prerequisites

We do not understand curricula that “features” a special course in “Formal
Methods”. To us, the use of formal techniques is part of well-nigh any university
course in programming, software engineering, and the like ! The pre-requisite
courses are shown in [Figure 1].

Functional Imperative Logic Parallel
Programming Programming Programming Programming

| |
i

Algorithms =
Control + Data Structures

Software Engineering
Theory & Practice
Semantics Information Reactive Distributed Workpiece [Knowledge
Systems Systems Systems Systems - Systems
Translation
Systems Data Real-time, Protocols ["
Modelling Embedded H
Compilers Systems .
& Database n
Interpreters ;Management Operating
Systems Systems

Figure 1: A Software Engineering Course Context

That figure also indicates courses that could follow a proper software engineering
course, such as outlined in this paper. The figure, however, omits, for sake of
brevity, many other necessary computer and computing science courses.

644 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

The proposed text book, although venturing into many of the (problem
frame) areas indicated by the last row boxes of [Figure 1] — rather than cov-
ering these in—depth — will cover their basic principles, and will show how the
principles covered in detail in the book apply to the more specialized problem
frames. It is in this way that the book will “contain” itself, will avoid covering
everything !

1.4 Summary of Issues

A brief list of main issues: Method, semiotics, descriptions, documents,
formal specification, abstraction and modelling, the software engi-
neering triptych, domain engineering, requirements engineering, and
software design. “Orthogonal” to the above: Problem frames. In addition
we treat some miscellanea: Business process [re—]engineering, legacy sys-
tems, and management.

The paper is cursory: Postulates, more than argues. Surveys, more than goes
in—depth. A Bibliographical Notes section brings references that many offset
this imbalance.

2 The Didactic Bases

2.1 The Basic “Theories”

The basic cornerstones of our approach to software engineering are: (a) That
software development follows the triptych: From domains via requirements to
software design. (8) That software development be conducted both informally
and formally. (v) That mastery of semiotics, of description principles and of
proper documentation is part of professional software engineering. (§) That mas-
tery of abstraction and modelling principles and techniques is a prerequisite for
subsequent fluency in domain, requirements and software design techniques. And
(w) that the detailed, highly structured principles and techniques of the latter®
be methodically followed.

2.2 Science < Engineering <+ Technology

To us the engineer “walks the bridge between science and technology”: Builds
technological artifacts based on scientific insight, and examines technology so as
to ascertain its possible scientific content. To us: Computer science is the study
and knowledge of the “things” that can exist inside computers. And Computing
3 Domain attributes, domain stake-holder perspectives and domain facets; domain re-

quirements projection, instantiation, extension and initialization; as well as similarly

large varieties of interface requirements, machine requirements, and software design
principles and techniques.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 645

science is the study and knowledge of how to construct those “things”. These
views pervade the proposed textbook, as well as the importance of the views of
Semiotics: Pragmatics, semantics and syntax; description principles; and proper
documentation, informal as well as formal.

2.3 A First View

Repeating the software engineering issues list given earlier, but now with a few
more comments, we have:

Method: A set of principles for selecting and applying a number of analysis
and synthesis techniques and tools in order efficiently to develop efficient ar-
tifacts (Software).

Semiotics: The confluence of pragmatics semantics and syntax.
Descriptions: principles and techniques: designations, definitions, and
refutable assertions.

Documents: Be they informative, descriptive, or analytic.

Formal Specification*: Whether property oriented, or model-oriented.
Abstraction and Modelling: On one hand, property oriented specifications;
and, on the other hand, model-oriented specifications.

The Software Engineering Triptych: Consists of domain engineering, re-
quirements engineering, and software design .

Domain Engineering: That is: Domain attributes, domain stake—holder
perspectives, and domain facets.

Requirements Engineering: That is: Domain requirements, interface re-
quirements, and machine requirements.

Software Design: With design including: Software architecture design, pro-
gram organisation design, and implementation: “Orthogonal” to the above we
treat Michael Jackson’s concept of:

Problem Frames: Whether: Translation Frames, Reactive Systems Frames,
Information Systems Frames, Workpiece Systems Frames, Connection Frames,
other frames, or combinations thereof. In addition we treat some miscellae-
nea:

Business Process [Re—]|Engineering: Discovering laws of the enterprise
from domain analysis: formulating “new” enterprise structures, enterprise rules
& regulations and new enterprise procedures: and planning and effecting change
management.

Legacy Systems: Migrating old systems into new systems based on domain
analysis and legacy systems models.

Management: Project Management, primarily strategic, tactical and opera-
4

— where formal specifications are just one part of the full specification “picture”:
The other parts include informal narrative and terminological descriptions.

646 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

tional resource management, and Product Management, primarily market as-
sessment and planning.

3 A Second View

Finally we comment more extensively on the software engineering issues list:
Method: A set of principles for selecting and applying a number of analy-
sis and synthesis techniques and tools in order efficiently to develop efficient
artifacts (Software). Comments: The planned text book significantly features
an adherence to and an exploration of this view of “What a Method is !”. Ev-
ery other software engineering issue covered in the long lists now explored for
the third time will be “equipped” with its principles, techniques, and tools. A
predominant tool is that of language, since our “main businesses” are those of
semiotics, descriptions, and documents. We seriously believe that this emphasis
on a specific, proposed view of “What a Method is ” is a main feature of the
lecture notes.

Semiotics: The confluence of pragmatics — the reasons why we inform,
describe and analyse — using specific textual forms; semantics — the mean-
ing of these textual forms; and syntax — the structure of the textual forms.
Comments: We consider ease of — fluency in — deploying the three concepts of
semiotics important to good software engineering. Pragmatics is what makes us
“tick”, but pragmatics is elusive, cannot be formalised. Semantics and syntax
can be formalised. Uninformed software engineers write pages of pragmatics, and
fail to cover semantics properly.

Descriptions: principles and techniques: designations, manifest “pointers”
to actual world phenomena (“things”) in the form of descriptive texts; def-
initions, abstractions in the form of conceptual definitions; and refutable
assertions, which if not potentially expressible renders our descriptions uninter-
esting. Comments: We consider ease of — fluency in — expression: succinctness,
conciseness, and precision, as an indispensable prerequisite to good software en-
gineering. The above can only be achieved when proper concepts have been duly
identified. Following the description principles of designations, definitions and
refutable assertions, goes hand-in—hand with “ontologisation” and terminologi-
sation.

Documents: Be they informative: “loose” texts — like synopses — not con-
forming to any conventions; descriptive: rough texts, narratives, terminologies, or
formal texts, which indeed describe something; or analytic: texts which report
on concept formation from rough descriptions, or validation wrt. stake-holders of
narratives and terminologies, or (formal) verification (proofs or model checkings)
of formal descriptions. Comments : Informative synopses are like briefs: Starts
(“roots”) development. Rough sketch descriptions are like the proverbial “back—
of—an—envelope” scribbles based on the analysis of iterations of which proper

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 647

concepts are discovered, identified and decided upon. Narratives and terminolo-
gies serve to address documentation needs of most stake—holders. Formalisations
serve to secure trustworthy and efficient developments. Analytic validation and
verification serve to secure believable and correct software.

Formal Specification: Whether property oriented, specifying properties of
domains, of the required software, and of the software; or model-oriented —
specifying domains, required software, and the software in terms of mathemati-
cal, in cases even computable values. Comments: Many method principles and
techniques will be identified. Formal specification — and hence the choice of
a proper, adequate variety of formal specification languages — form an indis-
pensable set of tools for the practising software engineer. Ability to select an
appropriate tool, here formal specification language, is thus crucial to profes-
sional software engineering.

Abstraction and Modelling: On one hand, property oriented specifications
based on sorts, generator, observer and — sometimes, a few — auxiliary func-
tion signatures, and axioms over these (sorts and functions); and, on the other
hand, model-oriented specifications based on discrete mathematical values, in-
cluding functions (sets, Cartesians, lists, maps). Comments: Many method
principles and techniques will be identified: Representation and Operation Ab-
straction either in terms of sorts, function signatures and axioms or in terms
of discrete mathematical, ie. abstract values such as sets, Cartesians, lists, and
maps, form a foundation for abstract modelling. Other abstract modelling prin-
ciples and techniques are relevant: Denotations and computations — viewing
syntactic “things” as denoting functions or describing computations; hierarchies
and compositions — developing and/or presenting specifications “top—down”
(most composite concepts first), or “bottom—up” (atomic concepts first), or in
a judicious choice of both; configurations: spectra of Contexts and states — a
“fine—grained state” concept: From static to dynamic, from time independent
to temporal; time, space and space/time — introducing ontologies of time and
space as appropriate abstractions and in appropriate parts of development; dis-
creteness, continuity and chaos — when to consider the world, or the computing
system as behaving discretely, continuously or chaotically. éc. Fluency in all of
the above implied abstraction and modelling principles and techniques is neces-
sary in order to be counted as a professional software engineer.

The Software Engineering Triptych: Consists of domain engineering —
we cannot formulate requirements unless we have a reasonable understanding of
the actual world in which potential, desired (ie. required) software is to be in-
serted; requirements engineering — and we cannot develop software unless we
have formulated its requirements; and software design — which thus, ideally,
but not necessarily, is developed after domain and requirements specifications
have been established. Comments: Many method principles and techniques will

648 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

be identified. An overall paradigm is that of phase, stage and stepwise devel-
opment — of separation of concerns. One is not necessarily to strictly follow
the above phase ordering in development. As long as the final product is doc-
umented in that order, with necessary and sufficient domain and requirements
specifications. This development triptych is rather novel. It is not to be confused
with Knowledge Engineering.

Domain Engineering: That is: Domain attributes: (i) static vs. dynamic,
(ii) tangible vs. intangible, (iii) one or multi-dimensional, etc., attributes; do-
main stake—holder perspectives: identification of as relevant a spectrum of
stake—holders as relevant (owners, management, workers, customers, regulatory
agencies, politicians, etc.) and their perspectives; and domain facets: Intrin-
sics (the very essentials), supporting technologies, management & organisation,
rules & regulations, human behaviour, etc. Comments: Many method princi-
ples and techniques will be identified. We stress our belief that our inclusion
and rather extensive emphasis on domain engineering is not only novel, but
possibly, when properly conducted, a main means for avoiding future software
development disasters. Michael Jackson has covered domain attributes well in
[Jackson (95), Jackson (97)]. All we do is to show relations to formalisations.
The recent [MclIver and Morgan (01)] studies the concepts of stake—holder per-
spectives and domain facets. We find the concept of domain facets novel and
fascinating.

Requirements Engineering: That is: Domain requirements: Projection,
instantiation, extension and initialisation requirements in direct support of do-
main phenomena; interface requirements: Identification of phenomena shared
between the domain and the machine,® and the input/output facilitation of such
phenomena, incl. CHI: Computer Human Interface, bulk data input/output,
etc.; and machine requirements: Performance, dependability, maintainabil-
ity, portability, documentation (standards), etc. Comments: Performance deals
with both time and space: response and (in general) execution times, storage
space, etc. Dependability issues include such as reliability, availability, access-
ability, fault tolerance, and security. Maintainability comes in three “flavours”:
adaptive, perfective and corrective maintenance. Portability deals with not only
execution code platforms, but also development and maintenance platforms. But
whereas almost all aspects of domain requirements, and many aspects of inter-
face requirements, can both be informally narrated and formally defined, we find
this to not yet be the case for machine requirements | Many method principles
and techniques will be identified. Our treatment of requirements engineering is
novel in that it takes it main departure point in domain models; and in show-
ing “transformations” from domains to domain requirements and from domain

® By machine, with Jackson, we understand the hardware and software to be developed
in response to requirements.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 649

requirements to software architecture design, etc.

Software Design: With design including: Software architecture design, which
addresses all domain and some interface requirements; program organisation de-
sign, which addresses remaining interface and all machine requirements — with
the program organisation specification being an extension of the software archi-
tecture specification; and implementation. , which “transcribes” formally spec-
ified architecture and program organisation designs, via module (cum object—
oriented) design to executable code. Comments: Our treatment of software design
is novel in that it emphasises “transformations” from formal requirements spec-
ification, and in separating the concerns of domain vs. machine requirements —
into software architecture design, respectively program organisation design. In
these lecture notes we shall only cursorily cover program verification — leav-
ing it to [RaiseMethod (95)] and other text books to cover this important area.
Also we shall not express very many principles and techniques applicable within
the software design phase: We leave that to specialised courses, some assumed
prerequisites to a course based in these lecture notes. There simply is no way
in which we can improve upon such text books as [Knuth (68), Dijkstra (76),
Jones (80), Gries (81), Reynolds (81), Hehner (84), Jones (86a), Jones (90a)].
“Orthogonal” to the above we treat Michael Jackson’s concept of:

Problem Frames: Whether: Translation Frames, as applicable to program-
ming language interpreter and compiler development as well as to such software
tools that in general perform abstract interpretation on structured texts; Re-
active Systems Frames, typically real-time, embedded, safety critical systems;
Information Systems Frames, typically ending up in conventional relational
database, or in geographic or demographic information systems; Workpiece
Systems Frames, typically forms handling systems (such as for accounting,
bookkeeping, and resource management in general); Connection Frames, typ-
ically ending up in software that “connect—interfaces” with “other” machines
“at either side” (such as web servers, instrument adaptors, etc.); other frames,
typically actors and brokers in electronic commerce or in logistics; or combi-
nations thereof. ~Comments: Many method principles and techniques will be
identified. We refer to [Jackson (2001a), Bjgrner et al. (97b)]. The miscel-
lanea includes:

Business Process [Re—|Engineering: Discovering laws of the enterprise
from domain analysis — void of any reference to requirements to software, let
alone such software; formulating “new” enterprise structures, enterprise rules
& regulations and new enterprise procedures — with such “new” enterprise
behaviours being supported, in cases, by computing éc.; and planning and
effecting change management — a rather novel discipline, yet to be better
understood. Comments: Business process [re—Jengineering can now be done pro-
fessionally: Using formal, abstract domain modelling principles and techniques.

650 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

A relevant need can thus be addressed in a scientific manner. The use of formal,
abstract domain modelling principles and techniques for Business process [re—
Jengineering is novel. Much study is still needed.

Legacy Systems: Migrating old systems into new systems based on domain
analysis and legacy systems models — requires “full-blown” domain analysis
of the software systems that form the “legacy”, ie. a form of “industrial archae-
ology”. Comments: It seems, to me, that today’s handling of legacy systems: old,
convolute computing systems, including data bases, leaves much to be desired.
Legacy system migration seems to be treated only syntactically. It seems that
proper treatment implies the “full force” of domain engineering.
Management: Project Management, primarily strategic, tactical and opera-
tional resource management — based on software development graphs: From
domains via requirements to software design; and Product Management, primar-
ily market assessment and planning — based on wide—area domain analyses.
Comments: Our treatment of management hinges crucially on the fact that we
pursue software development according to all the principles and (also formal)
techniques listed earlier. This changes management radically from what we nor-
mally see explained in conventional software engineering text books.

3.1 Some Comments

The ordering of the topics: Semiotics, descriptions, documents, formal speci-
fication, abstraction and modelling, the triptych; Domains, requirements and
software design, €c. is no “accident”. As we shall soon see, in the proposed text
book, this ordering is preceded by a cursory treatment of mathematics: Types,
functions, algebras and logic. The term ‘model’ has been used a couple of times,
hence the lecture notes devotes a special chapter to the concepts of models and
modelling.

4 The Structure of the Proposed Text Book

4.1 Overall Structure

The overall structure of the proposed text book follows the ‘issues’ listings given
above. Most chapters have extensive examples, problem exercise formulations
and solutions, and bibliographical notes. A special “feature” of the proposed
text book is a number of individually rather large appendices which contain
extensive domain, and in cases some requirements, models of selected infras-
tructure components. Instead of large examples, in-line with the principles and
techniques they most aptly reflect, we have relegated such larger examples to
those appendices. We strongly believe these example appendices and their cross—
referencing from method issues, to be a most beneficial as well as a novel aspect.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 651

In order to compose large specifications one must have read large such ! The
proposed text book basically builds on the RAISE Specification Language, RSL
[RSL (92), RaiseMethod (95)]. But here and there it makes excursions into vari-
ous modal logics of time, belief, knowledge, intention, commitment, etc., process
languages: Petri Nets, StateCharts, etc. The prerequisites for studying the
proposed text book are basically: Programming courses in: functional program-
ming 4 la Standard ML, logic programming & la Prolog, imperative program-
ming & la Java (or C), and parallel programming 4 la occam. Also: courses in
discrete mathematics and in mathematical logic, and one or two in algorithms
& data structures. We leave it to the reader to study the contents listing !

4.2 Table of Contents

0 PREFACE e e
0.1 A New Look at Software e
0.2 Aspirations
0.3 Acknowledgements oL L

1 INTRODUCTION oo e e e e

Aims & Objectives:
— To set the stage for the entire lecture notes.

1.1 Aims & Objectives L L
1.2 A Software Engineering Triptych 0L
1.3 Documentation L
1.4 Formal Techniques & Formal Tools
1.5 Method and Methodology
1.6 Bibliographical Notes L

2 TYPES, FUNCTIONS, ALGEBRAS and LOGIC

Aims & Objectives:
— To introduce only very basic notions of types, functions, algebras and logic, and
— to illustrate algebraically abstract specifications in terms of sorts, observer and generator func-
tions, and the definition of these in terms of axioms.

2.1 The Very Bases of Software e
2.2 TYPES . . L e e e
2.3 Functions & Relations L e e
2.4 Algebras . . . L e e
2.5 LOGIC .« o v e e
2.6 DiSCUSSION e e e e e
2.7 Exercises: Formulations and Proposed Solutions
2.8 Bibliographical Notes L e

3 ATOMIC DATA TYPES oo o

Aims & Objectives:
— To introduce numerals and numbers,
— to introduce characters and text and
— to introduce identifiers and tokens.

1 Introduction e
2 Numbers e
.3 Characters and Textsl
4 ldentifiers and Tokens L
3.5 Discussion e e
3.6 Bibliographical Notes L

4 METHOD & METHODOLOGY

652 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

Aims & Objectives:
— To introduce the concepts of method and methodology, and to discuss their constituent principles,
techniques and tools,
— to propose some meta—principles and techniques and
— to review principles and techniques related to Chapters 2-3.

4.1 Method L L
4.2 Methodology
4.3 Method Constituents Lo
4.4 Specific Development Principles, Techniques and Tools
4.5 Discussion L.
4.6 Bibliographical Notes

5 REPRESENTATION & OPERATION ABSTRACTION

Aims & Objectives:
— To introduce the notion of representational and operational abstraction,
— to introduce the notion of model oriented abstraction, and to contrast this notion with that of
property oriented abstraction,
— to introduce the model oriented techniques of abstraction using discrete mathematical structures
such as sets, Cartesian, lists, maps, and functions, including function lifting and
— to present more material on the concept of types.

5.1 On Model Oriented Abstractions
5.2 SetS e e
5.3 Cartesian
5.4 LiSts e e
5.5 Maps L e e e e
5.6 More on Functions L e e
5.7 More on Types e e e e
5.8 Exercises: Formulations and Proposed Solutions
5.9 Bibliographical Notes L e

6 MODELS AND MODELLING

Aims & Objectives:

— To explain the concepts of (i) models and of (i) modelling,

— to enumerate and explain the concepts of (iii) iconic, (iv) analogic and (v) analytic models, of
(vi) prescriptive and (vii) descriptive models, and of (viii) extensional and (ix) intensional models,

— to overview reasons for establishing models: To (x) gain understanding, to (xi) predict and (xii)
assert, to (xiii) present, (xiv) educate and (xv) train, and for (xvi) implementation (whether for
(a) business process [re—]engineering or for (b) computing systems development) and

— to establish principles of modelling.

6.1 Model Attributes
6.2 Role of Models e
6.3 The Modelling Principle

7 SPECIFICATION PROGRAMMING

Aims & Objectives:
— To introduce, more systematically, the concept of specification programming,
— to — in particular — cover aspects of applicative (ie. functional), imperative and concurrent (ie.
parallel) programming,
— to thus introduce both imperative programming: Assignable variables and statements, and CSP:
Communicating Sequential Processes and
— to introduce concepts of loose and under-specified specifications.

7.1 Applicative Specification Programming
7.2 Imperative Specification Programming
7.3 Parallel Specification Programmingo
7.4 Looseness and Under—Specification
7.5 Discussion and Review L Lo
7.6 Exercises: Formulations and Proposed Solutions
7.7 Bibliographical Notes

8 MODULARITY o o oo e e e e

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 653

Aims & Objectives:
— To introduce the concept of modularity and means for expressing modularity in terms of the
class, scheme and object concepts of RSL,
— to introduce the concept of parameterized and renameable specifications and
— to discuss the current “schools” of object orientedness in the light of our presentation of Sub-
sections 8.2 —8.4.

1o Introduction . L L L L L L e e
2 ClIasses e e
3 Schemes . . L L e
4 Objects . . . L e e
8.5 Object—orientedness L e e
8.6 DiSCUSSION e e e e
8.7 Exercises: Formulations and Proposed Solutions
8.8 Bibliographical Notes e

9 ABSTRACTION AND MODELLING

8
8
8
8

Aims & Objectives:
— To introduce the concepts of hierarchies and compositions of development as well as of description
document presentation,
— to introduce the concepts of denotational and operational (ie. computational) semantics,
— to introduce the concept of configurations in terms of the likewise introduced concepts of contexts
and states and
— to introduce the ontological concepts of time, space and time/space.

Introduction L e
Hierarchies and Compositions e e e
Denotations and Computations
Configurations: Contexts and States
9.5 Time, Space and Time/Space
9.6 Exercises: Formulations and Proposed Solutions
9.7 Bibliographical Notes L e

10 SEMIOTICS e
PRAGMATICS, SEMANTICS & SYNTAX oo

S W

9.
9.
9.
9.

Aims & Objectives:
— To introduce the concept of semiotics as consisting of the likewise introduced concepts of prag-
matics, semantics and syntax and
— to emphasize the utter importance of considering and of modelling the world semiotically: (i)
Adhering to pragmatics, (ii) focusing on achieving pleasing semantic types and functions, (iii)
based on pleasing abstract syntaxes.

10.1 Introduction L L e
10.2 Syntaxo
10.3 Semantics L e e e e
10.4 Pragmatics e e e e
10.5 DisCuSSiONo e e e e e
10.6 Exercises: Formulations and Proposed Solutions
10.7 Bibliographical Notes L

11 FORMAL LANGUAGES oo o e e

Aims & Objectives:

— To summarize essential linguistic features of common abstract [software] specification languages
— such as RSL, VDM--SL, Z and others,

— to illustrate standard techniques for specifying the (mostly denotational) semantics of classical
programming language concepts: Function (ie. applicative, SAL), imperative (SIL), modular
(SMIL), logic (SLL) and parallel programming (SPIL) languages,

— to illustrate the phase-wise development of run-time computational semantics and compiling
algorithms for selected such languages (SAL, SIL, SMIL, SLL) from denotational semantics
specifications, and

— to illustrate the use of RSL in specifying a state transition (structural operational) semantics for
a parallel programming language (SPIL).

654 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

11.1 Introduction L.
11.2 Specification Language Linguisticso o
11.3 SAL: Small Applicative Language Lo
11.4 SIL: Small Imperative Languageo
11.5 SMIL: Small Modular, Imperative Language
11.6 SLL: Small Logic Languageo e
11.7 SPIL: Small Parallel, Imperative Language o
11.8 Discussion
11.9 Exercises: Formulations and Proposed Solutions
11.10 Bibliographical Notes e

12 A DEVELOPMENT PARADIGM
From Domains via Requirements to Software Design

Aims & Objectives:

— To become aware of the spectrum of ‘software development’ from ‘domain engineering’ via
‘requirements’ to ‘software design’,

— to also appreciate the pragmatic distinction between ‘software architecture’ and ‘program orga-
nization’ design and

— to finally appreciate that there are a number of techniques that relate requirements to domain
descriptions, software architecture designs to domain and interface requirements, and program
organization to machine requirements.

12.1 Introduction L
12.2 Preview of Architecture Design o
12.3 Preview of Domain Engineering Lo
12.4 Preview of Requirements Engineering Lo
12.5 More Preview of Architecture Design
12.6 A Model-oriented Verification
12.7 Preview of Program Organization Design
12.8 Review L
12.9 Exercises: Formulations and Proposed Solutions
12.10 Bibliographical Notes L e

13 TOWARDS DESCRIPTIONS: THEORY & PRACTICE

Aims & Objectives:
— To introduce and further develop Michael Jackson's concepts of designations, definitions and
refutable assertions,
— to introduce our notion of proper software development documentations, including their compo-
sition from informative, descriptional and analytical document parts and
— to introduce, especially Per Galle's concept of [design] acquisition and validation.

13.1 Introduction L L e e e e
13.2 A Description Theory e e e e e
13.3 Documents e e e e e
13.4 Acquisition & Validation L e e e
13.5 Other Issues L e e e
13.6 DisCUSSION e e e e e e
13.7 Exercises: Formulations and Proposed Solutions
13.8 Bibliographical Notes L

14 PHILOSOPHY OF DESCRIPTIONS

Aims & Objectives:
— To relate the software engineering quest for descriptions to philosophical issues of ‘existence’, of
‘being’, of what can be 'known’, ‘perceived’ and 'described’.

14.1 Introduction Lo
14.2 Epistemology Lo
143 Ontology
14.4 Other Description Philosophical Issueso
145 Discussiono
14.6 Bibliographical Notes0

15 DOMAIN ENGINEERING et

Aims & Objectives:

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

— To introduce the concepts of (i) domain attributes, (ii) stakeholders & their perspectives, and
of (iii) domain facets
e intrinsics, support technologies, management & organization, rules & regulations, human
behaviour, ...
— to achieve an understanding, by the reader, of the necessity of domain modelling and
— to make the reader acutely aware of the “looseness” of the domain: That all is possible in the
domain.

15.1 Introduction L L e e e e
15.2 Domain Attributes L e e e
15.3 Stakeholders and Stakeholder Perspectiveso
15.4 Domain Facets L
15.5 Other Domain Attributes 7
15.6 Discussion L e
15.7 Exercises: Formulations and Proposed Solutions
15.8 Bibliographical Noteso

16 REQUIREMENTS ENGINEERING

Aims & Objectives:

— To introduce the concepts of domain, interface and machine requirements,

— to make the reader acutely aware of the novel domain requirements techniques of projection,
instantiation, extension and initialization, and make the reader acutely aware of the possibilities
of formally abstracting and modelling the interface requirements facets of computer human
interfaces and dialogues,

— to prepare the reader for the many program organization design techniques for machine require-
ments such as performance, dependability, and maintainability and

— to cover some important issues of elicitation and validation of requirements as well as require-
ments development tools and management.

16.1 Introduction L.
16.2 Requirements Feasibility Studyo
16.3 Domain Requirements
16.4 Interface Requirementsol
16.5 Machine Requirementso
16.6 Requirements Elicitation & Validationo
16.7 Requirements Tools and Management
16.8 Discussion L e
16.9 Exercises: Formulations and Proposed Solutions
16.10 Bibliographical Notes e

17 COMPUTING SYSTEMS DESIGNo v v oo

Aims & Objectives:

— To argue that software development cannot be seen in isolation from the more general computing
(ie. hardware + software) systems development,

— to introduce the software design decomposition into software architecture, program organization,
etc., that is: Argue that software architecture follows from domain requirements, that program
organization follows from machine requirements, and that interface requirements influence both,

— to introduce the concepts of software system demos (and simulators) and of prototyping and

— to lead up the next chapter's treatment of software correctness.

17.1 Introduction L e e e e
17.2 Computing Systems Architecture and Organization
17.3 Software Architecture Lo e
17.4 Program Organization Lo
17.5 Module Design e e e e
17.6 Code Design e e e e
17.7 Building Simulators and Demos Lo
17.8 Software Prototyping e e
17.9 DisCuSsiono e e e e
17.10 Exercises: Formulations and Proposed Solutions
17.11 Bibliographical Notes L e

18 CORRECTNESS OF SOFTWARE
Aims & Objectives:

— To argue the necessicity for correctness of software implementation wrt. requirements and in the
context of domains,

655

656

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

— to introduce the notions of (i) implementation (cum refinement) relations, (ii) specification
language proof systems, (iii) model checking and (iv) software testing,

— to cover these latter notions as they are found in the RAISE and VDM ‘methods’ (i—ii) — while
otherwise referring to special textbooks and monographs on software development verification,
and, briefly, explaining the ideas of model checking (iii), and software testing (iv), and

— to illustrate a number of actual design proofs — while, as said, only “telling the stories” on
model checking and testing.

18.1 Introduction L L
18.2 RSL Implementation Relationso
18.3 VDM Refinement Relations L
18.4 Model Checking
18.5 Software Testing L
18.6 Other Issues of Correct Developmentso
18.7 DisSCUuSSION e e e e e
18.8 Exercises: Formulations and Proposed Solutions
18.9 Bibliographical Notes L

19 Michael Jackson’s PROBLEM FRAMES

Aims & Objectives:

— To argue, with Michael Jackson, that no one ‘method’, ie. no one comprehensive set of techniques
suffice for all software development,

— to introduce, “instead”, the concept of a set of problem frames, each frame with its diversity of
domain, requirements and design techniques and

— to illustrate, in particular such frames as the translation, the information system, the reactive
systems, the workpiece systems, the connection, and other frames.

19.1 Introduction L L L e
19.2 Translation Frame L
19.3 Information Systems Frameo
19.4 Reactive Systems Frameo
19.5 Workpiece Frame L
19.6 Connection Frame e
19.7 Other Frames ? e
19.8 Discussion of the Frame Concepto
19.9 Exercises: Formulations and Proposed Solutions
19.10 Bibliographical Notes L e

20 PLATFORM PROGRAMMMING

Aims & Objectives:

— To argue that major elements of software design can benefit significantly from the use of existing
program packages and tools,

— to illustrate that many such platform uses relate more to interface and machine requirements
than to domain requirements,

— to discuss and illustrate program package re—use and

— to relate a few of the current ‘fashions’ (Java, UML, OMG) to software design.

20.1 Introduction Lo
20.2 Programming Languages L
20.3 Object—orientedness L L
20.4 Open Distributed Processing
20.5 Other Platform Issues
20.6 Discussiono
20.7 Exercises: Formulations and Proposed Solutions
20.8 Bibliographical Notes

21 QUALITY ISSUES oot e s s e

Aims & Objectives:

— To introduce the “standard” meanings of the terms: software quality, quality assurance and
quality control,

— to discuss these meanings in the light of the software development approach taken in these
lecture notes and

— to relate these issues to the ISO 9003 Standard.

22

21.1
21.2
213
21.4
215
21.6
21.7

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

Introduction L L e
Quality Assurance & Quality Control
ISO 9003 e
Other Quality Issues e
Discussion of Quality Concepts
Exercises: Formulations and Proposed Solutions
Bibliographical Notes

LEGAL ISSUES OF SOFTWARE

Aims & Objectives:

22.1
22.2
223
22.4
225
22.6
22.7
22.8
229
22.10
22.11
22.12

To investigate the various issues of software patents, intellectual property rights and copyrights,
to investigate issues of software (development and product purchase) contracts, warranties and
liabilities,

to investigate issues of ‘open’, ie. ‘free’ software and

to investigate the various issues of legalities of software education curricula, software engineers,
software houses, software products — ie. of accreditation and certification.

Introduction L e
Patents L
©: Copyrightso
Intellectual Property Rightso
Contracts & Contractual Obligations L0
Free & Open Software Lo
Accreditation Lo L
Certification L L
Other Legal Issues L
Discussion of Legal Issues L
Exercises: Formulations and Proposed Solutions
Bibliographical Notes

23 PROJECT & PRODUCT MANAGEMENT

24

Aims & Objectives:

23.1
23.2
233
23.4
235
23.6
23.7
23.8

To introduce the notions of software development resource management: Strategic, tactical and
operations management,

to introduce the notion of project management: Planning, budgeting, accounting, monitoring &
control, and project reviews and

to introduce the notion of product management: Planning, marketing, pricing, sales and service.

Introduction L L
General Issues of Management oL
Project Management Lo e e
Product Management L
Other Management Issues L
Discussion of Management
Exercises: Formulations and Proposed Solutions
Bibliographical Notes

CONCLUSION

Aims & Objectives:

24.1
24.2
24.3
24.4
24.5
24.6
24.7

Rai
Al
A2
A3

To discuss myths and commandments of “formal methods”,

to review what has been achieved with respect to a systematic, comprehensive enumeration of
method principles, techniques and tools and

to relate the message of these lecture notes to those of [other] textbooks on software engineering.

ASUmmary L e e e
On “Formal Methods” Myths
On Methods & Methodology
References to other Software Engineering Books,
Open ISSUBS o e e
Closing Remarks L e e
Bibliographical Notes

Iways oL e e e e
Nets: Lines, Stations, Units, Paths, Routes
Trains and Traffic e
Time-tables and Schedules

657

658 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

A.4 Shunting and Marshalling Lo
A.5 Rolling Stock Monitoring & Control
A.6 Passenger Handling L
A.7 Freight Handling e
A.8 Development and Maintenance e
A.9 Other Domain Issues L e

B Logistics L e
B.1 Transportation Lo
B.1.1 The Conveyed Lo
B.1.2 The Conveyor Lo
B.1.3 The Route e
B.1.4 The Motory Force
B.2 Freight, Vehicles, Nets and Traffic
B.3 Senders, Dispatchers, Transporters, Hubs, and Receivers
B.4 Bill-of-Ladings and Transportations
B.5 Freight Tracing L
B.6 Other Domain Issueso e e

C Financial Services L e e
C.1 Banks e e

C.2 Insurance Companies L Lo

C.3 Securities Tradingo
C.3.1 Securities Exchanges 0000 0L

C.3.2 Brokers and Traders Lo

C.4 Portfolio Management L

C.5 Other Domain Issues Lo

D Health—care e e e e e e e
D.1 The Players o e e
D.1.1 Citizens: Healthy and Sick e
Medical Doctors e e e
Community Nurses L
Pharmacies
Clinics: Rehabilitation etc.
Clinical Test Laboratories o
Hospitals e
Pharmaceutical Industry
Medico-technical (etc.) Industry
Health—insurance Companieso
National Board of Health 4+ Ministry
D.1.12 WHO e
D.2 Patient Medical Journal
D.3 Medical Treatments
D.3.1 Hospitalization Plans Lo
D.3.2 Other Plans L
D.4 Other Domain Issues

lvAvivivivivivlv]
R e
oNoUrwWN

oo
=
e
= o

E Markets and E-Markets 0000 oo
E.1 "The Market” e
E.1.1 Traders: Consumers, Retailers, Wholesaler, and Producers
E.1.2 Trader Transactions o . i e e e
E.1.3 Supply Chains
E.1.4 Agents e
E.1.5 Brokers
E.2 Trader Categories e e e
E.2.1 G: Government e
E.2.2 B: BUSINESSES e
E.2.3 C:Consumerso
E.2.4 G2G, G2B, G2C, B2G, B2B, B2C, C2G, C2B, and C2C Transactions
E.3 E-Markets
E.3.1 Agentsand Brokers Lo
E.3.2 Multi-Agents and Multi-Brokers00 000000
E.3.3 Knowledge: Trader Entry, Information and Exit
E.3.4 Intent / Target Definition: Searches, &c
E.3.5 Agreement: Negotiation, Auctions, &c
E.3.6 Settlement: Delivery, Invoice, Payment, &c 0L
E.5 Other Domain Issues

F Projects & Production e e e e
F.1 Projects e e e
F.1.1 Project Plans L

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 659

F.1.2 Project Planning e
F.1.3 Project Plan Testing e
F.2 Productions L e
F.2.1 Production Scheduling & Allocation
F.2.2 Production Initiation Lo
F.2.3 Production Monitoring & Control
F.2.4 Production Termination & Evaluation
F.3 Briefs e e
F.3.1 Project Briefs
F.3.2 Production Orders e
F.3.3 From Projects to Production
F.4 Other DOmain iSSUES« o v i e e e

G Universities L0
G.1 The Players Lo
G.1.1 Researcher / Educators
G.1.2 Students
G.1.3 Administrators e e e e e
G.2 Education e e
G.2.1 Course Planning e
G.2.2 Class Planning e
G.2.3 Classes: Announcement, Registration, Lectures, Exams
G.2.3 Course and Class Evaluation
G.3 Research e
G.3.1 Research Planning e
G.3.2 Research Initiation L
G.3.3 Research Processes e e
G.3.4 Research Publication
G.4 Administration L L e e
G.5 Other Domain Issues o e

H RSL Syntax e
I RSL Proof Rules et e e e

J INDEXES e e e e
Concept Index L
Symbol Index L
Characterizations and Definitions Indexo 0000 oL
Principles Index Lo
Techniques Index L
Tool Index L
Product Index
Author Index L.

4.3 Some Comments

Yes, indeed: The proposed text book is rather comprehensive. And it requires
mature students. We are aiming, not at college or undergraduate students, but
at graduate students aiming for a serious, professional Masters degree in software
engineering.

5 Conclusion

5.1 Software Engineering: Theory & Practice

The proposed text book in software engineering reflects a certain attitude, not
common among todays software engineering text books. It promulgates a rather
firm insistence on using suitable pairings of both informal and formal approaches,

660 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

and it emphasizes respect for method principles, techniques and tools, for semi-
otics, for describing — as an occupation — ie. for composing elegant, enjoyably
readable descriptions, and for the meticulous carrying out of phases, stages and
steps of development (refinement, implementation).

The proposed textbook may seem far too encyclopedic, far too wide—spanning.
That is, You may think that too many issues are “mixed up” (a) Semiotics, (b)
documentation and (c) description principles. (d—g) Specification programming:
Functional, imperative, logic and parallel. (h) Abstraction & modelling — with,
if not “zillions”, then at least quite a substantial variety of subsidiary prin-
ciples and techniques. All the aforementioned, and then (i) the development
triptych, and then (j) the problem frame orientation, and then, as if that was
not enough, the more (k) mundane issues: Management, legacy, business process
re—engineering, etc.

The success of the book depends, obviously, on: Showing that the software
engineer of the next 10-15 years need be a hybrid of all of the above; and that all
these seemingly diverse disciplines (itemized [a—k, etc.] above) form a consistent
whole.

The proposed text book offers its loyal student another way of looking at
software and at software engineering, one that is intellectually demanding as
well as stimulating, one that emphasizes software engineering and its attendant
documents as a universe of intellectual quality rather than the universes of ma-
terial quantity hitherto offered by the engineering based on the natural sciences.
As the careful reader will have noticed, from the table of contents for the pro-
posed text book: Philosophy lies right in front of the software engineering: What
can be described ? is, of course, always a burning question.

5.2 Experience

I have taught some 25 semester and some 25 two-three week courses in software
engineering: The formal techniques programming methodology for large scale
software systems, since 1977 — in Denmark and abroad — and to more than
1000 Danish students. Some of these former students, ie. MSc candidates, around
some 200 or so, have meanwhile gone on to apply the principles, techniques and
tools that are now being gathered in the text book discussed here, in actual,
industrial and commercial projects since 1980. Some of them have founded a
number of software houses (six—seven), and/or staff these companies, with a
total of more than 500 staff. The companies still exists !

The UNU/IIST® significantly “features” training in and research into such
software engineering, now to more than 100 candidates from more than 30 devel-
oping countries — who stay at Macau for 10-12 months — while applying the

6 UNU/IIST: The UN University’s International Institute for Software Technology in
the Macau SAR, China

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 661

method to large scale infrastructure support software development: Railways,
manufacturing, ministry of finance, telecommunications, airlines, port manage-
ment, university management, electronic commerce, and much more.

5.3 Projection

The present lecture note writing project is the third such since 1977. For the
period 1977-1991 the lecture notes were called Software Architectures and Pro-
gramming Systems Design. For the period 1997-1999 the lecture notes were
called Software Engineering — A New Approach. Now I call them Software En-
gineering — Theory and Practice. The first version focused only on software
design. The second version — which was never fully completed — was a total
rewrite, much in the style of this, the third version, but many topics had not
then found their, what I now consider, proper place, and there were simply too
many in—line examples, now consolidated in the extensive project documentation
oriented appendices (A-G). I should (“easily””) be able to complete the third
version this fall. T will use it for my Spring 2002 course ! I hope for a publisher
— a rather vain hope these days !

6 Acknowledgements

The work that lies behind the textbook here being discussed took its first be-
ginning, for me, on a visit to the IBM Vienna Laboratory, March 1973. Peter
Lucas fetched me and my wife at the airport. They wanted me to change from
IBM Research to IBM Vienna. There was never any doubt. Before, during or
since. It continued during my years at the IBM Vienna Laboratory working there
with Peter Lucas, the late Hans Bekié, Cliff Jones and several others. And it
continued thereafter and forever ! 7

Zillions thanks are due to the above, others, but in particular to Peter Lucas:
A European Era goes to an end these days. Peter: Thanks from the depth of my
heart and from the top of my brain, left and right, for a life-long inspiration. You
above anyone else must be credited foremost for the successes then and later.

Thanks to Cliff Jones for getting me to Vienna, for sharing office at Vienna,
for co—writing books, for co—organizing VDM and other events, for sharing in the
establishment of VDM-Europe, now FME (Formal Methods Europe), and for
all things in particular and no things in general | To Kurt Walk, Heinz Zemanek
and many other IBM Vienna Laboratory people. Those were my most formative
years.

" Cf. the extensive material represented by previous versions and the referenced, more
recent publications of mine !

662 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

Thanks also goes to Ole N. Oest (DDC Intl.) of later years, and to Sgren
Prehn,® Chris W. George, Zhou Chaochen, Richard Moore, Tomasz Janowski,
Bo Stig Hansen, and other UNU/IIST? people — in Macau: A “New Vienna”,
though still going strong !

Special thanks are due to Hidetaka Kondoh (Hitachi, Tokyo) for valuable
discussions. I wish to have many more such.

To countless students and colleagues, notably: to Hans Bruun — for making
the CHILL and Ada projects possible, and hence for making Dansk Datamatik
Center feasible, and hence, basically, for also making it possible for me to stand
here today; to Micheal Mac an Airchinnigh (Trinity College, Dublin) — for
raising VDM to a Categorical term, for enlightening us all, and for steadfastly
showing us all how lucky we are in being able to enjoy the finest of all occupations
of the last 30 and the next many years: Programming Methodology; and to my
former student, now my peer (and much more), Peter Gorm Larsen (IFAD,
Odense, Denmark) — for his enthusiasm, his agility and his carrying VDM-SL
to the US of A, Japan, ..., “around the world !”.

Thanks are also due to the IFIP WG 2.3 Members and Observers, notably
Sir Tony Hoare and Michael Jackson, for invaluable prodding, inspiration and
stimulation.

7 Bibliographical Notes

Since this paper is about a book I am trying to write I have taken the liberty of
primarily referencing my own publications: They are then intended to serve as
examples of the kind of style and treatment the book will feature.

First co—authored and co—edited VDM “books” were [Bjgrner and Jones (78),
Bjorner and Jones (82)]. Cliff Jones independently [co—]published [Jones (80),
Jones (86a), Jones (90a), Jones and Shaw (90)] — with many more references
expected in his paper for this Colloquium. The most recent VDM-SL book is
[Fitzgerald and Larsen (97)] — with, I believe, one more imminent. Thoughts
on software engineering education based on formal techniques, a basis for the
present paper are published in [[Bjgrner (93a), Bjgrner and Cuéllar (98)].

Methodology issues of VDM and related methods were first published in
[Bjorner (89a)] and most recently in [McIver and Morgan (01)]. Our approach to
domain engineering is covered in [Bjgrner and Nilsson (92), Bjgrner (98a)] and
[Bjorner (00b)], to requirements engineering in [Bjgrner (97)], and to software
architectures and program organisation in [Bjgrner (98b)]. In [Bjgrner (80a)] ad-
ditional thoughts around methodology and the software engineering triptych are
8 Dansk Datamatik Center, CRI Intl., UNU/IIST, Terma Inc., now Frontbase — a

long and still unfolding collaboration.

9 UNU/IIST: The UN University’s International Institute for Software Technology,
Macau SAR, China. I was first and founding UN Director of UNU/IIST, 1991-1997.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 663

found. The software engineering of the programming language domain based on
the Vienna approach is found in [Beki et al. (74), Bjgrner (77a), Bjgrner (77b),
Bjorner (78a), Bjgrner and Oest (80)]. The software engineering of the infor-
mation systems with database domain based on the Vienna approach is found
in [Bjgrner (80b), Bjgrner (80c), Bjgrner (82), Bjorner and Lgvengrenn (82a),
Bjorner and Lgvengrenn (82b)].

General development approaches were published in [Bjgrner (78b), Bjerner (81),
Bjgrner and Prehn (83), Bjgrner (87a), Bjgrner (89b), Bjgrner (91a), | — as well
as notably in Cliff Jones’ books referenced above.

Software engineering planning in terms of software development (project)
graphs are covered in [Bjgrner and Nielsen (85), Bjgrner (86a), Bjgrner (86b),
Bjorner (87b)].

Example domain models are presented in Robotics [Bjgrner (93c)], Railways
[Bjorner et al. (94), Bjgrner et al. (95), Bjgrner et al. (97a), Bjorner et al. (99a),
Bjgrner et al. (99b), Bjgrner et al. (99c), Bjgrner (00a)], Air traffic [Bjsrner (95)],
Strategic, tactical and operational resource management [Bjgrner (99a)], Sus-
tainable development [Bjgrner (99b], Projects and production [Bjgrner (99c],
and E-Commerce [Bjgrner (01)] (technical reports are imminent). Software en-
gineering, using formal techniques, across Problem Frames, [Jackson (2001a)], is
studied, briefly, in [Bjgrner et al. (97b)]. [Bjorner (99d)] provides a recent survey
of 25 years of formal techniques.

References

[Beki et al. (74)] H. Beki¢, Dines Bjgrner, W. Henhapl, C.B. Jones, and P. Lucas. A
Formal Definition of a PL/I Subset. Technical Report 25.139, IBM Laboratory,
Vienna, 20 September 1974.

[Bjorner (77a)] Dines Bjgrner. Programming Languages: Linguistics and Semantics.
In International Computing Symposium 77, pages 511-536. European ACM, North-
Holland Publ.Co., Amsterdam, 1977.

[Bjorner (77b)] Dines Bjgrner. Programming Languages: Formal Development of In-
terpreters and Compilers. In International Computing Symposium 77, pages 1-21.
European ACM, North-Holland Publ.Co., Amsterdam, 1977.

[Bjorner (78a)] Dines Bjgrner. The Systematic Development of Compiling Algorithm.
In Amirchahy and Neel, editors, Le Point sur la Compilation, pages 45-88. INRIA
Publ. Paris, 1979.

[Bjorner (78b)] Dines Bjgrner. The Vienna Development Method: Software Abstrac-
tion and Program Synthesis, volume 75: Math. Studies of Information Processing,
RIMS, Kyoto, August 1978 of Lecture Notes in Computer Science. Springer-Verlag,
1979.

[Bjorner (80a)] Dines Bjgrner, editor. Abstract Software Specifications, volume 86 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Bjorner (80b)] Dines Bjgrner. Formalization of Data Base Models. [Bjgrner (80a)],
pages 144-215, 1980.

[Bjorner (80c)] Dines Bjgrner. Application of Formal Models. In Data Bases. IN-
FOTECH Proceedings, October 1980.

664 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

[Bjorner (80a)] Dines Bjgrner. Formal Description of Programming Concepts: a Soft-
ware Engineering Viewpoint. In MFCS’80, Lecture Notes Vol. 88, pages 1-21.
Springer-Verlag, 1980.

[Bjorner (81)] Dines Bjgrner. The VDM Principles of Software Specification and Pro-
gram Design. In TC2 Work.Conf. on Formalisation of Programming Concepts,
Peniscola, Spain, pages 44-74, LNCS Vol. 107, 1981. IFIP, Springer-Verlag.

[Bjorner (82)] Dines Bjgrner. Realization of Database Management Systems. In
[Bjorner and Jones (82)], chapter 13, pages 443-456. Prentice-Hall, 1982.

[Bjorner (86a)] Dines Bjgrner. Project Graphs and Meta-Programs: Towards a The-
ory of Software Development. In N. Habermann and U. Montanari, editors, Proc.
Capri ’86 Conf. on Innovative Software Factories and Ada, Lecture Notes on Com-
puter Science. Springer-Verlag, May 1986.

[Bjorner (86b)] Dines Bjgrner. Software Development Graphs — A Unifying Concept
for Software Development? In K.V. Nori, editor, Vol. 241 of Lecture Notes in
Computer Science: Foundations of Software Technology and Theoretical Computer
Science, pages 1-9. Springer-Verlag, Dec. 1986.

[Bjorner (87a)] Dines Bjgrner. On The Use of Formal Methods in Software Devel-
opment. In Proc. of 9th International Conf. on Software Engineering, Monterey,
California, pages 17-29. IEEE, April 1987.

[Bjorner (87b)] Dines Bjgrner. The Stepwise Development of Software Development
Graphs: Meta-Programming VDM Developments. In See [Bjgrner et al. (87)], vol-
ume 252 of Lecture Notes in Computer Science, pages 77-96. Springer-Verlag, Hei-
delberg, Germany, March 1987.

[Bjorner (89a)] Dines Bjgrner. Towards a Meaning of ‘M’ in VDM. In E.J. Neuhold
and M. Paul, editors, Formal Description of Programming Concepts, IFIP State—
of-the—Art Reports, pages 137-258. Springer-Verlag, Heidelberg, Germany, 1991.
An IFIP TC2 Seminar, Persepolis, Brasil.

[Bjorner (89b)] Dines Bjgrner. Specification and Transformation: Methodology As-
pects of the Vienna Development Method. In TAPSOFT’89, volume 352 of Lab.
Note, pages 1-35. Springer-Verlag, Heidelberg, Germany, 1989.

[Bjorner (91a)] Dines Bjgrner. Formal Software Development: Requirements for a
CASE. In European Symposium on Software Development Environment and CASE
Technology, Konigswinter, FRG, June 17-21. Springer-Verlag, Heidelberg, Ger-
many, 1991.

[Bjorner (91b)] Dines Bjgrner. Formal Specification is an Experimental Science (in
Russian). Programmirovanie, 6:24-43, 1991.

[Bjorner (92)] Dines Bjgrner. Trustworthy Computing Systems: The ProCoS Experi-
ence. In 14’th ICSE: Intl. Conf. on Software Eng., Melbourne, Australia, pages
15-34. ACM Press, May 11-15 1992.

[[Bjgrner (93a)] Dines Bjgrner. University Curricula in Software Technology. Techni-
cal Report 7, UNU/IIST, P.O.Box 3058, Macau, March 15 1993. Keynote address:
IFIP TC3 WG3.4/SRIG-ET (SEARCC) International Working Conference 1993:
Software Engineering Education, Hong Kong, September 28 — October 2, 1993.

[Bjorner (93b)] Dines Bjgrner. Prospects for a Viable Software Industry — Enterprise
Models, Design Calculi, and Reusable Modules. Technical Report 12, UNU/IIST,
P.O.Box 3058, Macau, 7 November 1993. Appendix — on a railway domain model
— by Sgren Prehn and Dong Yulin, Published in Proceedings from first ACM
Japan Chapter Conference, March 7-9, 1994: World Scientific Publ., Singapore,
1994.

[Bjorner (93c)] Dines Bjgrner. Formal Models of Robots: Geometry € Kinematics,
chapter 3, pages 37-58. Prentice-Hall International, January 1994. Eds.: W.Roscoe
and J.Woodcock, A Classical Mind, Festschrift for C.A.R. Hoare.

[Bjorner (95)] Dines Bjorner. Software Systems Engineering — From Domain Anal-
ysis to Requirements Capture [— an Air Traffic Control Example]. Technical
Report 48, UNU/IIST, P.O.Box 3058, Macau, November 1995. Keynote paper for

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 665

the Asia Pacific Software Engineering Conference, APSEC’95, Brisbane, Australia,
6-9 December 1995.

[Bjgrner (97)] Dines Bjgrner. Domains as Prerequisites for Requirements and Software
&c. In M. Broy and B. Rumpe, editors, RTSE’97: Requirements Targeted Software
and Systems Engineering, volume 1526 of Lecture Notes in Computer Science,
pages 1-41. Springer-Verlag, Berlin Heidelberg, 1998.

[Bjorner (98a)] Dines Bjgrner. Challenges in Domain Modelling — Algebraic or Other-
wise. Research, Department of Information Technology, Software Systems Section,
Technical University of Denmark, DK-2800 Lyngby, Denmark, March 1998.

[Bjorner (98b)] Dines Bjgrner. Where do Software Architectures come from ? System-
atic Development from Domains and Requirements. A Re—assessment of Software
Engneering ? South African Journal of Computer Science, 1999. Editor: Chris
Brink.

[Bjorner (99a)] Dines Bjgrner. Domain Modelling: Resource Management Strategics,
Tactics & Operations, Decision Support and Algorithmic Software. In J.C.P.
Woodcock, editor, Festschrift to Tony Hoare. Oxford University and Microsoft,
September 13—14 1999.

[Bjorner (99b] Dines Bjgrner. A Triptych Software Development Paradigm: Domain,
Requirements and Software. Towards a Model Development of A Decision Support
System for Sustainable Development. In ErnstRiidiger Olderog, editor, Festschrift
to Hans Langmaack. University of Kiel, Germany, October 1999.

[Bjorner (99¢c] Dines Bjgrner. Project Information, Monitoring and Control Systems
— A Domain Analysis. Technical report, Dept. of Informatics and Mathematical
Modelling, Technical University of Denmark, Bldg. 322, DK-2800 Lyngby, Den-
mark, 1999.

[Bjorner (99d)] Dines Bjgrner. Pinnacles of Software Engineering: 25 Years of Formal
Methods. Annals of Software Engineering, 2000. Eds. Dilip Patel and Wang Yi.

[Bjorner (00a)] Dines Bjgrner. Formal Software Techniques in Railway Systems. In
Eckehard Schnieder, editor, 9th IFAC Symposium on Control in Transportation
Systems, pages 1-12, Technical University, Braunschweig, Germany, 13-15 June
2000. VDI/VDE-Gesellschaft Mess— und Automatisieringstechnik, VDI-Gesellschaft fiir
Fahrzeug— und Verkehrstechnik.

[Bjorner (00b)] Dines Bjgrner. Domain Engineering, A Software Engineering Disci-
pline in Need of Research. In SOFSEM’2000, Lecture Notes in Computer Science.
Springer Verlag, 18-24 November 2000.

[Bjorner (01)] Dines Bjgrner. Towards the E-Market: To understand the E-Market
we must first understand “The Market”. In Government E-Commerce Develop-
ment. Ningbo Science & Technology Commission, Ningbo, Zhejian Province, China,
23++24 April 2001.

[Bjorner and Cuéllar (98)] Dines Bjorner and Jorge R. Cuéllar. Software Engineering
Education: Réles of formal specification and design calculi. Annals of Software
Engineering, 6:365-410, 1998. Published April 1999.

[Bjorner and Jones (78)] Dines Bjgrner and C.B. Jones, editors. The Vienna Devel-
opment Method: The Meta-Language, volume 61 of Lecture Notes in Computer
Science. Springer-Verlag, 1978. This was the first monograph on Meta-IV.

[Bjorner and Jones (82)] Dines Bjgrner and C.B. Jones, editors. Formal Specification
and Software Development. Prentice-Hall, 1982.

[Bjorner and Lgvengrenn (82a)] Dines Bjgrner and H.H. Lgvengreen. Formal Seman-
tics of Data Bases. In 8th Int’l. Very Large Data Base Conf., Mexico City, Sept.
8-10 1982.

[Bjorner and Lgvengrenn (82b)] Dines Bjgrner and H.H. Lgvengreen. Formalization of
Data Models. In [Bjgrner and Jones (82)], chapter 12, pages 379-442. Prentice-
Hall, 1982.

[Bjorner and Nielsen (85)] Dines Bjgrner and M. Nielsen. Meta Programs and Project
Graphs. In ETW: Esprit Technical Week, pages 479-491. Elsevier, May 1985.

666 Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ...

[Bjorner and Nilsson (92)] Dines Bjgrner and J.F. Nilsson. Algorithmic & Knowl-
edge Based Methods — Do they “Unify” ? — with some Programme Remarks
for UNU/IIST. In International Conference on Fifth Generation Computer Sys-
tems: FGCS’92, pages (Separate folder, “191-198”). ICOT, June 1-5 1992.

[Bjgrner and Oest (80)] Dines Bjgrner and O. Oest, editors. Towards a Formal De-
scription of Ada, volume 98 of Lecture Notes in Computer Science. Springer-
Verlag, 1980.

[Bjorner and Prehn (83)] Dines Bjgrner and S. Prehn. Software Engineering Aspects
of VDM. In D. Ferrari, editor, Theory and Practice of Software Technology. North-
Holland Publ.Co., Amsterdam, 1983.

[Bjorner et al. (87)] Dines Bjgrner, C.B. Jones, M. Mac an Airchinnigh, and E.J.
Neuhold, editors. VDM - A Formal Method at Work. Proc. VDM-Europe Sympo-
sium 1987, Brussels, Belgium, Springer-Verlag, Lecture Notes in Computer Science,
Vol. 252, March 1987.

[Bjorner et al. (92)] Dines Bjgrner, A.E. Haxthausen, and K. Havelund. Formal,
Model-oriented Software Development Methods: From VDM to ProCoS, and from
RAISE to LaCoS. Future Generation Computer Systems, 1992.

[Bjorner et al. (94)] Dines Bjgrner, Dong Yu Lin, and S. Prehn. Domain Analyses:
A Case Study of Station Management. Research Report 23, UNU/IIST, P.O.Box
3058, Macau, 9 November 1994. Presented at the 1994 Kunming International
CASE Symposium: KICS'94, Yunnan Province, P.R.of China, 16-20 November
1994.

[Bjorner et al. (95)] Dines Bjorner, C.W. George, and S. Prehn. Domain Analysis — a
Prerequisite for Requirements Capture. Technical Report 37, UNU/IIST, P.O.Box
3058, Macau, February 1995.

[Bjorner et al. (97a)] Dines Bjgrner, C.W. George, B.Stig Hansen, H. Laustrup, and
S. Prehn. A Railway System, Coordination’97, Case Study Workshop Example.
Research Report 93, UNU/IIST, P.O.Box 3058, Macau, January 1997.

[Bjorner et al. (97b)] Dines Bjgrner, Souleimane Koussobe, Roger Noussi, and Georgui
Satchok. Michael Jackson’s Problem Frames: . In Li ShaoQi and Michael Hinchley,
editors, ICFEM’97: Intl. Conf. on Formal Engineering Methods, Los Alamitos, CA,
USA, 12-14 November 1997. IEEE Computer Society Press.

[Bjorner et al. (99a)] Dines Bjgrner, C.W. George, and S. Prehn. Scheduling and
Rescheduling of Trains, Industrial Strength Formal Methods, Eds.: M. Hinchey
and J.P. Bowen. FACIT, Springer—Verlag, London, England, 1999.

[Bjorner et al. (99b)] Dines Bjgrner et al. Formal Models of Railway Systems: Do-
mains. Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344,
DK-2800 Lyngby, Denmark, September 23 1999. Presented at the FME Rail Work-
shop on Formal Methods in Railway Systems, FM’99 World Congress on Formal
Methods, Toulouse, France. Avaliable on CD ROM.

[Bjorner et al. (99c)] Dines Bjgrner et al. Formal Models of Railway Systems: Require-
ments. Technical report, Dept. of IT, Technical University of Denmark, Bldg. 344,
DK-2800 Lyngby, Denmark, September 23 1999. Presented at the FME Rail Work-
shop on Formal Methods in Railway Systems, FM’99 World Congress on Formal
Methods, Toulouse, France. Avaliable on CD ROM.

[Dijkstra (76)] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Fitzgerald and Larsen (97)] John Fitzgerald and Peter Gorm Larsen. Developing
Software using VDM-SL. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 1RU, England, 1997.

[Gries (81)] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[Hehner (84)] E.C.R. Hehner. The Logic of Programming. Prentice-Hall, 1984.

[Jackson (95)] Michael A. Jackson. Software Requirements € Specifications: a lezicon
of practice, principles and prejudices. ACM Press. Addison-Wesley Publishing
Company, Wokingham, nr. Reading,1995.

Bjoernes D.: On Teaching Software Engineering Based on Formal Techniques ... 667

[Jackson (97)] Michael A. Jackson. Software Hakubutsushi: Sekai to Kikai no Kijutsu
(Software Requirements € Specifications: a lexicon of practice, principles and prej-
udices). Toppan Company, Ltd., 2-2-7 Yaesu, Chuo-ku, Tokyo 104, Japan, 1997.

[Jackson (2001a)] Michael Jackson. Problem Frames — Analysing and structuring
software development problems. ACM Press, Pearson Education. Addison—Wesley,
Edinburgh Gate, Harlow CM20 2JE, England, 2001.

[Jones (80)] C.B. Jones. Software Development: A Rigorous Approach. Prentice-Hall,
1980.

[Jones (86a)] C.B. Jones. Systematic Software Development Using VDM. Prentice-
Hall, 1986. Superceded by [Jones (90a)].

[Jones (90a)] C.B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

[Jones and Shaw (90)] C.B. Jones and R.C.F. Shaw. Case Studies in Systematic Soft-
ware Development. Prentice Hall International, 1990.

[Knuth (68)] D.E. Knuth. The Art of Computer Programming, 3 vols: 1: Fundamen-
tal Algorithms, 2: Seminumerical Algorithms, 3: Searching & Sorting. Addison-
Wesley, Reading, Mass., USA, 1968, 1969, 1973; newly revised 2000.

[Mclver and Morgan (01)] Annabelle McIver and Carrol Morgan, editors. Program-
ming Methodology: Recent Work by Members of IFIP Working Group 2.3, chapter
Dines Bjgrner: “What is a Method 7?7 — A Study of Some Aspects of Software
Engineering. IFIP WG2.3. MacMillan, Oxford, UK, 2001. To be published.

[RaiseMethod (95)] The RAISE Method Group. The RAISE Method. The BCS Prac-
titioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

[Reynolds (81)] J.C. Reynolds. The Craft of Programming. Prentice-Hall, 1981.

[RSL (92)] The RAISE Language Group. The RAISE Specification Language. The
BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1992.

