
Test-Design through Abstraction

A Systematic Approach Based on the Re�nement Calculus

Bernhard K. Aichernig
(Graz University of Technology, Austria

aichernig@ist.tugraz.at)

Abstract: This article discusses the calculation of test-cases for interactive systems. A
novel approach is presented that treats the problem of test-case synthesis as a formal
abstraction problem. It is shown that test-cases can be viewed as formal contracts
and that such test-cases are in fact abstractions of requirements speci�cations. The
re�nement calculus of Back and von Wright is used to formulate abstraction rules
for calculating correct test-cases from a formal speci�cation. The advantage of this
abstraction approach is that simple input-output test-cases, as well as testing scenarios
can be handled. Furthermore, di�erent testing strategies like partition testing and
mutation testing can be formulated in one theory.

Key Words: testing, test-case generation, formal methods, re�nement calculus.

Category: D.2.1, D.2.5

1 Introduction

Software testing is a challenging task. It should evaluate the software to demon-

strate that it meets the requirements. This is diÆcult, both in theory and in

practice.

From theory it is known that testing cannot guarantee the absence of failures

in complex computer-based systems. The reason is the non-continuous nature

of software. For example, if two test-points in the input-space of a piece of soft-

ware have been tested successfully, nothing is known about the behavior of the

software for other inputs situated between these test-points. This is fundamen-

tally di�erent to other engineering disciplines, mainly dealing with continuous

physical domains.

Furthermore, the testing process is strongly dependent on the quality of the

requirements documentation available to a tester. User requirements that have

not been explicitly documented cannot be systematically tested. It is known

from practice that approximately 60 percent of all defects introduced in the

requirements phase are due to missing requirements (see page 6 of [20]).

However, software is increasingly being used in our daily life as well as in

safety-critical systems where failure could be life threatening. This enforces the

need for an improved systematic discipline of testing which must be scienti�cally

justi�able. Since, requirement documents written in a natural language tend to

be incomplete, ambiguous and unsound, such a discipline of testing has to be

based on a speci�cation language with a formal semantics.

Journal of Universal Computer Science, vol. 7, no. 8 (2001), 710-735
submitted: 18/5/01, accepted: 21/8/01, appeared: 28/8/01  Springer Pub. Co.

The remainder of this section brie
y summarizes the experiences and motiva-

tions that cumulated into our formal approach to testing. In Section 2 the main

idea of this paper is presented informally. The formal system of the re�nement

calculus that is used to de�ne our testing theory is explained in Section 3. Sec-

tion 4 demonstrates that test-cases can be viewed as abstractions of requirement

speci�cations. Section 5 shows that this holds for test-case scenarios, too. Based

on this observation, several testing strategies can be formulated (Section 6 and

Section 7). Finally, the conclusions are drawn in Section 8.

1.1 Experience and Motivation

The work pesented in the following sections is mainly motivated by two projects

that have been carried out in the highly safety-critical domain of voice-communi-

cation for air-traÆc control. Here, executable VDM speci�cations have been used

for executing previously designed system-level test-cases.

Project I detected 64 problems in the requirement documentation of the

existing voice communication system. Furthermore, an unacceptable low cov-

erage rate of 80 % has been analyzed by testing the abstract prototype with

the existing system-level test-cases. As a consequence, additional test-cases have

been derived from the formal speci�cation. The work has been done in less than

13 man-weeks [15, 16, 17, 1].

Project II detected 33 problems in the requirements documentation of the

new voice communication network under development. This time the existing

test-cases covered 100 % of the abstract prototype, but the 65 test-cases with

200 test-steps contained 16 faults. Since almost all detected faults occurred in

di�erent test-cases, this means that approximately 25 % of the test-cases have

been erroneous. The e�ort took 14 man-weeks [3, 1].

These results indicate the eÆcient applicability of executable speci�cations in

practice. The high number of faults in the requirements re
ect the fact that re-

quirements engineering is a diÆcult task. It has been shown that formal speci�ca-

tions may help to raise the quality of both, the requirements and the system-level

test cases. That supervised students could do this work underpins our opinion

that such methods can be adopted by practicing engineers. Furthermore, the

author thinks that the e�orts are justi�able, especially for such safety-critical

applications.

However, the experiments also showed that more can be achieved. We learned

that executable speci�cations have the disadvantage that non-experienced users

tend to think too operationally. Consequently, the prototypes lack abstraction

and incorporate too many design details. However, the engineers liked the test-

cases that have been run on the speci�cation to validate our formal models.

In order to get the advantage of such test-cases without the need of exe-

cutability, we propose a test-case generation method that derives the complex

711Aichernig B.K.: Tes-Design through Abstraction

test-cases from a general non-executable formal speci�cation. These test-cases

have to be correct with respect to the formal speci�cation. Here, by the cor-

rectness of a test-case it is meant that the functionality described by a test-case

(for a given input) must be consistent with the functionality described by the

formal speci�cation. The reason is that the test-cases should serve as a tool for

validating an abstract possibly non-executable formal requirement speci�cation.

Test-cases can be easily understood by a customer or engineer who is not fa-

miliar with a formal speci�cation language. It will be shown that the general

correctness relation for all kinds of test-cases is abstraction.

A further motivation for this work is the need of a general formal framework

for certifying test-case generation tools. Simon Burton has a similar motivation

in his work on Z that has been recently published [8]. However, our framework

is more general as will be seen in the following.

2 The New Idea: Test-Design as a Formal Synthesis Problem

Experience shows that test-cases for non-trivial systems are complex algorithms

that have to be executed either by a tester manually, or by test drivers.

The goal of our framework is the derivation of such test-cases T from a formal

speci�cation S. A test-case T should be correct with respect to S, and a program

P that implements S should be tested with T . Thus, the derivation of T from

S constitutes a formal synthesis problem. In order to formalize a certi�cation

criteria for this synthesis process, the relation between T , S and P must be

clari�ed.

It is well-known that the relation between a speci�cation S and its correct

implementation P is called re�nement. We write

S v P

for expressing that P is a correct re�nement (implementation) of S. The

problem of deriving an unknown P ? from a given S is generally known as pro-

gram synthesis:

S v P ?

In this section, it is shown that correct test-cases T are abstractions of the

speci�cations S, or:

T v S v P

Consequently, test-case synthesis is a reverse re�nement problem. The re-

verse re�nement from a given S into an unknown test-case T ? is here called

abstraction, and denoted as:

712 Aichernig B.K.: Tes-Design through Abstraction

S w T ?

Hence, formal synthesis techniques can be applied for deriving test-cases from

a formal speci�cation. This is the most important idea in this paper. Its main

contribution is to use the theory of Back and von Wright's re�nement calculus

[5] for formulating abstraction rules for deriving correct test-cases.

The re�nement calculus is a theory for reasoning about the correctness and

the re�nement of programs. In the following it is shown how its program synthesis

techniques can be applied to test-case synthesis.

3 The Re�nement Calculus

3.1 Contracts

The prerequisite for testing is some form of contract between the user and the

provider of a system that speci�es what it is supposed to do. In case of system-

level testing usually user and software requirement documents de�ne the con-

tract. Formal methods propose mathematics to de�ne such a contract unam-

biguously and soundly. In the following the formal contract language of Back

and von Wright [5] is used. It is a generalization of the conventional pre- and

post-condition style of formal speci�cations known from VDM, B and Z. The

foundation of this re�nement calculus is based on lattice-theory and classical

higher-order logic (HOL).

A system is modeled by a global state space �. A single state x in this

state space is denoted by x : �. Functionality is either expressed by functional

state transformers f or relational updates R. A state transformer is a function

f : � ! � mapping a state space � to the same or another state space � .

A relational update R : � ! � ! Bool speci�es a state change by relating

the state before with the state after execution. In HOL, relations are modeled

by functions mapping the states to Boolean valued predicates. For convenience,

a relational assignment (x := x0jb) is available and generalizes assignment state-

ments. It sets a state variable x to a new state x0 such that b, relating x and x0,

holds.

The language further distinguishes between the responsibilities of commu-

nicating agents in a contract. Here, the contract models the viewpoint of one

agent called the angel who interacts with the rest of the system called the de-

mon. In our work following [5, 4], the user is considered the angel and the system

under test the demon. Relational contract statements denoted by fRg express

relational updates under control of the angel (user). Relational updates of the

demon are denoted by [R] and express updates that are non-deterministic from

the angel's point of view. Usually, we take the viewpoint of the angel.

713Aichernig B.K.: Tes-Design through Abstraction

The contract statement hfi denotes a functional update of the state deter-

mined by a state transformer f . There is no choice involved here, neither for the

angel nor the demon agent, since there is only one possible next state for a given

state.

Two contracts can be combined by sequential composition C1;C2 or choice

operators. The angelic choice C1tC2 and the demonic choice C1uC2 de�ne non-

deterministic choice of the angel or demon between two contracts C1 and C2.

Furthermore, predicate assertions fpg and assumptions [p] de�ne conditions the

angel, respectively the demon, must satisfy. In this language of contract state-

ments fpg; hfi denotes partial functions and fpg; [R] pre-postcondition speci�ca-

tions. Furthermore, recursive contracts, using the least �x-point operator � and

the greatest �x-point operator �, are possible for expressing several patterns of

iteration.

The core contract language used in this work can be summarized by the

following BNF grammar, where p is a predicate and R a relation.

C := fpg j [p] j fRg j [R] j C;C j C t C j C u C j �X � C

To simplify matters, we will extend this core language by our own contract

statements. However, all new statements will be de�ned by means of the above

core language. Thus, our language extensions are conservative. This means that

no inconsistencies into the theory of the re�nement calculus are introduced by

our new de�nitions.

3.2 Example Contracts

A few simple examples should illustrate the contract language. The following

contract is a pre- postcondition speci�cation of a square root algorithm:

fx � 0 ^ e > 0g; [x := x0j � e � x � x02 � e]

The precondition is an assertion about an input variable x and a precision

e. A relational assignment expresses the demonic update of the variable x to its

new value x0. Thus, the contract is breached unless x � 0 ^ e > 0 holds in the

state initially. If this condition is true, then x is assigned some value x0 for which

�e � x� x02 � e holds.

Consider the following version of the square root contract that uses both

kinds of non-determinism:

fx; e := x0; e0jx0 � 0 ^ e0 > 0g; [x := x0j � e � x � x02 � e]

In this contract the interaction of two agents is speci�ed explicitly. This

contract requires that our agent, called the angel, �rst chooses new values for

714 Aichernig B.K.: Tes-Design through Abstraction

x and e. Then the other agent, the demon, is given the task of computing the

square-root in the variable x.

The following example should demonstrate that programming constructs can

be de�ned by means of the basic contract statements. A conditional statement

can be de�ned by an angelic choice as follows:

if P then S1 else S2 � , fPg;S1 t f:Pg;S2

Thus, the angel agent can choose between two alternatives. The agent will,

however, always choose only one of these, the one for which the assertion is

true, because choosing the alternative where the guard is false would breach the

contract. Hence, the agent does not have a real choice if he wants to satisfy the

contract.

Alternatively, we could also de�ne the conditional in terms of choices made

by the other agent (demon) as follows:

if P then S1 else S2 � , [P];S1 u [:P];S2

These two de�nitions are equivalent. The choice of the demon agent is not

controllable by our agent, so to achieve some desired condition, our agent has to

be prepared for both alternatives. If the demon agent is to carry out the contract

without violating our agent's assumptions, it has to choose the �rst alternative

when P is true and the second alternative when P is false.

Iteration can be speci�ed by recursive contracts (�X �C). Here X is a variable

that ranges over contract statements, while (�X � C) is the contract statement

C, where each occurrence of X in C is interpreted as a recursive invocation of

the contract C. For example, the standard while loop is de�ned as follows:

while g do S od , (�X � if g then S;X else skip �)

We write skip , hidi for the action that applies the identity function to the

present state.

3.3 Semantics

The semantics of the contract statements is de�ned by weakest precondition

predicate transformers. A predicate transformer C : (� ! Bool)! (� ! Bool)

is a function mapping postcondition predicates to precondition predicates. The

set of all predicate transformers from � to � is denoted by � 7! � , (� !

Bool)! (� ! Bool).

The di�erent roles of the angel and the demon are re
ected in the following

weakest-precondition semantics. Here q denotes a postcondition predicate and �

a particular state, p is an arbitrary predicate, and R a relation. Following the

715Aichernig B.K.: Tes-Design through Abstraction

convention, we identify contract statements with predicate transformers that

they determine. The notation f:x is used for function application instead of the

more common form f(x).

fpg:q , p \ q (assertion)

[p]:q , :p [q (assumption)

fRg:q:� , (9
 2 � �R:�:
 ^ q:
) (angelic update)

[R]:q:� , (8
 2 � �R:�:
) q:
) (demonic update)

(C1;C2):q , C1:(C2:q) (sequential composition)

(C1 t C2):q , C1:q [C2:q (angelic choice)

(C1 u C2):q , C1:q \ C2:q (demonic choice)

In this semantics, the breaching of a contract by our angel agent, means

that the weakest-precondition is false. If a demon agent breaches a contract,

the weakest-precondition is trivially true. The semantics of the speci�cation con-

structs above can be interpreted as follows:

{ The weakest precondition semantics of an assertion contract re
ects the fact

that, if the �nal state of the contract should satisfy the post-condition q,

then in addition the assertion predicate p must hold. It can be seen that

the global state is not changed by an assertion statement. Consequently, the

angel breaches this contract if p \ q evaluates to false.

{ The semantics of an assumption shows that the demon is responsible for

satisfying an assumption predicate p. If the assumption does not hold, the

demon breaches the contract and the angel is released from the contract. In

this case, the weakest-precondition trivially evaluates to true.

{ The angelic update de�nition says that a �nal state
 must exist in the

relation R, such that the postcondition q holds. The existential quanti�er

in the weakest-precondition shows that the angel has control of this update.

The angel can satisfy the contract, as long as one update exists that satis�es

the postcondition. In the set notation this update is de�ned as fRg:q:� ,

R:� \ q 6= ;.

{ This is in contrast to the de�nition of the demonic update. Here, all possible

�nal states
 have to satisfy the postcondition. The reason is that the de-

monic update is out of our control. It is not known, to which of the possible

states, described by the relation R, the state variables will be set. In the set

notation this update is de�ned as [R]:q:� , R:� � q.

{ The weakest-precondition of two sequentially combined contracts is de�ned

by the composition of the two weakest-preconditions.

716 Aichernig B.K.: Tes-Design through Abstraction

{ The angelic choice de�nition shows that the weakest-precondition is the

union of the weakest-precondition of the two contracts. Thus, a further choice

of the angel, further weakens the weakest-preconditions.

{ The demonic choice is de�ned as the intersection of the weakest-precon-

ditions of the two contracts. Thus, demonic choice means a strengthening of

the weakest-preconditions.

For further details of the predicate transformer semantics, we refer to [5].

3.4 Re�nement and Abstraction

The notion of contracts includes speci�cation statements as well as programming

statements. More complicated speci�cation statements as well as programming

statements can be de�ned by the basic contract statements presented above. The

re�nement calculus provides a synthesis method for re�ning speci�cation state-

ments into programming statements that can be executed by the target system.

The re�nement rules of the calculus ensure by construction that a program is

correct with respect to its speci�cation.

Formally, re�nement of a contract C by C 0, written C v C 0, is de�ned by the

pointwise extension of the subset ordering on predicates: For � being the after

state space of the contracts, we have

C v C 0 , 8q 2 (� ! Bool) � C:q � C 0:q

This ordering relation de�nes a lattice of predicate transformers (contracts)

with the lattice operators meet u and join t. The top element > is magic:q ,

true, a statement that is not implementable since it can magically establish every

postcondition. The bottom element ? of the lattice is abort:q , false de�ning

the notion of abortion. The choice operators and negation of contracts are de�ned

by pointwise extension of the corresponding operations on predicates. A large

collection of re�nement rules can be found in [5, 19].

Abstraction is dual to re�nement. If C v C 0, we can interchangeable say C

is an abstraction of C 0. In order to emphasize rather the search for abstractions

than for re�nements, we write C w C 0 to express C 0 is an abstraction of C.

Trivially, abstraction can be de�ned as:

C w C 0 , C 0 v C

Hence, abstraction is de�ned as the reverse of re�nement.

717Aichernig B.K.: Tes-Design through Abstraction

4 Test-Cases as Abstractions

In the following we will demonstrate that test-cases common in software engi-

neering are in fact contracts | highly abstract contracts. To keep our discussion

simple, we do not consider parameterized procedures, but only global state ma-

nipulations. In [5] it is shown how procedures can be de�ned in the contract

language. Consequently, our approach scales up to procedure calls.

4.1 Input-Output Tests

The simplest form of test-cases are pairs of input i and output o data. We can

de�ne such an input-output test-case TC as a contract between the user and the

unit under test:

TC i o , fx = ig; [y := y0jy0 = o]

Intuitively, the contract states that if the user provides input i, the state will

be updated such that it equals o. Here, x is the input variable and y the output

variable.

In fact, such a TC is a formal pre-postcondition speci�cation solely de�ned for

a single input i. This demonstrates that a collection of n input-output test-cases

TCs are indeed pointwise de�ned formal speci�cations:

TCs , TC i1 o1 t : : : t TC in on

Moreover, such test-cases are abstractions of general speci�cations, if the spec-

i�cation is deterministic for the input-value of the test-case, as the following

theorem shows.

Theorem1. Let p : � ! Bool be a predicate, Q : � ! � ! Bool a relation on

states, and TC i o a test-case with input i in variable x and output o in variable

y. Then

fpg; [Q] w TC i o � (x = i) � p ^ (jx = ij;Q) � jy := oj

, where

{ jpj denotes the coercion of a predicate p : � ! Bool to a relation (here

x = i). The relation jpj : � ! � ! Bool is de�ned as follows:

jpj:�:
 , (� =
) ^ p:�

{ jf j denotes the coercion of a state transformer f : � ! � to a relation (here

y := o). The relation jf j : � ! � ! Bool is de�ned as follows:

jf j:�:
 , f:� =

718 Aichernig B.K.: Tes-Design through Abstraction

{ the composition operator ; is overloaded for relations. The relation composi-

tion P ;Q is de�ned as follows:

(P ;Q):�:Æ , (9
 � P:�:
 ^Q:
:Æ)

Proof. See Appendix.

�

Theorem 1 shows that only for deterministic speci�cations, simple input-

output test-cases are suÆcient, in general. The theorem becomes simpler if the

whole input and output is observable, which is shown in the following corollary.

Corollary 2. Let p : � ! Bool be a predicate, Q : � ! � ! Bool a relation

on states, and TC i o a test-case, where the whole change of state is observable.

Thus, input i : � and output o : � . Then

fpg; [Q] w TC i o � p:i ^Q:i:o

Proof. The corollary follows from Theorem 1 and the assumption that i : � and

o : � .

�

The fact that test-cases are indeed formal speci�cations and as Theorem 1

shows abstractions of more general contracts explains why test-cases are so pop-

ular: First, they are abstract, and thus easy to understand. Second, they are

formal and thus unambiguous.

Furthermore, the selection of certain test-cases out of a collection of test-cases

can be considered as abstraction:

Corollary 3.

TC i1 o1 t : : : t TC in on w TC ik ok

for all k, 1 � k � n.

Proof. The theorem is valid by de�nition of the join operator atb w a or atb w b,

respectively.

�

4.2 Non-Deterministic Test-Cases

In general, a contract can permit more than one result. In this case, testing the

requirements with simple input-output values is insuÆcient. An output predicate

! : � ! Bool can be used for describing the set of possible outputs. We de�ne

such a test-case as follows:

TCp i ! , fx = ig; [y := y0j!]

For being a correct test-case with respect to a contract this type of test-case

should be an abstraction of the contract.

719Aichernig B.K.: Tes-Design through Abstraction

Theorem4. Let p : � ! Bool be a predicate, Q : � ! � ! Bool a relation on

states, and TC2 i o a test-case with input i in variable x and output in variable

y such that the output predicate ! holds . Then we have:

fpg; [Q] w TCp i ! � (x = i) � p ^ (jx = ij;Q) � j!j

�

The theorem shows that a test-case for non-deterministic results can be cal-

culated by strengthening the precondition to a single input value and weakening

the postcondition to the outputs of interest. The fact that the output predicate

! might be weaker than Q represents the case that not all properties of an out-

put might be observed. This can be useful if not all variables or only selected

properties of the output should be checked.

4.3 Partition Tests

Partition analysis of a system is a powerful testing technique for reducing the

possible test-cases: Here, a contract is analyzed and the input domains are split

into partitions. A partition is an equivalence class of test-inputs for which the

tester assumes that the system will behave the same. These assumptions can be

based on a case analysis of a contract, or on the experience that certain input

values are fault-prone.

In case of formal speci�cations, the transformation into a disjunctive normal

form (DNF) is a popular partition technique (see e.g. [10, 21, 14, 13]). This

technique is based on rewriting according the rule A_B � (A^B)_ (:A^B)_

(A ^ :B).

A partitioning of a contract statement fpg; [R] is a collection of n disjoint

partitions fpig; [Ri], such that

fpg; [R] = fp1g; [R1] t : : : t fpng; [Rn]

and

8i; j 2 f1; : : : ; ng � i 6= j) pi \ pj = ;

These partitions describe classes of test-cases, here called partition test-cases.

Often in the literature, if the context is clear, a partition test-case is simply called

a test-case.

Partition test-cases are abstractions of speci�cations, too:

Theorem5. Let fpig; [Ri] be a partition of a speci�cation fpg; [R]. Then

fpg; [R] w fpig; [Ri]

720 Aichernig B.K.: Tes-Design through Abstraction

Proof. The result follows directly from the de�nition of partitioning above, and

the de�nition of t.

�

Up to now, only the commonly used pre-postcondition contracts have been

considered. They are a normal form for all contracts not involving angelic actions.

This means that arbitrary contracts excluding t and fRg can be formulated in

a pre-postcondition style (see Theorem 26.4 in [5]). However, our result that

test-cases are abstractions holds for general contract statements involving user

inter-action. In order to justify this, user-interaction has to be discussed with

respect to testing. The next section will introduce the necessary concepts.

5 Testing Interactive Systems

The synthesis of black-box tests for an interactive system has to consider the

possible user actions. Furthermore, simple input-output test-cases are insuÆ-

cient for practical systems. Moreover, sequences of interactions, called scenarios,

are necessary for setting the system under test into the interesting states. Con-

sequently, scenarios of the system's use have to be developed for testing.

Scenarios are gaining more and more popularity in software engineering. The

reasons are the same as for other test-cases: Scenarios are abstractions of in-

teractive systems. For a comprehensive introduction into the di�erent roles of

scenarios in software engineering see [18]. In this work, the focus is on validation

and veri�cation.

5.1 User Interaction

Testing interactive systems, typically involves the selection of a series of param-

eters. Some of these parameters can be entered directly, some have to be set up,

by initiating a sequence of preceding actions. Adequate test-cases should dis-

tinguish between these two possibilities of parameter setup. Therefore, simple

pre-postcondition contracts are not suÆcient to specify test-cases. Moreover, the

tester's interaction with the system has to be modeled.

We de�ne an atomic interaction IA of a tester, as a composition of the testers

system update T and the following system's response Q.

IA , fTg; [Q]

The fact that we de�ne an atomic interaction by means of angelic and de-

monic updates does not exclude other contract statements for modeling interac-

tion. Theorem 13.10 in [5] states that fTg;[Q] is a normal form, thus arbitrary

contract statements can be de�ned by means of interactions.

721Aichernig B.K.: Tes-Design through Abstraction

In this context a simple input-output test-case TCI i o includes the actual

setting of the input variable to i.

TCI i o , fx := x0jx0 = ig; [y := y0jy0 = o]

Again the abstraction relation holds for this kind of test-cases.

Theorem6. Let T : � ! � ! Bool and Q : � ! � ! Bool relations on

states, and TCI i o a test-case with input i in variable x and output o in variable

y. Then

fTg; [Q] w TCI i o (jx := ij � T ^Q � jy := oj

Proof.

The theorem holds by homomorphism and monotonicity properties. For ab-

stracting an interaction, demonic updates may be weakened and angelic updates

strengthened. The formal proof is similar to that of Theorem 1.

�

5.2 Iterative Choice

The application of an iterative choice statement for specifying and re�ning inter-

active systems have been extensively discussed in [4]. This statement, introduced

in [5], is de�ned as a recursive selection of possible interactions S.

do �ni gi :: Si od , (�X � fg1g;S1;X t : : : t fgng;Sn;X t skip)

The skip statement, models the user's choice of stopping the dialog with the

system. � denotes the least �x-point operator. In general, a recursive contract

�X � S is interpreted as the contract statement S, but with each occurrence of

statement variableX in S treated as a recursive invocation of the whole contract.

Note that sequential composition binds stronger than the two choice operators.

The iterative choice statement follows a common iteration pattern, called

angelic iteration. This iteration construct over S is de�ned as the following �x-

point:

S� , (�X � S;X t skip)

Therefore, we have

do �ni gi :: Si od = (fg1g;S1 t : : : t fgng;Sn)
�

Iterative choice should not be mixed with guarded command iterations used

by Dijkstra [11]. Guarded command iterations are strong iterations de�ned by

S! , (�X � S;X u skip) with, in contrast to angelic iteration, the termination

out of a user's control.

In [4] re�nement rules for iterative choice are given. However, for testing we

need abstraction rules for the synthesis of test-cases | scenarios are our goal.

722 Aichernig B.K.: Tes-Design through Abstraction

5.3 Scenarios

An arbitrary scenario SC of an interactive system with n possible interactions

Si and of length l is a sequence of l sequential user interactions Si. We write a

sequence comprehension expression

hSi(k) j (1 � i � n) ^ (1 � k � l)i

to denote such arbitrary sequences, where k is the position in the sequence1.

Scenarios are abstractions of interactive systems, modeled by iterative choice,

as the following theorem shows.

Theorem7.

do �ni gi :: Si od w h(fgig;Si)(k) j (1 � i � n) ^ (1 � k � l)i

Proof. The theorem is valid by de�nition of the angelic iteration statement and

thus by de�nition of iterative choice:

do �ni gi :: Si od

� skip t fg1g;S1 t fg2g;S2 t fg1g;S1; fg1g;S1 t fg1gS1; fg2gS2 t : : :

Hence, by de�nition of t any choice of sequences of fgigSi is an abstraction.

�

However, for test-case generation, we are only interested in valid scenarios.

A scenario is considered a test-scenario if it terminates for every possible initial

state. Thus its weakest precondition should be true for an unspeci�ed �nal state:

hSi(k) j (1 � i � n) ^ (1 � k � li:true = true

Consequently, the abstraction should not equal the abort statement. Since

abort is the bottom element ? of the predicate transformer lattice, it is the

trivial abstraction of every statement. Therefore, we de�ne a notion of testing

abstraction wT

S wT T , S w T A abort

and get the abstraction rule for testing scenarios:

Theorem8. Let g(k) denote the guard at the kth position in a scenario and

assume that the system speci�cation is consistent. Hence we assume that for all

1 It should be mentioned that this sequence comprehension expression is not a valid
predicate transformer, but rather serves as a scheme for sequences of predicate trans-
formers. We use sequence comprehensions as a convenient notation, but they cannot
be de�ned in higher-order logic due to its strong type system.

723Aichernig B.K.: Tes-Design through Abstraction

interactions Si:true � gi. Furthermore, g(l + 1) 6= false should be an arbitrary

predicate called the goal. Then

do �ni gi :: Si od wT

h(fgig;Si)(k) j (1 � i � n)^ (1 � k � l)^gi(k) � Si(k):g(k+1)^g(1) = truei

Proof. Abstraction follows from Theorem 7. Termination is valid by induction:

The weakest precondition of the �rst interaction is true, due to the assumption

that for all interactions Si:true � gi and g(1) chosen to be true. Consequently

Si(1) terminates. An interaction Si(k + 1) terminates due to the fact that its

pre-condition g(k + 1) can be reached by de�nition.

�

This abstraction rule de�nes the calculation of valid test scenarios. The goal

predicate is a condition that de�nes the states that should be reached by a

sequence of interactions. Trivially, it can be chosen to be true. For developing

a scenario for setting a system to a certain state, this goal predicate represents

the corresponding state description.

The theorem above shows that the question if a scenario terminates, can be

reduced to the question if two following interactions are composeable. From this

observation a new testing strategy will be derived in the next section.

6 Test Strategies

A strategy for selecting test-cases is based on a hypothesis about faults in a

program. This section shows that such strategies can be formulated as formal

synthesis rules for deriving test-cases. This is a consequence of our observation

that correct test-cases are abstractions of contracts, as has been explained in

the previous section. The abstraction rules of the prominent strategies of par-

tition testing and mutation testing are presented. In addition, it is shown that

structural testing strategies are covered by this approach.

Furthermore, a new technique for calculating sequences of test-cases, here

called scenarios, is presented. In contrast to previous work on test sequencing,

our approach does not need to compute a �nite state machine. This is in contrast

to previous work on testing from state-based speci�cations.

6.1 Partition Testing

Partition testing techniques are based on a uniformity hypothesis. This strategy

assumes that a system shows the same behavior for a certain partition of input

values. Therefore, once the equivalence partitions are selected, it is suÆcient to

test one case for every partition.

724 Aichernig B.K.: Tes-Design through Abstraction

For partitioning model-based speci�cations, [10] proposed the rewriting of

speci�cations into their disjunctive normal form (DNF). This popular technique

is based on rewriting disjunctions with:

a _ b � (a ^ :b) _ (:a ^ b) _ (a ^ b)

The proof of the following abstraction rule for this well-known strategy high-

lighted a problem with this technique. In general, DNF-rewriting results in dis-

joint partitions. Applied to a relational speci�cation it gives disjoint input-output

relations, but the input partitions (the domain of the relation) may overlap.

In such pathological cases, selecting a test-case for each partition is not cor-

rect. If test-cases are derived for overlapping domains and the speci�cation is

non-deterministic then two test-cases with the same input may de�ne two dif-

ferent deterministic outputs.

Therefore, the disjointness of the resulting input partitions dom:Qi is as-

sumed in the following synthesis rule.

Theorem9. Let a and b be arbitrary Boolean expressions and Q1, Q2, Q3

be relations. The following rule for deriving partition test-cases from pre-post-

condition contracts is then generally valid:

[x := x0ja ^ :b] w [Q1];

[x := x0j:a ^ b] w [Q2];

[x := x0ja ^ b] w [Q3];

8i; j 2 f1; 2; 3g � i 6= j) dom:Qi \ dom:Qj = ;

[x := x0ja _ b] w fdom:Q1g; [Q1] t

fdom:Q2g; [Q2] t

fdom:Q3g; [Q3]

Proof. See Appendix.

The derivation rule of Theorem 9 yields three disjoint partitions, although a

derived partition might be empty, thus dom:Qi = false. It follows from Theorem 5

that each of these partitions is an abstraction of the original contract. It is

obvious that the rule has to be applied recursively to the resulting partitions if

further sub-partitions are needed.

The proof of Theorem 9 shows that the derivation rule yields partition test-

cases that cover the full input domain. Furthermore, it follows from the assump-

tions that for one partition more non-determinism can be introduced due to

abstraction. This re
ects the possibility of weakening certain tests.

The rule shows that test-cases can be further abstracted by weakening a

demonic update (weakening of tests). In the rule above, for example the

725Aichernig B.K.: Tes-Design through Abstraction

premise [x := x0ja ^ :b] w [Q1] indicates such a possible weakening of a test-

case. This form of weakening a test-case is a further strategy for test-case design.

The reason for this further abstraction of a partition might be that

{ a tester does not wish to observe the (demonic) changes of the whole state

space, or

{ not the whole state and thus its updates are observable.

Therefore, parts of the demonic updates of the system are skipped in the test-case

speci�cations. Formally this is an abstraction process carried out by weakening

a post-condition.

Example 1. The rule is illustrated by deriving the test-cases from a speci�cation

of the computation of the minimum of two numbers.

[z := z0j(z0 = x ^ x � y) _ (z0 = y ^ x � y)]

= by the partitioning rule

fx < yg; [z := z0j(z0 = x ^ x � y) ^ (z0 6= y _ x < y)] t

fx > yg; [z := z0j(z0 6= x _ x > y) ^ (z0 = y ^ x � y)] t

fx = yg; [z := z0j(z0 = x ^ x � y) ^ (z0 = y ^ x � y)]

= by simpli�cation

fx < yg; [z := z0jz0 = x] t

fx > yg; [z := z0jz0 = y] t

fx = yg; [z := z0jz0 = x ^ z0 = y]

In the third test partition fx = yg a further abstraction by weakening the re-

lational update might be applied. For testing the correct computation for input

x = y, a tester might-choose to compare the new value z0 only with one input

variable. If x is compared to z, then the following three test cases are obtained:

w by weakening the post-condition in the third test-case

fx < yg; [z := z0jz0 = x] t

fx > yg; [z := z0jz0 = y] t

fx = yg; [z := z0jz0 = x]
�

Note that it has been the search for a valid abstraction that highlighted the

necessary condition of disjointness. The last step in the proof shows that only

726 Aichernig B.K.: Tes-Design through Abstraction

if the demonic choice u is in fact deterministic it can be transformed into an

angelic choice t of partitions. For a general demonic choice of partitions, the

abstraction relation would not hold. The consequence could be the derivation of

incorrect test-cases. The second example shows such a pathological case, where

the rule must not be applied.

Example 2. The example demonstrates the consequence, if the rule is applied to

non-disjoint partitions.

[z := z0jz0 = 0 _ z0 = 1]

w by a wrong application of the partitioning rule

ftrueg; [z := z0jz0 = 0 ^ z0 6= 1] t

ftrueg; [z := z0jz0 6= 0 ^ z0 = 1] t

ffalseg; [z := z0jz0 = 0 ^ z0 = 1]

= by simpli�cation

ftrueg; [z := z0jz0 = 0] t ftrueg; [z := z0jz0 = 1]

w by selecting input-output test-cases

(TC 1 0) t (TC 1 1)

The result of this wrong application of the rule is the derivation of two

deterministic test-cases for a non-deterministic result. If applied in testing an

implementation of this speci�cation, these test-cases indicate an error in the im-

plementation that does not exist. The correct solution, for non-disjoint domains

is to merge the partitions. Then, only non-deterministic test-cases would have

been possible, like TCp 1 (z0 = 0 _ z0 = 1).

�

6.2 Structural Partitioning

Speci�cation and implementation oriented testing strategies can be combined as

has been shown in [6]. The same can be done in our re�nement calculus approach.

Here, the syntax of the speci�cation language is considered for partitioning. This

structural technique provides a better control of the partitioning process, then

pure DNF-partitioning.

Our abstraction approach can be extended for de�ning test-case synthesis

rules for di�erent kinds of speci�cation statements. For example, the rule for

partitioning a conditional speci�cation can be de�ned as follows:

727Aichernig B.K.: Tes-Design through Abstraction

Theorem10. Given a conditional contract statement as de�ned in Section 3.2.

C1 and C2 be arbitrary contracts and P a predicate. Then, a conditional contract

can be partitioned by

C1 w C 0

1
;

C2 w C 0

2

if P then C1 else C2 � w fPg;C 0

1
t f:Pg;C 0

2

Proof.

The rule is valid by the de�nition of the if-statement and the monotonicity of

the w relation.

�

Synthesis rules, like the one for if-statements, can be given for arbitrary

speci�cation statements. Each such syntax oriented synthesis rule re
ects a test-

selection strategy, known from white-box testing. For example, the rule above

represents branch testing, a strategy, where every branch in the control-
ow

should be tested once.

The following example demonstrates that a structural strategy might help to

reduce the set of test-cases.

Example 3. The rule is illustrated by deriving the test-cases from an alternative

speci�cation of the computation of the minimum of two numbers.

if x � y then [z := z0jz0 = x] else [z := z0jz0 = y]

= by the partitioning rule for if-statements

fx � yg; [z := z0jz0 = x] t fx > yg; [z := z0jz0 = y]

In contrast to the three test-cases of Example 1, here only two test-cases are

derived for the same problem.

�

6.3 Mutation Testing

Mutation testing is a fault-based testing technique introduced by Hamlet [12] and

DeMillo et al [9]. It is a means of assessing test suites. When a program passes all

tests in a suite, mutant programs are generated and the suite is assessed in terms

of how many mutants it distinguishes from the original program. The hypothesis

is that programmers only make small errors. Stocks extends this technique in

[21] to model-based speci�cation languages by de�ning a collection of mutation

operators for Z's speci�cation language. An example for speci�cation mutation

728 Aichernig B.K.: Tes-Design through Abstraction

is the exchange of the join operator [of sets with intersection \. From these

mutants, test-cases are generated for demonstrating that the implementation

does not implement one of the speci�cation mutations.

We can formulate abstraction rules for deriving mutation test-cases for a

given contract and its mutants.

Theorem11. Given a contract C and a mutation Cm generated by applying a

mutation operator m such that m(C) = Cm holds. Then a test-case TC i o that

covers the mutation must be derived by the rule

C w TC i o;

Cm 6w TC i o

C w TC i o

The rule shows that a test-case for �nding errors in a mutant, has to be, �rst,

a correct test-case of the original contract, second, it must not be a an abstraction

of the mutated contract. Test-cases that are abstractions of the mutations do

not cover the mutated parts of a contract. Consequently, the coverage criteria of

a collection of test-cases T for a contract C in mutation testing with a collection

of mutation operators M can be given by:

8 m 2M � 9 tc 2 T � (C w tc ^m(C) 6w tc)

This represents a new approach to the quality criteria for test-cases based on

mutations. Again, the minimum example serves to illustrate the synthesis rule.

Example 4. This example shows how mutation testing techniques might be ap-

plied to speci�cation based testing. Consider this speci�cation C of a minimum

computation:

if x � y then [z := z0jz0 = x] else [z := z0jz0 = y]

In mutation testing, the assumption is made that programmers produce small

errors. A common fault made by programmers is that operators are mixed. In

this example a possible fault would be to implement the � operator instead of

the �. Hence, a mutation operator

m(::: � :::) = ::: � :::

is de�ned that changes all occurrences of � in a contract to �. Applying this

mutant operator m(C) = Cm computes the following mutant:

if x � y then [z := z0jz0 = x] else [z := z0jz0 = y]

The synthesis rule says that a successful test-case for this mutation must not

be an abstraction. Since

729Aichernig B.K.: Tes-Design through Abstraction

if x � y then [z := z0jz0 = x] else [z := z0jz0 = y] 6w fx < yg; [z := z0jz0 = x]

but

if x � y then [z := z0jz0 = x] else [z := z0jz0 = y] w fx < yg; [z := z0jz0 = x]

a test-case fx < yg; [z := z0jz0 = x] is a valid test-case for detecting a speci-

�cation mutation of this kind in our implementation. On the other hand, the

test-case fx = yg; [z := z0jz0 = x] would not detect the mutation since it is an

abstraction of both, the original speci�cation and the mutated one.

�

7 Calculating Scenarios for Testing

In this section an alternative strategy for the sequencing of test-cases into test-

scenarios is proposed.

7.1 Critical Remarks on FSM approaches

In the literature on related work on test-sequencing for model-oriented speci-

�cations, authors have been concentrating solely on the approach proposed by

Dick and Faivre in [10]. This strategy �rst calculates partitions of the avail-

able operations and states. Then a �nite state machine (FSM) is constructed by

calculating possible transitions between the states. The result is a graph with

nodes that are state partitions and transitions that are operation partitions. To

derive test-sequences (scenarios) the tester follows the paths in the graph. See

the related work summarized in [1] for examples of this approach.

One disadvantage of this technique is that the whole FSM has to be calculated

in advance, even if full coverage is out of the tester's scope due to resource

limitations. This situation is even worse: Due to the focus on state partitions,

the number of states increases exponentially with the number of partitioned

state variables. Hence, rather large FSMs have to be calculated in advance. The

second disadvantage is that a state based testing strategy is enforced, although

the contract does not emphasize states but, like for interactive systems, possible

interactions are the central paradigm of description.

In the following, a scenario oriented testing strategy is proposed. We call it a

lazy technique, since the test-cases are calculated by need. It does not calculate

a FSM, since it is not based on states. It is based on atomic scenarios, called

compositions.

730 Aichernig B.K.: Tes-Design through Abstraction

7.2 Compositions

We de�ne a composition of an interactive system as a terminating sequential

composition of two interactions:

Composition = C1;C2

The following corollaries follows directly from Theorem 8 and de�nes a rule for

calculating such compositions.

Corollary 12. For a consistent speci�cation of interactions we have that

(p \ ga) � Sa:gb)

do �ni gi :: Si od wT fp \ gag;Sa; fgbg;Sb

where 1 � a; b � n holds and p is an arbitrary predicate such that p 6= false.

In practice, we will not calculate the compositions from the original speci�ca-

tion, but will previously perform a partition analysis on the interactions, leading

to more (partition) interactions. However, the approach keeps the same. These

compositions should be calculated for all interaction partitions of interest. Next,

these compositions are combined into scenarios.

7.3 Scenario Synthesis

The following rule de�nes the general calculation of scenarios by combining two

compositions of interest.

Corollary 13. Let the interactions with indices 1 � i; j; k � n be interactions

of an interactive system with n interaction partitions, and

{ given two compositions

do �ni gi :: Si od wT fp1 \ gig;Si; fgjg;Sj u fp2 \ gjg;Sj ; fgkg;Sk

{ such that p \ p1 \ gi � Si:(p2)

{ then the compositions can be combined to a new scenario

do �ni gi :: Si od wT fp \ p1 \ gig;Si; fgjg;Sj ; fgkg;Sk

In order to generate valid scenarios, a tester can e.g. start by an initial inter-

action with a guard equal to true and then he further searches for compositions

leading to his test-goal. Which scenarios and how many scenarios are tested,

depends on the testing strategy.

731Aichernig B.K.: Tes-Design through Abstraction

7.4 Scenario Based Testing Strategies

The new test approach can be divided into three phases:

1. calculation of interesting partitions for each interaction.

2. calculation of compositions.

3. combination of compositions to validate or to generate test-scenarios.

Di�erent test-coverage strategies can be derived, determined by the strategy for

combining the compositions. Interesting scenario analysis strategies are:

Derive scenarios that include for each partition

{ one composition consisting of the partition: for each partition one scenario.

{ all possible compositions consisting of the partition: for each partition, one

scenario for each interaction reaching the partition.

{ all possible combinations of compositions between two interactions of inter-

est: all scenarios leading from one interaction of interest to another.

{ all possible combinations of compositions: all possible scenarios.

The strategies are similar to the testing strategies used in data-
ow testing

[7]. The di�erence is that here atomic scenarios, called compositions, are consid-

ered, and in data-
ow testing data-objects. For examples of scenario derivations

we refer to [2] and [1].

8 Concluding Remarks

What we have presented, is to our knowledge, the �rst application of the re�ne-

ment calculus for generating test-cases. In this paper several formal abstraction

rules for calculating correct test-cases have been presented. These rules repre-

sent di�erent strategies for test-case selection, known as DNF-partition testing,

structural testing and mutation testing.

It is the author's opinion that an abstraction calculus for testing, provides

deeper insight into the methods of test-case derivation. Especially, the under-

standing of new black-box testing strategies is supported by reasoning about

the synthesis process. The examined testing strategies showed that even exist-

ing techniques reveal interesting properties. New test-case generation techniques

may be the result.

For example, the presented synthesis rules for scenario calculation de�ne an

alternative method for �nding sequences of interactions. In contrast to �nite state

machine (FSM) based approaches, the focus is on �nding possible compositions

732 Aichernig B.K.: Tes-Design through Abstraction

of interactions. Which compositions are possible is determined by the abstraction

rules.

We hope that the presented work stimulates further research on test-synthesis

based on other program-synthesis approaches. Especially, the application of pro-

gram synthesis and transformation tools for testing could be a promising topic

of future research.

Acknowledgments

Since this work is part of my doctoral thesis [1], I wish to thank my Doktorvater

Prof. Peter Lucas, for his help and patience during my research on this topic. It

has been presented at the Formal Aspects of Software Engineering colloquium to

mark his retirement from the chair in Software Technology at the Graz University

of Technology, held on the 18th and 19th of May 2001 in Graz, Austria. As an

organizer of this meeting, I wish to express my gratitude to all the participants

who honored Peter through their presence. Thank you, all.

References

1. Bernhard Aichernig. Systematic Black-Box Testing of Computer-Based Systems
through Formal Abstraction Techniques. PhD thesis, Institute for Software Tech-
nology, TU Graz, Austria, Jannuary 2001. Supervisor: Peter Lucas.

2. Bernhard K. Aichernig. Test-case calculation through abstraction. In Proceedings
of Formal Methods Europe 2001, FME 2001, March 12{16 2001, Berlin, Germany,
Lecture Notes in Computer Science. Springer Verlag, 2001.

3. Bernhard K. Aichernig, Andreas Gerstinger, and Robert Aster. Formal speci�ca-
tion techniques as a catalyst in validation. In Proceedings of the 5th Conference
on High-Assurance Software Engineering, 15th{17th November 2000, Albuquerque,
New Mexico, USA. IEEE, 2000.

4. Ralph Back, Anna Mikhajlova, and Joakim von Wright. Reasoning about inter-
active systems. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors,
FM'99 | Formal Methods, World Congress on Formal Methods in the Devel-
opment of Computing Systems, Toulouse, France, September 1999, Proceedings,
Volume II, volume 1709 of Lecture Notes in Computer Science. Springer, 1999.

5. Ralph-Johan Back and Joakim von Wright. Re�nement Calculus, a Systematic
Introduction. Graduate Texts in Computer Science. Springer, 1998.

6. Salimeh Behnia and H�el�ene Waeselynck. Test criteria de�nition for B models. In
Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, FM'99 | Formal
Methods, World Congress on Formal Methods in the Development of Computing
Systems, Toulouse, France, September 1999, Proceedings, Volume I, volume 1709
of Lecture Notes in Computer Science, pages 509{529. Springer, 1999.

7. Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,
2nd edition, 1990.

8. Simon Burton. Automated testing from Z speci�cations. Technical report, De-
partment of Computer Science, University of York, November 2000.

9. R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

10. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of
test cases from model-based speci�cations. In J.C.P. Woodcock and P.G. Larsen,
editors, FME'93: Industrial-Strength Formal Methods. Springer-Verlag, April 1993.

733Aichernig B.K.: Tes-Design through Abstraction

11. E.W. Dijkstra. A Discipline of Programming. Series in Automatic Computation.
Prentice-Hall International, 1976.

12. Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Transac-
tions on Software Engineering, 3(4):279{290, July 1977.

13. Ste�en Helke, Thomas Neustupny, and Thomas Santen. Automating test case
generation from Z speci�cations with Isabelle. In ZUM'97, 1997.

14. Hans-Martin H�orcher and Jan Peleska. The role of formal speci�cations in software
testing. In Tutorial Notes for the FME'94 Symposium. Formal Methods Europe,
October 1994.

15. Johann H�orl and Bernhard K. Aichernig. Formal speci�cation of a voice com-
munication system used in air traÆc control, an industrial application of light-
weight formal methods using VDM++ (abstract). In J.M. Wing, J. Woodcock,
and J. Davies, editors, Proceedings of FM'99 { Formal Methods, World Congress
on Formal Methods in the Development of Computing Systems, Toulouse, France,
September 1999, volume 1709 of Lecture Notes in Computer Science, page 1868.
Springer, 1999.

16. Johann H�orl and Bernhard K. Aichernig. Requirements validation of a voice com-
munication system used in air traÆc control, an industrial application of light-
weight formal methods (abstract). In Proceedings of the Fourth International Con-
ference on Requirements Engineering (ICRE2000), June 19{23, 2000, Schaumburg,
Illinois, page 190. IEEE, 2000. Selected as one of three best papers.

17. Johann H�orl and Bernhard K. Aichernig. Validating voice communication require-
ments using lightweight formal methods. IEEE Software, pages 21{27, May/June
2000.

18. Mathias Jarke and Reino Kurki-Suoni. Special issue on scenario management.
IEEE Transactions on Software Engineering, 24(12), 1998.

19. Carrol C. Morgan. Programming from Speci�cations. Series in Computer Science.
Prentice-Hall International, 1990.

20. William Perry. E�ective methods for software testing. John Wiley & Sons, 1995.
21. Philip Alan Stocks. Applying formal methods to software testing. PhD thesis, The

Department of computer science, The University of Queensland, 1993.

734 Aichernig B.K.: Tes-Design through Abstraction

A Formal Proofs

Proof of Theorem 1

fpg; [Q] w TC i o

� by de�nitions

8 � r � p:� ^Q:� � r ((x = i):� ^ [y := y0jy0 = o]:r

� by de�nition of demonic relational assignment

8 � r � p:� ^Q:� � r ((x = i):� ^ (8 y0 � (y0 = o)) r[y := y0])

� by simpli�cation of update

8 � r � p:� ^Q:� � r ((x = i):� ^ r[y := o]

� by de�nition of substitution r := (y := y0jy0 = o):�

8 � � p:� ^Q:� � (y := y0jy0 = o):� ((x = i):�

� distributivity, subset de�nition

(8 � � (x = i):�) p:�) ^

(8 � �0 � (x = i):� ^Q:�:�0) (y := y0jy0 = o):�:�0)

� de�nitions

(x = i) � p ^ jx = ij;Q � jy := oj
�

Proof of Theorem 9

[x := x0ja _ b]

= by the DNF-partitioning rule

[x := x0j(a ^ :b) _ (:a ^ b) _ (a ^ b)]

= by de�nition of demonic choice

[x := x0j(a ^ :b)] u [x := x0j:a ^ b] u [x := x0ja ^ b]

w by w-assumptions and monotonicity of u

[Q1] u [Q2] u [Q3]

= by explicitly stating the domains as assumption

[dom:Q1]; [Q1] u [dom:Q2]; [Q2] u [dom:Q3]; [Q3]

= by the fact that the choice is deterministic, since:

(1) the domains are disjoint by assumption,

(2) the whole input domain is covered,

since abstraction cannot reduce the domain of a relational update.

fdom:Q1g; [Q1] t fdom:Q2g; [Q2] t fdom:Q3g; [Q3]
�

735Aichernig B.K.: Tes-Design through Abstraction

