Journal of Universal Computer Science, vol. 7, no. 8 (2001), 692-709
submitted: 18/5/01, accepted: 21/8/01, appeared: 28/8/01 [1 Springer Pub. Co.

Ten Years of Historical Development
“Bootstrapping” VDMTools®

Peter Gorm Larsen
(TFAD A/S
Forskerparken 10A
DK-5230 Odense M, Denmark
peter@ifad.dk)

Abstract: This article provides a historical overview of a decade of the development

of the IFAD VDM Toolboxes commonly referred to as VDMTools®. All along, the
existing tools have been used in the development of new major components. This
kind of “bootstrapping” approach where a CASE tool is developed by taking “its own
medicine” is seldom used. However, we believe that this approach is important to be
able to better understand what the most important improvements are for the users in
practice. This article also describes how the different components have been maintained
by a changing development team. We feel that the decisions we have made regarding
the parts of the tool which have been formally specified and the parts which have been
developed conventionally may provide valuable input for others considering the use
of formal specification. The overall organisation of the development environment may
also be interesting for other developers.

Key Words: Formal methods, Software engineering, VDM, Tool support
Category: D.2.1

1 Introduction

The Vienna Development Method (VDM) [BJ82, Luc87, Jon90] has a specifica-
tion language (VDM-SL) which is standardised by the International Organisa-
tion for Standardisation (ISO) [PL92, ISO96]. VDM is one of the most mature
formal methods, primarily intended for formal specification and subsequent de-
velopment of functional aspects of software systems. Its specification language
VDM-SL [Daw91, FL9§] is used during the specification and design phases of
a software development project, and it supports the production of correct high
quality software. An extension of this notation is supported by the IFAD VDM-
SL Toolbox. Another object-oriented extension called VDM++ [Gro00a], is sup-
ported by the IFAD VDM++ Toolbox. Commonly these two tools with their
different features are referred to as VDMTools®.

The development of the first component of the IFAD VDM-SL Toolbox
[ELL94, Muk95] started in 1990 in an ESPRIT project called IPTES [Edi93)].
Among other tasks in this project IFAD was responsible for developing an in-
terpreter for an executable subset of VDM-SL in a larger tool dedicated to
interpreting SA /RT [HP87] specifications in an incremental and heterogeneous
manner. A part of a type checker (also called the static semantics) for this sub-
set and a part of a C++ code generator from this subset and for VDM++ was

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 693

produced in the ESPRIT projects IDERS [ABCH95] and Afrodite [Lan95]. In
the INFORMA [INF] project the VDM++ notation was improved, and a Java
code generator and an interpreter for VDM++ were developed. In the TIAPS
[AF97a, AF97b] and PROSPER projects proof support for VDM-SL was de-
veloped. In the SPECTRUM project [ALR9S] a feasibility study of stepwise
development from VDM to the B notation [Abr96] and then carrying out proofs
there was conducted.

In the ESSI project ConForm [FLBG95, LEB96] British Aerospace evaluated
the effect of using the formal specification notation VDM-SL and the IFAD
VDM-SL Toolbox in the development of a trusted gateway. Similar experiments
have been made in the ESSI projects PICGAL [DLV97a, DLV97b] and ISEPUMS
[PT99, Puc00] where the C++ code generator was also evaluated. In the trial
project UseGat [Kir97] a closer integration with SA/RT was made using the
“Software through Pictures” product [IDE94]. Finally the trial project VICE
[MBD*00] extended the VDM++ technology with more support in the real-
time area. Since 1994 VDMTools® has been sold commercially all over the
world and different users have also published papers about some of the work
they have conducted with it [SL99, vdBVW99b, vdBVW99a, HA00, FYH96]. In
addition, some reports of applications can be found in the Toolbox Newsletters
[New]. Since the focus of this article is the development of VDMTools® instead
of its use outside IFAD we will not go further into these in this article.

This article first provides an overview of the different components of VDM-
Tools®. This is followed by a historical overview where the varying size of the
development team can be seen in Section 3. A short overview of the different
aspects of the software engineering environment is given in Section 4. The ac-
tual bootstrapping process is then presented in Section 5. After this section, the
development and maintenance approach for three different categories of compo-
nents is discussed. In Section 9 the major development decisions are considered
in retrospect with a critical eye. Finally, a few concluding remarks are given.

2 VDMTools Overview

An overview of the connection between the components in VDMTools® is
given in Figure 1 (note that the dashed lines here indicate that this component
is under development). The components can be classified into three categories:

— Components developed conventionally, i.e. with an informal textual descrip-
tion as requirements and documentation and then the actual code with ap-
propriate comments.

— Components formally specified in VDM-SL and hand implemented after-
wards. For these components the documentation is a mixture of formal text

694 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

Rational Rose

uML
Corba based umL

API Coupling

User Interface

Emacs

GUI d
ASCII or RTF Wor
Error Help Support
VDM-SL Tool Tool
Module

Pretty LV_{_O)I;d
Printer oaul;ul
Scanner . i Test
Parser Specification Test Statistics
DL Manager (SM) Coverage
Module
Interpreter o
External | ‘ Coae |
Debugger (DS) Type : Proof : Code Code
Cot Checker (SS) 1 Support (PS) Generators (CGS) File
DL Modules : :

,,,,,,,,,,,

User input files

Automatically generated files

Figure 1: Overview of VDMTools

and explanatory annotations whereas the code follows certain coding stan-
dards which makes it easy to find the code corresponding to a specific part
of a specification.

— Components specified in VDM-SL or VDM++ and automatically code gen-
erated. For these components the documentation at the VDM level is actually
used as source text for the corresponding code as well. In effect the VDM
notations are here used as high-level programming languages.

The category for a component is determined both from the nature of the compo-
nent and the historical background for it in the bootstrapping process. In general
it can be said that the strategy is to use formal specification whenever we find it
beneficial. In particular in cases where complex functionality or a complex data
structure is involved, formal specification would be used. We will return to this
in Section 5.

Below we present three subsections for the different categories where we
give a short explanation of each of the components (abbreviations used for the
components later in this article are given in brackets after the name of the
component):

2.1 Components Developed Conventionally

Scanner/Parser: This have been developed conventionally using parser gener-
ator technology (flex and bison). This component is responsible for check-

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 695

ing the syntax of specification files (a mixture of informal text and formal
definitions is allowed here) developed by the user. If the syntax is correct
an abstract syntax representation of the specification is produced and given
to the specification manager. Otherwise a list of errors is produced. Here it
may also be worth noting that a non-standard intelligent error recovery and
error reporting approach has been used to replace the standard way for error
reporting in such a parser generator [Nie95].

Pretty Printer: This has been developed conventionally directly in C++. This
is a functionally simple component which is able to produce a pretty printed
version of a specification either using a set of ATEX macros produced for
VDM-SL at NPL [DL95] or in Rich Text Format (RTF) which can be used
directly inside the Microsoft Word editor. This component is also able to
merge the informal source text surrounding the formal definitions in the files
provided by the user. If the interpreter has been used with a special option
for collecting test coverage information the pretty printer will also be able
to display this information.

Interfaces: Three different interfaces for the Toolbox exists: a CORBA based
interface enabling external access to VDMTools® functionality, a graphical
user interface and a command-line interface. All of these have been developed
conventionally using respectively OmniORB [Lo] and Tcl/Tk [Ous94].

Note that all of the components which have been developed conventionally are
interfaces to VDMTools® from users point of view. Such components are nor-
mally developed conventionally. This is typical in the sense that these are either
front-ends or back-ends and in most other applications we have been involved
with applying VDM such components are normally developed conventionally.

2.2 Components Formally Specified and Manually Implemented

Interpreter /Debugger (Dynamic Semantics, DS): This has been speci-
fied in VDM-SL and hand coded afterwards. This component is able to
interpret an expression using definitions provided by the user in the mod-
ules. As in a programming environment there is debugging functionality
which enables the user to set breakpoints etc. Initially this specification doc-
ument was between 60 and 70 pages [LL91]. Two major extensions to the
first subset (modules and Dynamic Link (DL) modules) increased the size
of the specification of this component to slightly above 200 pages includ-
ing comments explaining the actual formal definitions and cross reference
indices. The interpreter/debugger component has been extended with a Dy-
namic Link (DL) feature which enables the user to interpret a system where

696 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

some modules are specified while others only are only present in C++ and
then dynamically linked together with the Toolbox process [FL96].

The initial version of this dynamic semantics worked directly as an ab-
stract syntax tree traversal. During 1999 this was totally redeveloped using
a stack-machine approach enabling up/down functionality in the debugger
and handling of multiple threads in the VDM++ interpreter. Extensions of
the VDM-SL interpreter with support for implicit definitions have also been
defined [Fr698] but these have not yet been incorporated in VDMTools®.

Type Checker (Static Semantics, SS): This has been specified in VDM-SL
and hand coded afterwards. This component is able to carry out static checks
of the internal correctness of the specifications provided by the user. This can
be done in two modes; one for checking a specification for being “possibly
correct” (this is close to the level of type checking carried out by a compiler
for a programming language); and a mode for checking a specification for
being “definitely correct”. The latter mode corresponds to producing errors
for all the places where “run-time errors” could occur. It is the intention that
the “definite” mode should be changed to produce proof obligations instead
of regular errors [Aic97, AL9T7]. This is closely related to the proof support
currently under development. The specification here is approximately 350
pages of VDM-SL organised in 13 modules.

Code Generators (CG): These have been specified in VDM-SL and hand
coded afterwards. This component is able to produce fully executable
C++/Java code using a VDM C++/Java library providing generic imple-
mentations of VDM concepts (the C++ version of this library is also used
internally in the other Toolbox components). For constructs which are not
covered by the subset of VDM for which C++ code can be automatically
produced, there are a number of ways the user can interface to the code
generated for the remaining part of the specification. This specification is
more than 500 pages including comments explaining the formal definition
and illustrating the code being generated. The Java code generator is even
able to take the concurrent part (including the synchronisation constraints)
of VDM++ into account [Opp99).

All of these components are complex kernel functionality and it is not acci-
dential that such components are formally specified due to their importance and
complexity.

2.3 Components Formally Specified and Code Generated

Specification Manager (SM): This has been specified in VDM++ and UML
[Gra97] (originally OMT [RBP*91] was used) and automatically code gen-

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 697

erated. The features for combining manually implemented code with auto-
matically produced code are used here. This component is responsible for
keeping track of the status of all modules/classes which have been syntac-
tically correct provided by the user. The component was developed using
design patterns [ERRJ95]. The specification here is approximately 4000 lines
of VDM++ organised in 28 classes.

Proof Support (PS): The proof obligation part is largely automatically code
generated whereas the proof support is made conventionally on top of the
HOL98 system conventionally. In the TIAPS project proof support was at-
tempted using Isabelle [Pau94] and a few experiments with PVS [ORSV95].
Using Isabelle we had problems with the level of automation which was
possible to achieve whereas using PVS we had problems with the level of
control over the automation. In the PROSPER project [DCN100] this work
was redone using HOL98 [Gor87, NS00] to get a higher degree of automa-
tion and integration. This component contains a proof obligation generator,
automatic proof support and interactive proof support. Many of the proof
obligations generated can be automatically proved but some of them require
interactive proofs to be made by the user. This component includes 5 parts
which have been specified in VDM-SL with approximately 28000 lines. In
addition there are around 13000 lines of ML (for HOL theories) and 18000
lines of Java (for the user interface).

Coupling to graphical tools: In the UseGat project, back in 1995, a cou-
pling of VDMTools® to the commercial “Software through Pictures” tool
has been instantiated with SA/RT. This enabled a graphical animation di-
rectly on top of data flow diagrams but it turned out to be too inefficient
and the focus on object orientation meant fewer potential users of SA/RT.
Consequently a coupling to Verilog’s LOV/OMT tool was made to VDM++
instead. This was later replaced with a coupling to Rational Rose [Ros] and
UML when Verilog was taken over and the advent of UML meant that OMT
was obsolete. The specification of the mapper between VDM++ and UML
is approximately 1500 lines of VDM++.

3 The Historical Overview

A rough overview of the staff allocation to the development of a major part of
VDMTools® components can be seen in Figure 2. The initials for the perma-
nent staff members are listed in the left-hand side of the figure. Time is shown
along the horizontal axis and the bars for each of the employees indicate the
period where they have been involved partly with VDMTools® development.
This does not mean that the employee has been working full time on VDM-
Tools® development or maintenance, but simply that a part of that employees

698 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
(MV) (KdB) (CA) (BF) (BA) (00) (GW)
PGL ‘ DS spec SS spec DS spec module CG Altn DL spec PO Generation DS respec ‘
(NP) (SN) (JKP)

ETN [Parser/C++ library Parser improve Lib optimise GUI _ NT Port Corba API DL classes |
PBL [DS spec SSimpl CG impl]

MA [DSimpl |

HC ‘ CG spec Stp spec DS VDM++ DS respec ‘

(VS) (JKP)

HV [CG spec+test env DL impl _ SM spec |

NK [_StP spec StPimpl |

INJ [[CG optimise SM spec SM++ spec]

(ws)

SA [PS spec PS impl

wt

os

P

JSE)

ks
PM

Figure 2: Historical Overview of the Staff Allocation

time has been allocated to VDMTools® matters in the given period. On the
bars the parts which an employee have been involved with is identified. In the
cases where a visitor has been involved with the development the initials are put
in brackets next to the bar. These visitors have either been external experts we
have purchased to assist us, or students.

The students have either carried out feasibility studies or developed the initial
version of a component in collaboration with the permanent staff member to
which the student was allocated. The students have all spent between 1 and 10
months at IFAD, mostly as their MSc thesis project. The students we have had
came from The Netherlands, Germany, Austria, France, USA and Denmark. In
general we have been very satisfied with the students we have had and in all
cases, where they have developed a VDM specification of a part of a Toolbox
component, we have been able to take over and maintain their specifications
without major problems. However, it has been much more difficult to take over
the code developed by students. Thus, in the future we envisage simply letting
the students specify their work in VDM-SL or VDM++ and then we will develop
the necessary code or use automatic code generation. Even though one needs to
invest time in supervising the students we feel that students are able to present
their ideas at the specification level in this way, it is a good value for money.

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 699

4 Development Environment

The fact that we believe in the use of VDM industrially does not mean that we
also have neglected other software engineering aspects. It is essential to remember
that VDM is just one tool to be used when appropriate and that a proper
development environment for the informal parts of software engineering is also
essential. In this section we provide an overview of the most important principles
underlying our development environment in the Toolbox development team.

In all source files (both test cases, test environments, specifications and code)
ifdef directives are used to take care of the differences between VDM-SL and
VDM++. All files are then pre-processed before they are given to VDMTools®
and the C++ compilers respectively. For the implementation ifdef directives
are also needed to cope with differences between the different platforms.

All source files are maintained under the version control system CVS [CVS]
which enables different developers to work in parallel on the same components
and merge their changes together when it is appropriate. Whenever a change is
made in a VDM specification which is hand-coded the ediff facility inside the
Emacs editor is used to see the exact differences between two versions of a source
file. This is an advanced diff tool which can be operated conveniently to identify
precisely the changes between the newest version of the specification and the
revision of it which was last implemented.

For each of the components a test environment has been set up which is used
for regression testing of any changes made to it. New test cases are introduced
whenever new features are introduced. The test environments automate as much
as possible of the testing of the correct behaviour of VDMTools®. Thus, for
each test case there is a corresponding expected result. For the components
specified using VDM, test coverage is also automatically produced and the entire
specification of the component can be pretty-printed using VDMTools® and
ATRX.

Over the years the development team developed a number of procedures
which are followed in the development and maintenance of VDMTools
[GroOla]. This includes a task catalogue identifying all the ideas for improve-
ments which have arisen internally or externally [Gro01b]. For each task a de-
scription and an estimate is made and every developer follows procedures in
carrying out tasks. There are also special procedures connected to official re-
leases of VDMTools®.

5 The Bootstrapping Process

In Figure 3 it is shown how the different specifications of components which have
been made are used in the development of other components which have been

700 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

VDM++ VDM++ VDM++ VDM | ‘
VDM-SL VDM-SL VDM-SL VDM-SL ' VDM-SL !
DS spec SS spec CG spec SM spec | PS spec |
I |

S~ N ’ \

<\ \

DM++ VDM++ —= s\ \VDM++

VDM-SL oo !
VDM-SL _ VDM-SL VDM-SL ' VDM-SL !
DS impl SS impl CG impl) |) |
SM impl 1 PSimpl 1
— I |

Figure 3: Overview of the Bootstrapping Process

specified. This bootstrapping process is expected to continue in future develop-
ment. At the top of the figure the specified components are placed, whereas the
corresponding implementations are placed at the bottom. The arrows between
these components indicate how a component has been used in the development
and/or maintenance of other components.

Each of the specifications which has been hand-coded (interpreter, type
checker and code generator) has naturally been used as basis for the corre-
sponding implementations. The implementation of the interpreter and the type
checker have then been used to test and improve all of the components which
have been specified in VDM. They have also been used on their own specifica-
tions! Note that this kind of bootstrapping approach is often used for compilers
for programming languages, but we are not aware of any other tools supporting
specifications which have taken this approach seriously. The dashed arrows from
the code generator implementation to the specifications of the components which
has been hand-coded are used to identify that we have tried to use the code gen-
erator on these components. However, we have decided to keep the hand-coded
components so far because of efficiency reasons, but it is possible that we would
use the code generator for these components some time in the future if the au-
tomatically generated code becomes sufficiently efficient. Notice that then we
would also be able to use the code generator implementation on its own specifi-
cation. The solid arrows from the code generator implementation indicates that
the code generator has been used to automatically generate the implementation
of a component and the generated code is used in the VDMTools® products.
The overall strategy is to improve the code generator such that we will be able
to use it directly on all new components we formally specify in the future.

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 701

6 Purely Hand-Coded Components

Despite the fact that we “take our own medicine” we do not always use formal
specification. This was one of the myths about promoters of formal methods
refuted in [BH95] and we cannot agree more. We take a pragmatic approach
where we consider for each component whether there is any benefit from formally
specifying parts of it. For three of the components used in the Toolboxes we
have not found that it was worth making a formal specification. These are the
scanner/parser component, the pretty-printer component and the user interface
component.

1. For the scanner/parser component we feel that existing parser generators
are very convenient for solving this kind of problems. We feel that formal
specification would not be able to improve the development of such a com-
ponent.

2. For the pretty-printer component we feel that it has a relatively simple func-
tionality; an abstract syntax tree traversal is required. Since this component
is also not considered to be very critical we feel that a formal specification
of such a component would be rather low-level and it would not be able to
improve the quality of the component.

3. For the user interfaces we believe that a formal specification would not be
worthwhile. The point here is that existing GUI tools are very fast to use, and
from prototypes of such user interfaces one can get more valuable feedback
than from a formal specification. However, more recently the more complex
parts of the GUI logic have been specified in VDM++ and automatically
code generated.

7 Formally Specified and Hand-Coded Components

For the components where we have considered the use of formal specification
valuable we have used one of the VDM notations (VDM-SL and VDM++).
Since these components are developed in a bootstrapping fashion it was initially
necessary to hand-code each of them. It is interesting to note here that the
structure of the specifications in general is very close to the structure of the
corresponding code. Thus, we have a number of procedures which makes it easier
to maintain both the specification and the code. As an example of this there are
naming conventions which make it easy to find a function from the specification
in the corresponding implementation.

The first version of the VDM-SL Interpreter (which was the first component
to be specified) was initially specified in VDM-SL itself directly using the NPL

702 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

KTEX macros for VDM-SL [DL95]. This first large specification was not writ-
ten to be executable. However, it turned out that we only found it useful to
use purely implicit constructs in a few places. A more explicit version of these
functions/operations was made enabling us to interpret the specification of the
interpreter by itself. All the specifications we have developed are written in the
executable subset of the VDM notations and we are hereby able to interpret
test arguments at the VDM level. In addition the specifications have been used
as a communication medium between the members of the development team.
Note that by using invariants and pre-conditions we have had an advantage of
using VDM at the design exploration stage. This has enabled us to discover
inconsistent use of data structures and functionality at a very early stage.

In the maintenance phase of the formally specified components errors re-
ported are first reproduced at the specification level. After the problem has been
fixed at the specification level the entire test environment for that component
is run at the specification level before it is checked into the revision control sys-
tem. The implementation of the changes are then done subsequently (often by
another person) using Ediff.

In the development of these components we have gathered a few measures. In
the process of going from a specification to an implementation in average between
30 and 50 lines of specification (including comments) are implemented per hour.
Only around a 4th of the total development time is used for implementation and
test of implementation (reusing test cases from the specification level). Thus,
around 75 percent of the effort is spent on specifying the components and setting
up a test environment for testing at the specification level.

For the first specifications we made we did not have any precise measure-
ments of the effort spend on producing the actual specifications. However, for
the VDM++ interpreter 12.7 lines of specification have been written per hour.
This figure includes understanding the extension of VDM-SL incorporated in
VDM++ and devising and running tests. This figure is quite similar to indus-
trial standards for most programming languages but because the notation is
more abstract we are able to formulate more functionality than if for example
C++ was used directly.

At an earlier stage of the development of the VDMTools® code generators
a few metrics were gathered. These can be seen from Figure 4. The productivity
for this part is slightly less than indicated above and the proportion of time
between specification and implementation is not as high as above. We believe
that this is caused partly because of the complexity of this component and partly
because new employees were involved in the development here.

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 703

VDM-C++ code generator| LOC |hours|loc/hour
VDM document 21244|1090

Raw VDM spec 708111090 6.5
C++ coding 23322| 789 | 29.6
In total 23322|1879| 124

Figure 4: Overview of VDMTools

8 Specified and Code Generated Components

After the development of the C++ code generator we have had to consider
whether components which have been formally specified should be code gen-
erated or hand-coded. Naturally there is a trade-off between cost-effectiveness
and efficiency of the final production code. In general the strategy is to use au-
tomatic code generation for new components if the efficiency of the generated
code is reasonable. If improvements of the C++ code generator are necessary we
would then take that investment into the consideration, but the improvement
would also be of value for the customers.

In general the components which are specified in VDM and automatically
code generated are tested in the same way as described above for the components
which are specified and hand-implemented. However, here we do not need to
rerun the test cases with the final code.

9 Looking in Retrospect

When one looks back at a development of a software system over a decade
there are probably always some choices one would have taken differently. In
this section we try to provide insight into the author’s personal feelings for the
most important decisions where different choices could have been better with
the knowledge of today.

As it could be seen from the references in the introduction of this article a
significant portion of the funding for the development in VDMTools® came
from the CEU R&D programmes %n particular ESPRIT). Without that support
the development of VDMTools™ would clearly never have come as far as it
has. However, such projects also have a large administrative overhead and the
development taking place inside such projects would normally not be the most
important ones from a commercial point of view. Thus, IFAD’s own investment
has also been significant taking its size into account. The combination of these
two forms for funding the development has been much slower than we would
have liked.

704 Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

On the more technical side the overall architecture has not been well enough
designed, because of the evolution of VDMTools® during this decade. The
development team has focused on the specification and design of the different
components without always considering the overall connection between them in
enough detail. It was not felt that it was necessary to specify how the different
components depended on each other and this has been a mistake. This has
resulted in different kinds of unnecessary internal transformations. In addition,
it is impossible to compile the different components separately. This can be
blamed both on our lack of understanding for the need of focussing on this, but
also on the funding approach in a series of EU supported projects (each with
its own focus). A new effort to have a more service based architecture has been
initiated, and it is believed that this will make the different components less
dependent upon each other.

On the graphical user interface side it can be said that we did not pay enough
attention to its importance and made several mistakes [Joh00]. This is currently
being redone, entirely replacing the Tck/Tk interface using Qt instead [Qt00].
With our focus on formal specifications of the different kernel components we
must admit that we underestimated the importance of this part.

There has been a couple of the specifications of components which have been
redeveloped during this decade and naturally one can argue that it would have
been better to develop it right the first time. However, here we would claim that
this would be virtually impossible because the reasons for redeveloping them
came from new desires, unknown when the specifications where first developed.

If we had the chance to turn back the clock we would probably have opened
VDMTools® more for add-ins and have enhanced the academic collaboration
at a much earlier stage. We feel that the use of abstract models formulated in
VDM is best spread if students learn about them already at university. Thus, we
have now made VDMTools® freely available for academic purposes for univer-
sities. In addition there is now an API to VDMTools® [Gro00b] which enables
more “power users” to experiment with their own extensions. More possibilities
for adding external features are currently under development.

Finally, we would like to state that all in all we feel that looking in retrospect
we would develop most of VDMTools® in the same way as we have done this
decade with the few exceptions mentioned above.

10 Concluding Remarks

Many things change during a decade. As explained above some development
choices taken must be reconsidered later on. One must also be ready to throw
away features which did not work as intended or did not have as many potential
users as originally estimated, e.g. the SA/RT combination.

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 705

Staff for developing products such as this are bound to change significantly
over time. This naturally influences the way in which software must be developed
and maintained. A high level of documentation is required. As most development
teams we have certainly also run into situations where we have not documented
parts sufficiently. However, we firmly believe that because the most complex
features have been described using VDM, we have been able to maintain the
product over a decade with a changing development team over its life time.

When we first started the development of VDMTools® we did not envis-
age that we would ever come as far as we have come today. However, now we
have new visions for how it should be improved in the future. The most sur-
prising experience during this decade has been how much effort it takes to go
from a proof of concept prototype to a commercial product. To move out of the
“academic-nature” arena one needs to support ever changing platforms (UNIX,
Linux, Windows 95, 98, 2000, NT) and to interoperate with the de facto indus-
trial standard tools such as Microsoft Word and Rational Rose. We have done
that, but this kind of integration takes more time than one would imagine. In
addition the industrial requirements for robustness of such a product are much
higher than known from the academic “proof of concept” prototypes. Further-
more the target for such a product is continously changing, for example with the
introduction of Java.

We think that the pragmatic approach we have had to our development
taking ones own “medicine” on selected components has been beneficial. Using
VDM has certainly helped us to master the complexity of our own systems.
Finally, T also think that it is important that it has been fun developing in this
way! We find it very important that everyone involved in the development of a
product such as this firmly believes in the benefits in using it.

Acknowledgements

First of all I would like to thank the IBM Vienna group for inventing VDM and
in particular Dines Bjgrner for introducing it to me as enthusiasticly as he did.
My thanks also go to all the customers, employees and students which I have
worked with during the last 10 years around the production of professional tool
support and services for the VDM notations. In particular I would like to thank
Andreas Kerschbaumer, Paul Mukherjee and Kim Sunesen for proof reading this
paper. Finally, I would like to thank the different funding organisations which
have made this development possible.

706

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

References

[ABCHY5]

[Abro6]

[AF973]

[AF97b]

[Aic97]

[AL97]

[ALR9S]

[BH95]
[BJ82]

[CVS]
[Daw91]

[DCNT00]

[DL95]

[DLV97a]

Alejandro Alonso, Luciano Baresi, Hanne Christensen, and Marko Heikki-
nen. IDERS: An integrated environment for the development of hard
real-time systems. In EUROMICRO Real-Time Workshop. IEEE, June
1995.

J.-R. Abrial. The B Book — Assigning Programs to Meanings. Cambridge
University Press, August 1996.

S. Agerholm and J. Frost. An Isabelle-based theorem prover for VDM-
SL. In Proceedings of the 10th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’97), LNCS. Springer-Verlag,
August 1997. Also available as technical report IT-TR: 1997-009 from
the Department of Information Technology at the Technical University
of Denmark.

Sten Agerholm and Jacob Frost. Towards an integrated CASE and the-
orem proving tool for VDM-SL. In John Fitzgerald, Cliff B. Jones, and
Peter Lucas, editors, FMFE’97: Industrial Applications and Strengthened
Foundations of Formal Methods (Proc. 4th Intl. Symposium of Formal
Methods Europe, Graz, Austria, Septernber 1997), volume 1313 of Lecture
Notes in Computer Science, pages 278-297. Springer-Verlag, September
1997. ISBN 3-540-63533-5.

Bernhard Aichernig. A Proof Obligation Generator for the IFAD VDM-
SL Toolbox. Master’s thesis, Technical University Graz, Austria, March
1997.

Bernhard K. Aichernig and Peter Gorm Larsen. A proof obligation gen-
erator for VDM-SL. In John Fitzgerald, Cliff B. Jones, and Peter Lu-
cas, editors, FME’97: Industrial Applications and Strengthened Founda-
tions of Formal Methods (Proc. 4th Intl. Symposium of Formal Methods
Europe, Graz, Austria, September 1997), volume 1313 of Lecture Notes
in Computer Science, pages 338-357. Springer-Verlag, September 1997.
ISBN 3-540-63533-5.

Sten Agerholm, Pierre-Jean Lecoeur, and Etienne Reichert. Formal Spec-
ification and Validation at Work: A Case Study using VDM-SL. In Pro-
ceedings of Second Workshop on Formal Methods in Software Practice.
ACM, Florida, March 1998.

Jonathan P. Bowen and Michael G. Hinchey. Seven more myths of formal
methods. IEEE Software, 12(3):34-41, July 1995.

D. Bjgrner and C.B. Jones, editors. Formal Specification and Software
Development. Prentice-Hall International, 1982.

Concurrent Versions System. http://www.cvshome.org/.

John Dawes. The VDM-SL Reference Guide. Pitman, 1991. ISBN 0-
273-03151-1.

Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton,
Konrad Slind, Graham Robinson, Mike Gordon, and Tom Melham. The
PROSPER Toolkit. In Proceedings of the 6th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
Berlin, Germany, March/April 2000. Springer-Verlag, Lecture Notes in
Computer Science volume 1785.

I.P. Dickinson and K.J. Lines. Typesetting VDM-SL with VDM-SL
macros. Technical report, National Physical Laboratory, Teddington,
Middelsex, TW11 OLW, UK, July 1995.

Lionel Devauchelle, Peter Gorm Larsen, and Henrik Voss. PICGAL:
Lessons Learnt from a Practical Use of Formal Specification to Develop
a High Reliability Software. In DASIA’97. ESA, May 1997.

[DLV97b]

[Edi93]

[ELL94]

[ERRJ95]

[FL96]

[FL98]

[FLBG95]

[Fr98]

[FYH96]

[Gor87]

[Gra97]

[Gro00a]

[Gro00b]
[Gro01a]

[Gro01b]

[HAO0]

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 707

Lionel Devauchelle, Peter Gorm Larsen, and Henrik Voss. PICGAL:
Practical use of formal specification to develop a complex critical system.
In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97: In-
dustrial Applications and Strengthened Foundations of Formal Methods
(Proc. 4th Intl. Symposium of Formal Methods Furope, Graz, Austria,
September 1997), volume 1313 of Lecture Notes in Computer Science,
pages 221-236. Springer-Verlag, September 1997. ISBN 3-540-63533-5.
Sandro Bologna (Guest Editor). Special Issue: Incremental Prototyping
of Real-Time Systems. Real-Time Systems, 5(2/3), May 1993. 7 papers
on the methodological and tool support developed in the ESPRIT II
IPTES EP5570 project.

René Elmstrgm, Peter Gorm Larsen, and Poul Bggh Lassen. The IFAD
VDM-SL Toolbox: A Practical Approach to Formal Specifications. ACM
Sigplan Notices, 29(9):77-80, September 1994.

E.Gamma, R.Helm, R.Johnson, and J.Vlissides. Design Patterns. El-
ements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Publishing Company, 1995.
Brigitte Frohlich and Peter Gorm Larsen. Combining VDM-SL Specifi-
cations with C++ Code. In Marie-Claude Gaudel and Jim Woodcock,
editors, FME’96: Industrial Benefit and Advances in Formal Methods,
pages 179-194. Springer-Verlag, March 1996.

John Fitzgerald and Peter Gorm Larsen. Modelling Systems — Practical
Tools and Techniques in Software Development. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN
0-521-62348-0.

John Fitzgerald, Peter Gorm Larsen, Tom Brookes, and Mike Green. Ap-
plications of Formal Methods, chapter 14. Developing a Security-critical
System using Formal and Convential Methods, pages 333-356. Prentice-
Hall International Series in Computer Science, 1995.

Brigitte Frohlich. Towards Ezecutability of Implicit Definitions. PhD
thesis, TU Graz, Institute of Software Technology, September 1998.
Mitsuyoshi Fukuda and Takahiko Ogino Yuji Hirao. VDM Specifica-
tion of an Interlocking System and a Simulator for its Validation. In
WCRR(World Conference on Railway Research), Colorado Springs, USA,
1996.

M. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLST Specification, Ver-
ification, and Synthesis. Kluwer Academic Publishers, 1987.

Grady Booch and Ivar Jacobson and Jim Rumbaugh. The Unified Mod-
elling Language, version 1.1. Technical report, Rational Software Corpo-
ration, September 1997. Available at: http://www.rational.com/.

The VDM Tool Group. The IFAD VDM++ Language.
Technical report, IFAD, October 2000. ftp://ftp.ifad.dk
/pub/vdmtools/doc/langmanpp_letter.pdf.

The VDM Tool Group. VDM Toolbox API. Technical report, IFAD,
October 2000.

TFAD VDM Toolbox Group. Quality Plan for the VDM-SL and VDM++
Toolboxes. Technical report, IFAD, Forskerparken 10, 5230 Odense M,
Denmark, January 2001.

IFAD VDM Toolbox Group. Task Catalogue for the VDM-SL and
VDM++ Products. Technical report, IFAD, Forskerparken 10, 5230
Odense M, Denmark, January 2001.

Johann Horl and Bernhard K. Aichernig. Validating voice communica-
tion requirements using lightweight formal methods. IEEE Software, May
2000.

708

[HP87]
[IDE94]
[INF]

[1SO96]

[Joh00]
[Jon90]

[Kir97]

[Lan95]

[LFB96]

[LL91]

[Lo]

[Luc87]
[MBD*00]
[Muk95]
[New]
[Nie95]
[N'S00]

[Opp99]

[ORSV95]

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ...

D.J. Hatley and I.A. Pirbhai. Strategies for Real-Time System Specifica-
tion. Dorset House, New York, 1987.

IDE. Software through Pictures/ Core. Fundamentals of StP, February
1994. Release 2.

INFORMA — integrated formal approaches for embedded real-time sys-
tems. http://www.ifad.dk/Projects/informa.htm.

Peter Gorm Larsen and Bo Stig Hansen and Hans Brunn and Nico Plat
and Hans Toetenel and Derek Andrews and John Dawes and Graham
Parkin and others. Information technology — Programming languages,
their environments and system software interfaces — Vienna Develop-
ment Method — Specification Language — Part 1: Base language, De-
cember 1996.

Jeff Johnson. GUI Bloopers. Academic Press, 2000.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice-
Hall International, Englewood Cliffs, New Jersey, second edition, 1990.
ISBN 0-13-880733-7.

UseGat Consortium. Editor: Niels K. Kirkegaard. Use of integrated
graphical & textual formal specification languages in industry — final
report. Technical report, The Institute of Applied Computer Science
(IFAD), September 1997.

UseGat Doc.id.: USEGAT-IFAD-52-V2.1.

Kevin Lano. Applications of formal methods to safety-critical transport
systems: the afrodite project. Safety Systems — The Safety-Critical Sys-
tems Club Newsletter, 4(2):10-12, January 1995.

Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying Formal
Specification in Industry. IEEE Software, 13(3):48-56, May 1996.

Peter Gorm Larsen and Poul Bggh Lassen. An Executable Subset of
Meta-IV with Loose Specification. In VDM ’91: Formal Software Devel-
opment Methods. VDM Europe, Springer-Verlag, March 1991.

Sai-Lai Lo. The omniORB2 version 2.5 User’s Guide. Olivetti and Or-
acle Research Laboratory.

Peter Lucas. VDM: Origins, Hopes, and Achievements. In Airchinnigh
Bjgrner, Jones and Neuhold, editors, VDM ’87 VDM — A Formal Method
at Work, pages 1-18. VDM-Europe, Springer-Verlag LNCS 252, 1987.
Paul Mukherjee, Fabien Bousquet, Jerome Delabre, Stephen Paynter, and
Peter Gorm Larsen. Exploring Timing Properties Using VDM++ on an
Industrial Application. In Juan Bicarregui and John Fitzgerald, editors,
The Second VDM Workshop, September 2000.

Paul Mukherjee. Computer-aided Validation of Formal Specifications.
Software Engineering Journal, pages 133-140, July 1995.

The Toolbox Newsletter. 5 issues between 1995 and 2000.

Sgren Nielsen. Error messages and error recovery for VDM-SL. Master’s
thesis, Odense University, Department of Mathematics and Computer
Science, March 1995.

Michael Norrish and Konrad Slind. A Thread of HOL Development.
The Computer Journal, 2000. To appear in a special issue in honour of
Graham Birtwistle.

Oliver Oppitz. Concurrency extensions for the VDM++ to Java code
generator of the IFAD VDM++ toolbox. Master’s thesis, TU Graz, Aus-
tria, April 1999.

S. Owre, J. Rushby, N. Shankar, and F. VonHenke. Formal Verification
of Fault-Tolerant Architectures: Prolegomena to the Design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February
1995.

[Ous94]
[Pau94]
[PL92]

[PT99]

[Puc00]

[Qt00]
[RBPT91]

[Ros]

[SL99]

[vdBVW99a]

Larsen P.G.: Ten Years of Historical Development "Bootstrapping” ... 709

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing
Company, Inc., 1994.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-
Verlag LNCS 828, 1994.

Nico Plat and Peter Gorm Larsen. An overview of the ISO/VDM-SL
standard. Sigplan Notices, 27(8):76-82, August 1992.

Armand Puccetti and Jean Yves Tixadou. Application of VDM-SL to
the Development of the SPOT4 Programming Messages Generator. In
John Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice, pages
127-137, September 1999.

Armand Puccetti. Improving the Software Evolution Process Using
Mixed Specification techniques (ISEPUMS - Final Report. Technical
Report ESSI Project 27492, CS-SI, March 2000.

Qt, December 2000. http://www.trolltech.com/.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. Prentice-
Hall International, 1991. ISBN 0-13-630054-5.

Rational Software Corporation, http://wuw.rational.com/rose. Ratio-
nal Rose 2000 Using Rose.

Paul R. Smith and Peter Gorm Larsen. Applications of VDM in Ban-
knote Processing. In John Fitzgerald and Peter Gorm Larsen, editors,
VDM in Practice!, pages 67-79, September 1999.

Manual van den Berg, Marcel Verhoef, and Mark Wigmans. Formal
Specification and Development of a Mission Critical Data Handling Sub-
system, an Industrial Usage Report. In John Fitzgerald and Peter Gorm
Larsen, editors, VDM in Practice, pages 9598, September 1999.

[vdBVW99b] Manual van den Berg, Marcel Verhoef, and Mark Wigmans. Formal

Specification of an Auctioning System Using VDM++ and UML, an
Industrial Usage Report. In John Fitzgerald and Peter Gorm Larsen,
editors, VDM in Practice, pages 8593, September 1999.

